地球科学进展 ›› 2024, Vol. 39 ›› Issue (4): 405 -418. doi: 10.11867/j.issn.1001-8166.2024.028

研究论文 上一篇    下一篇

砂质辫状河中河边滩和河心滩沉积构型:基于沉积演化过程的精细解析
郭颖 1 , 2( ), 冯文杰 1( ), 李少华 1, 闫淑红 2   
  1. 1.长江大学 地球科学学院,湖北 武汉 430100
    2.中国石化华北油气分公司 勘探开发研究院,河南 郑州 450006
  • 收稿日期:2024-01-15 修回日期:2024-03-17 出版日期:2024-04-10
  • 通讯作者: 冯文杰 E-mail:guoying.hbsj@sinopec.com;fwj1017@yangtzeu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41802123)

Sedimentary Architecture Between Compound Middle Bars and Side Bars: Insights from a Numerical Model of Sandy Braided Rivers

Ying GUO 1 , 2( ), Wenjie FENG 1( ), Shaohua LI 1, Shuhong YAN 2   

  1. 1.School of Geoscience, Yangtze University, Wuhan 430100, China
    2.Sinopec North China Petroleum Bureau, Zhengzhou 450006, China
  • Received:2024-01-15 Revised:2024-03-17 Online:2024-04-10 Published:2024-04-26
  • Contact: Wenjie FENG E-mail:guoying.hbsj@sinopec.com;fwj1017@yangtzeu.edu.cn
  • About author:GUO Ying, Ph.D student, research areas include reservoir description and geological modeling. E-mail: guoying.hbsj@sinopec.com
  • Supported by:
    the National Natural Science Foundation of China(41802123)

心滩是构成砂质辫状河储层的主要沉积单元,受发育位置的影响,存在河心滩和河边滩。由于受到多次侵蚀切割和再沉积作用导致其最终保存的内部构型样式复杂,且二者之间差异不明确。因此,采用沉积数值模拟的方式通过再现河心滩生长与演化过程,解析演化过程中反复的沉积和侵蚀切割的关系,建立二者的内部构型模式,对于指导地下油气精细勘探开发有着重要的实际意义。研究表明: 受两侧水流的影响,河心滩的沉积演化是先向下迁移后侧向迁移;而河边滩受单侧水流的影响,沉积演化是先侧向迁移后向下迁移。 河心滩自下而上发育顺流加积体、侧积体和垂向加积体,河边滩自下而上由侧积体、垂向加积体或向心充填的河道沉积构成。 河边滩比河心滩内部的侧积体期次多,叠切关系复杂。

Sandy braided rivers can create extensive oil and gas reservoirs, with channel bars representing predominant sedimentary features. These bars, including compound middle channel bars and compound sidebars, exhibit complex internal architectural patterns resulting from multiple episodes of erosion, cutting, and redeposition during formation. To address these complexities, numerical simulations of sedimentation were employed to replicate the growth and evolution of the bars, enabling the analysis of repetitive sedimentation and erosion-cutting processes shaping their architecture. The results indicate the following: compound middle bars experienced downward migration followed by lateral migration due to water flow from both sides, whereas sidebars underwent lateral migration first and then downward migration due to water flow from one side; compound middle bars developed through downstream, lateral, and vertical accretions, whereas sidebars formed through lateral, vertical, or infilling deposits, all from bottom to top; and compound sidebars exhibited greater variation in the scale of lateral accretions compared to middle bars, displaying multiple generations and intricate interleaving relationships. A deeper understanding of the internal architecture of middle and sidebars provides novel insights into the characterization of underground oil and gas reservoirs.

中图分类号: 

图1 砂质辫状河模拟网格与初始水深分布
Fig. 1 Grid and initial water depth distribution for braided river numerical simulation
表1 砂质辫状河沉积数值模拟参数
Table 1 Parameters for numerical simulation of a sandy braided river
图2 砂质辫状河沉积模拟沉积地貌特征
(a)~(k)分别为300~1 330步长下河床侵蚀和沉积厚度分布图;A1~A6、B1~B7、A、B、C和D均为不同步长下河心滩和河边滩
Fig. 2 Characteristics of simulated sedimentary landforms in sandy braided river
(a)~(k) Represents the riverbed erosion and sediment thickness maps in steps 300~1 330; A1~A6,B1~B7, A, B, C and D represents the middle bar and side bar in different steps
图3 不同步长下的河心滩和河边滩面积比
Fig. 3 The area ratio of compound middle bar and side bar in different steps
图4 典型河心滩A和河边滩B沉积演化过程
(a)~(e)500、600、700、900和1 330步长河心滩的沉积厚度分布;(a’)~(e’)500、600、700、900和1 330步长河边滩的沉积厚度分布;A1~A5、B1~B5、A和B是均为不同步长下河心滩和河边滩,aa’~dd’对应图10剖面的平面位置;ee’~hh’对应图11剖面的平面位置
Fig. 4 The sedimentary evolution process of typical middle bar A and side bar B
(a)~(e) Represents sediment thickness of middle bar A in steps 500, 600, 700,900 and 1 330; (a’)~(e’) Represents sediment thickness of side bar B in in steps 500, 600, 700,900 and 1 330; A1~A5, B1~B5, A and B represents the middle bar and side bar in different steps; aa’~dd’ corresponds to the plane position of Figure 10; ee’~hh’ corresponds to the plane position of Figure 11
图5 河心滩和河边滩的沉积演化模式
(a)~(c)河心滩的演化模式;(d)~(f)河边滩的演化模式
Fig. 5 Sedimentary evolution models of middle bar and side bar
(a)~(c) The evolutionary model of the middle bar; (d)~(f) The evolutionary model of side bar
图6 河心滩和河边滩的规模等参数与演化时间关系图
(a)和(b)不同演化时间下的河心滩迁移速率和规模变化;(c)和(d)不同演化时间下的河边滩迁移速率和规模变化;(e)不同演化时间下的河心滩和河边滩长宽比变化
Fig. 6 The relationship between the scale with evolution time of the middle bar and side bar
(a) and (b) Migration rate and scale changes of middle bar under different evolutionary times; (c) and (d) Migration rate and scale changes of side bar under different evolutionary times; (e) Changes in the aspect ratio of the middle bar and side bar under different evolution times
图7 现代沉积与数值模拟典型地貌特征对比
(a)印度恒河(据参考文献[ 35 ]修改);(b)孟加拉国贾木纳河
Fig. 7 Comparison of typical characteristics between modern sedimentