地球科学进展 ›› 2024, Vol. 39 ›› Issue (4): 419 -428. doi: 10.11867/j.issn.1001-8166.2024.023

研究论文 上一篇    下一篇

珠穆朗玛峰北坡桤木属大气花粉传输路径与来源
程久菊 1 , 2( ), 吕新苗 1( ), 朱立平 1 , 2, 马庆峰 1, SIMA HUMAGAIN 1 , 2, KHUM PAUDAYAL N 3   
  1. 1.中国科学院青藏高原研究所 青藏高原地球系统与资源环境全国重点实验室,北京 100101
    2.中国科学院大学,北京 100049
    3.Central Department of Geology,Tribhuvan University,Kathmandu 44600,Nepal
  • 收稿日期:2024-02-26 修回日期:2024-03-15 出版日期:2024-04-10
  • 通讯作者: 吕新苗 E-mail:chengjiuju@itpcas.ac.cn;lvxm@itpcas.ac.cn
  • 基金资助:
    第二次青藏高原综合科学考察研究项目(2019QZKK0202);国家自然科学基金项目(41831177)

Transport Pathways and Source Areas of Airborne Alnus Pollen on the Northern Slope of the Mt. Qomolangma Region

Jiuju CHENG 1 , 2( ), Xinmiao LÜ 1( ), Liping ZHU 1 , 2, Qingfeng MA 1, HUMAGAIN SIMA 1 , 2, PAUDAYAL N KHUM 3   

  1. 1.State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.Central Department of Geology, Tribhuvan University, Kathmandu 44600, Nepal
  • Received:2024-02-26 Revised:2024-03-15 Online:2024-04-10 Published:2024-04-26
  • Contact: Xinmiao Lü E-mail:chengjiuju@itpcas.ac.cn;lvxm@itpcas.ac.cn
  • About author:CHENG Jiuju, Master student, research area includes airborne pollen in the Tibetan Plateau. E-mail: chengjiuju@itpcas.ac.cn
  • Supported by:
    the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0202);The National Natural Science Foundation of China(41831177)

认识区域大气花粉组成及其形成条件有利于明确不同类型花粉组合的气候与环境意义。利用布卡大气花粉采样器在珠穆朗玛峰北坡开展了连续2年(2012—2013年)的大气花粉观测研究。基于后向轨迹和潜在来源区域模型,探讨了秋季主要组分桤木属花粉的传输路径与潜在来源区域,分析了桤木属花粉与其植物分布和大气环流的关系及气候指示意义。结果显示: 桤木属花粉季气团传输路径主要来自于采样点西南方向; 桤木属花粉潜在来源区域与其气团传输路径基本一致,主要是喜马拉雅山脉中段,包括尼泊尔中部和东部以及西藏南部等地区; 桤木属花粉数量、传输路径和来源区域的年际变化与大气环流有关,受高空西风影响的西南气团对桤木属花粉影响更大。研究结果可以为认识珠穆朗玛峰北坡外来花粉的气候意义提供科学依据。

Understanding the composition and formation conditions of regional airborne pollen is essential for elucidating the environmental significance of different pollen assemblages. A Burkard pollen trap was utilized to monitor airborne pollen on the northern slope of Mount Qomolangma over two consecutive years (2012 and 2013). Utilizing backward air mass trajectory analysis and source receptor models, this study delved into the pathways and potential sources of Alnus pollen, the predominant component during autumn. The analysis also explored the relationships between Alnus pollen, plant distribution, atmospheric circulation, and its environmental implications. The study yielded three main findings: Firstly, the predominant air mass transport pathway during the Alnus pollen season originated predominantly from the southwest of the sampling site. Secondly, the potential source area of Alnus pollen was primarily situated in the middle Himalayan region, encompassing central, eastern, and southern Nepal Tibet, largely aligning with the principal air mass transport pathway. Thirdly, interannual variations in Alnus pollen quantity, transport pathways, and potential source areas may be linked to atmospheric circulation patterns. Specifically, the southwest air mass, influenced by the upper westerlies, exhibited a more pronounced impact on Alnus pollen dispersion. These findings offer foundational insights into the climatic significance of exotic pollen on the northern slope of Mount Qomolangma.

中图分类号: 

图1 珠穆朗玛峰北坡概况图
(a)采样点位置;(b)2009—2019年珠峰站月平均气温和月平均降水量(数据来自国家青藏高原科学数据中心,https://data.tpdc.ac.cn/);(c)珠穆朗玛峰北坡地区植被分布图 15
Fig. 1 Overview map of the northern slope of the Mt. Qomolangma region
(a) The location of sampling site; (b) Mean monthly temperature and precipitation at Qomolangma station from 2009 to 2019 (data from National Tibetan Plateau Data Center, https://data.tpdc.ac.cn/); (c) Vegetation map of the northern slope of the Mt. Qomolangma region 15
图2 20122013年珠峰站桤木属日花粉浓度
Fig. 2 Daily Alnus pollen concentration at Qomolangma station from 2012 to 2013
表1 2012年秋季和 2013年秋季珠峰站后向轨迹与对应桤木属花粉浓度统计
Table 1 Statistics of backward trajectories and the corresponding parameters of daily Alnus pollen concentration at Qomolangma station in autumn of 2012 and 2013
图3 2012年秋季和2013年秋季珠峰站72 h后向轨迹聚类图
黑色星号代表珠峰站,彩色线条a1(红色)、a2(橘色)、a3(绿色)、a4(蓝色)、a5(紫色)代表2012年秋季聚类轨迹,b1(红色)、b2(橘色)、b3(绿色)、b4(蓝色)代表2013年秋季聚类轨迹,括号内百分比代表轨迹的占比
Fig. 3 Cluster analysis of 72 h backward trajectories at Qomolangma station in autumn of 2012 and 2013
The black asterisks are Qomolangma station; The color lines of a1 (red), a2 (orange), a3 (green), a4 (blue) and a5 (purple) represent cluster trajectories in autumn of 2012; b1 (red), b2 (orange), b3 (green) and b4 (blue) represent cluster trajectories in autumn of 2013; The percentages in parentheses represent the proportion of trajectories
图4 2012年秋季和2013年秋季珠峰站桤木属花粉潜在来源区域模拟结果
(a)和(c)是PSCF(潜在源贡献函数),(b)和(d)是CWT(浓度权重轨迹);黑色星号代表珠峰站;黑色圆点代表桤木属植物的分布(数据来源于https://www.gbif.org/search)
Fig. 4 Simulation results of potential source area of Alnus pollen at Qomolangma station in autumn of 2012 and 2013
(a) and (c) are PSCF (Potenital Source Contribution Function), and (b) and (d) are CWT (Concentration Weighted Trajectory); The black asterisks are Qomolangma station, and black dots represent the distribution of Alnus (data from https://www.gbif.org/search)
表2 2012年秋季和 2013年秋季珠峰站季风期和非季风期对应的气象条件
Table 2 Meteorological parameters of monsoon season and westerly season at Qomolangma station in autumn of 2012 and 2013
1 van CAMPO E, GASSE F. Pollen- and diatom-inferred climatic and hydrological changes in Sumxi Co basin (western Tibet) since 13, 000 yr B.P[J]. Quaternary Research, 1993, 39(3): 300-313.
2 LIU K B, YAO Z J, THOMPSON L G. A pollen record of Holocene climatic changes from the Dunde ice cap, Qinghai-Tibetan Plateau[J]. Geology, 1998, 26(2): 135-138.
3 TANG L Y, SHEN C M, LI C H, et al. Pollen-inferred vegetation and environmental changes in the central Tibetan Plateau since 8200 yr BP[J]. Science in China Series D: Earth Sciences, 2009, 52(8): 1 104-1 114.
4 XU Qinghai, LI Yuecong, YANG Xiaolan, et al. Quantitative relationship between several main pollen types and vegetation in Northern China[J]. Science in China Series D: Earth Sciences, 2007, 37(2): 192-205.
许清海, 李月丛, 阳小兰, 等. 中国北方几种主要花粉类型与植被定量关系[J]. 中国科学D辑: 地球科学, 2007, 37(2): 192-205.
5 LU X M, HERRMANN M, MOSBRUGGER V, et al. Airborne pollen in the Nam Co Basin and its implication for palaeoenvironmental reconstruction[J]. Review of Palaeobotany and Palynology, 2010, 163(1/2): 104-112.
6 MA Q F, ZHU L P, YANG R M, et al. Modern pollen distribution in moss samples along an elevational gradient in southeast Tibet[J]. Ecological Indicators, 2023, 154. DOI: 10.1016/j.ecolind.2023.110867 .
7 LAN Xiaoyu, YANG Dong, MIAO Yunfa, et al. Characteristics and influencing factors of airborne pollen assemblage in eastern Hexi Corridor from 2019 to 2022[J]. Advances in Earth Science, 2023, 38(6): 631-643.
蓝小玉, 杨东, 苗运法, 等. 河西走廊东部2019—2022年空气孢粉组合特征及影响因素[J]. 地球科学进展, 2023, 38(6): 631-643.
8 DAMIALIS A, HALLEY J M, GIOULEKAS D, et al. Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece[J]. Atmospheric Environment, 2007, 41(33): 7 011-7 021.
9 MAYLE F E, LEVESQUE A, CWYNAR L C. Alnus as an indicator taxon of the Younger Dryas cooling in eastern North America[J]. Quaternary Science Reviews, 1993, 12(5): 295-305.
10 XIAO Jiayi, WANG Jian, AN Zhisheng, et al. Evidence for the Younger Dryas event in the eastern part of Nanling region [J]. Acta Botanica Sinica, 1998, 40(11): 1 079-1 082.
萧家仪, 王建, 安芷生, 等. 南岭东部新仙女木事件的孢粉学证据[J]. 植物学报, 1998, 40(11): 1 079-1 082.
11 XIAO Jiayi, Haibo LÜ, ZHOU Weijian, et al. Evolution of vegetation and climate since the last glacial maximum recorded at Dahu peat site, South China[J]. Science in China Series D: Earth Sciences, 2007, 37(6): 789-797.
萧家仪, 吕海波, 周卫健, 等. 末次盛冰期以来江西大湖孢粉植被与环境演变[J]. 中国科学D辑: 地球科学, 2007, 37(6): 789-797.
12 ROUSSEAU D D, DUZER D, ETIENNE J L, et al. Pollen record of rapidly changing air trajectories to the North Pole[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D6). DOI:10.1029/2003JD003985 .
13 YAO T D, MASSON-DELMOTTE V, GAO J, et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: observations and simulations[J]. Reviews of Geophysics, 2013, 51(4): 525-548.
14 LÜ X M, PAUDAYAL K N, UHL D, et al. Phenology and climatic regime inferred from airborne pollen on the northern slope of the Qomolangma (Everest) region[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(24). DOI:10.1029/2020JD033405 .
15 Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences. Vegetation atlas of China (1∶1000000) [M]. Beijing: Science Press, 2001.
中国科学院中国植被图编辑委员会. 中国植被图集(1∶1000000)[M]. 北京:科学出版社, 2001.
16 Comprehensive Scientific Expedition Team of Chinese Academy of Sciences in Qinghai-Tibetan Plateau. Climates of Xizang (Tibet) [M]. Beijing: Science Press, 1984.
中国科学院青藏高原综合科学考察队. 西藏气候[M]. 北京: 科学出版社, 1984.
17 CONG Z Y, KAWAMURA K, KANG S C, et al. Penetration of biomass-burning emissions from South Asia through the Himalayas: new insights from atmospheric organic acids[J]. Scientific Reports, 2015, 5. DOI: 10.1038/srep09580 .
18 Comprehensive Scientific Expedition Team of Chinese Academy of Sciences in Qinghai-Tibetan Plateau. Vegetation of Xizang (Tibet) [M]. Beijing: Science Press, 1988.
中国科学院青藏高原综合科学考察队. 西藏植被[M]. 北京: 科学出版社, 1988.
19 HIRST J M. An automatic volumetric spore trap[J]. Annals of Applied Biology, 1952, 39(2): 257-265.
20 WANG Fuhsiung, CHIEN Nanfen, ZHANG Yulong, et al. Pollen flora of China [M]. 2nd ed. Beijing: Science Press, 1995.
王伏雄, 钱南芬, 张玉龙, 等. 中国植物花粉形态[M]. 2版. 北京: 科学出版社, 1995.
21 YE Shitai, ZHANG Jintan, QIAO Bingshan, et al. Airborne and allergenic pollen grains in China[M]. Beijing: Science Press, 1988.
叶世泰, 张金谈, 乔秉善, 等. 中国气传和致敏花粉[M]. 北京: 科学出版社, 1988.
22 QIAO Bingshan. Color atlas of airborne pollens and plants in China [M]. 2 nd ed. Beijing: Peking Union Medical College Press, 2014.
乔秉善. 中国气传花粉和植物彩色图谱[M]. 2版. 北京:中国协和医科大学出版社, 2014.
23 TANG Lingyu, MAO Limi, SHU Junwu, et al. An illustrated handbook of Quaternary pollen and spores in China [M]. Beijing: Science Press, 2016.
唐领余, 毛礼米, 舒军武, 等. 中国第四纪孢粉图鉴[M]. 北京: 科学出版社, 2016.
24 DRAXLER R R, HESS G D. An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition [J]. Australian Meteorological Magazine, 1998, 47(4): 295-308.
25 WANG Y Q, ZHANG X Y, DRAXLER R R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data[J]. Environmental Modelling & Software, 2009, 24(8): 938-939.
26 KARACA F, ANIL I, ALAGHA O. Long-range potential source contributions of episodic aerosol events to PM10 profile of a megacity[J]. Atmospheric Environment, 2009, 43(36): 5 713-5 722.
27 WANG Guochen, WANG Jue, XIN Yujie, et al. Transportation pathways and potential source areas of PM10 and NO2 in Tianjin[J]. China Environmental Science, 2014, 34(12): 3 009-3 016.
王郭臣, 王珏, 信玉洁, 等. 天津PM10和NO2输送路径及潜在源区研究[J]. 中国环境科学, 2014, 34(12): 3 009-3 016.
28 MAKRA L, MATYASOVSZKY I, TUSNÁDY G, et al. Biogeographical estimates of allergenic pollen transport over regional scales: common ragweed and Szeged, Hungary as a test case[J]. Agricultural and Forest Meteorology, 2016, 221: 94-110.
29 SIROIS A, BOTTENHEIM J W. Use of backward trajectories to interpret the 5-year record of PAN and O3 ambient air concentrations at Kejimkujik National Park, Nova Scotia[J]. Journal of Geophysical Research: Atmospheres, 1995, 100(D2): 2 867-2 881.
30 IZQUIERDO R, BELMONTE J, AVILA A, et al. Source areas and long-range transport of pollen from continental land to Tenerife (Canary Islands)[J]. International Journal of Biometeorology, 2011, 55(1): 67-85.
31 IZQUIERDO R, ALARCÓN M, MAZÓN J, et al. Are the Pyrenees a barrier for the transport of birch (Betula) pollen from Central Europe to the Iberian Peninsula?[J]. The Science of the Total Environment, 2017, 575: 1 183-1 196.
32 QIN X X, LI Y Y, SUN X, et al. Transport pathway and source area for Artemisia pollen in Beijing, China[J]. International Journal of Biometeorology, 2019, 63(5): 687-699.
33 ZENG Y, HOPKE P K. A study of the sources of acid precipitation in Ontario, Canada[J]. Atmospheric Environment (1967), 1989, 23(7): 1 499-1 509.
34 POLISSAR A V, HOPKE P K, POIROT R L. Atmospheric aerosol over Vermont: chemical composition and sources[J]. Environmental Science & Technology, 2001, 35(23): 4 604-4 621.
35 LI Li, CAI Junlin, ZHOU Min. Potential source contribution analysis of the particulate matters in Shanghai during the heavy haze episode in eastern and middle China in December, 2013[J]. Environmental Science, 2015, 36(7): 2 327-2 336.
李莉, 蔡鋆琳, 周敏. 2013年12月中国中东部地区严重灰霾期间上海市颗粒物的输送途径及潜在源区贡献分析[J]. 环境科学, 2015, 36(7): 2 327-2 336.
36 HSU Y K, HOLSEN T M, HOPKE P K. Comparison of hybrid receptor models to locate PCB sources in Chicago[J]. Atmospheric Environment, 2003, 37(4): 545-562.
37 WANG Y Q, ZHANG X Y, ARIMOTO R. The contribution from distant dust sources to the atmospheric particulate matter loadings at XiAn, China during spring[J]. The Science of the Total Environment, 2006, 368(2/3): 875-883.
38 CHEN Zhiduan. Phylogeny and phytogeography of the Batulaceae (cont.)[J]. Acta Phytotaxonomica Sinica, 1994, 32(2): 101-153.
陈之端. 桦木科植物的系统发育和地理分布(续)[J]. 植物分类学报, 1994, 32(2): 101-153.
39 FANG Runqi, XIE Shuqiong, XIANG Sufang, et al. A study of the airborne and allergenic spores and pollen grains in Kunming[J]. Acta Botanica Yunnanica, 1992, 14(3): 295-300.
方润琪, 谢淑琼, 相素芳, 等. 昆明市区气传致敏孢粉研究[J]. 云南植物研究, 1992, 14(3): 295-300.
40 LI Yuecong, XU Qinghai, GE Yawen, et al. Airborne pollen assemblages and maximum source area in dust and non-dust weather in the central and eastern Loess Plateau[J]. Geographical Research, 2014, 33(12): 2 367-2 381.
李月从, 许清海, 葛亚汶, 等. 黄土高原中东部沙尘与非沙尘天气花粉组成及来源范围[J]. 地理研究, 2014, 33(12): 2 367-2 381.
41 SOFIEV M, SILJAMO P, RANTA H, et al. Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study[J]. International Journal of Biometeorology, 2006, 50(6): 392-402.
42 GHASEMIFARD H, GHADA W, ESTRELLA N, et al. High post-season Alnus pollen loads successfully identified as long-range transport of an alpine species[J]. Atmospheric Environment, 2020, 231. DOI:10.1016/j.atmosenv.2020.117453 .
43 PICORNELL A, RECIO M, RUIZ-MATA R, et al. Medium- and long-range transport events of Alnus pollen in western Mediterranean[J]. International Journal of Biometeorology, 2020, 64(10): 1 637-1 647.
44 BAYR D, PLAZA M P, GILLES S, et al. Pollen long-distance transport associated with symptoms in pollen allergics on the German Alps: an old story with a new ending?[J]. The Science of the Total Environment, 2023, 881. DOI: 10.1016/j.scitotenv.2023.163310 .
45 LU H Y, WU N Q, LIU K B, et al. Modern pollen distributions in Qinghai-Tibetan Plateau and the development of transfer functions for reconstructing Holocene environmental changes[J]. Quaternary Science Reviews, 2011, 30(7/8): 947-966.
46 MA Q F, ZHU L P, JU J T, et al. A modern pollen dataset from lake surface sediments on the central and western Tibetan Plateau[J]. Earth System Science Data, 2024, 16(1): 311-320.
47 CUI A N, LU H Y, LIU X Q, et al. Tibetan Plateau precipitation modulated by the periodically coupled westerlies and Asian monsoon[J]. Geophysical Research Letters, 2021, 48(7). DOI:10.1029/2020GL091543 .
48 MA Q F, ZHU L P, WANG J B, et al. Variations in spring atmospheric circulation on the southwestern Tibetan Plateau during Holocene linked to high- and low-latitude forcing[J]. Geophysical Research Letters, 2023, 50(9). DOI:10.1029/2023GL103163 .
49 MA Q F, ZHU L P, WANG J B, et al. Southward shifts and enhancements of the westerlies over the Tibetan Plateau during North Atlantic cooling events[J]. Quaternary Science Reviews, 2024, 324. DOI:10.1016/j.quascirev.2023.108440 .
50 CUI A N, WANG M, LU H Y, et al. Seasonal climatic variations inferred from pollen in a laminated glacier in the southeastern Tibetan Plateau[J]. Earth and Space Science, 2022, 9(12). DOI:10.1029/2022EA002581 .
51 WANG B, FAN Z. Choice of South Asian summer monsoon indices[J]. Bulletin of the American Meteorological Society, 1999, 80(4): 629-638.
52 MALLA S, RAJBHANDAR S, SHRESTHA T, et al. Flora of Kathmandu Valley [M]. Kathmandu: H.M.G Press, 1986.
53 SUN F L, MA Y M, HU Z Y, et al. Mechanism of daytime strong winds on the northern slopes of Himalayas, near Mount Everest: observation and simulation[J]. Journal of Applied Meteorology and Climatology, 2018, 57(2): 255-272.
54 MA Y M, XIE Z P, MA W Q, et al. QOMS: a comprehensive observation station for climate change research on the top of Earth[J]. Bulletin of the American Meteorological Society, 2023, 104(3): E563-E584.
[1] 刘锦波, 张勇, 刘时银, 王欣, 蒋宗立. 青藏高原及周边石冰川识别、冰储量及动力学过程研究进展[J]. 地球科学进展, 2024, 39(4): 391-404.
[2] 兰措. 气候变化背景下陆面模式研究进展及不足[J]. 地球科学进展, 2024, 39(1): 46-55.
[3] 胥佩, 李茂善, 常娜, 龚铭, 伏薇. 藏东南林芝地区冬季大气边界层参数化方案适应性研究[J]. 地球科学进展, 2023, 38(9): 954-966.
[4] 刘操, 饶维龙, 孙文科. 利用大地测量手段推算印度板块与欧亚板块初始碰撞时间[J]. 地球科学进展, 2023, 38(7): 745-756.
[5] 姚楠, 马耀明. 亚洲三大高原感热变化及其对中国天气气候协同影响研究进展[J]. 地球科学进展, 2023, 38(6): 580-593.
[6] 李育, 段俊杰, 李海烨, 高铭君, 张宇欣, 薛雅欣. 全新世青藏高原及周边典型湖泊演化模拟[J]. 地球科学进展, 2023, 38(4): 388-400.
[7] 薄立明, 魏伟, 赵浪, 尹力, 夏俊楠. 青藏高原水生态空间格局时空演化特征及驱动机制[J]. 地球科学进展, 2023, 38(4): 401-413.
[8] 王春晓, 马耀明, 韩存博. 青藏高原大气边界层结构及其发展机制研究[J]. 地球科学进展, 2023, 38(4): 414-428.
[9] 吴景全, 李全莲, 武小波, 王宁练, 康世昌, 王世金. 青藏高原不同载体中微生物类脂物 GDGTs的研究进展及展望[J]. 地球科学进展, 2023, 38(11): 1158-1172.
[10] 王劲松, 姚玉璧, 王莺, 王素萍, 刘晓云, 周悦, 杜昊霖, 张宇, 任余龙. 青藏高原地区气象干旱研究进展与展望[J]. 地球科学进展, 2022, 37(5): 441-461.
[11] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展, 2022, 37(2): 187-201.
[12] 李虎, 潘小多. 青藏高原水汽输送过程及水汽源地研究方法综述[J]. 地球科学进展, 2022, 37(10): 1025-1036.
[13] 张璐, 李倩惠, 孟露, 张强, 张宏昇, 何清, 赵天良. 深厚大气边界层演变与湍流运动、沙尘滞空的研究[J]. 地球科学进展, 2022, 37(10): 991-1004.
[14] 昝金波, 宁文晓, 杨胜利, 方小敏, 康健, 罗元龙. 表土磁学特征揭示的青藏高原及其周边地区的气候边界[J]. 地球科学进展, 2022, 37(1): 14-25.
[15] 杨晓新. 水体稳定同位素在青藏高原大气环流研究中的应用[J]. 地球科学进展, 2022, 37(1): 87-98.
阅读次数
全文


摘要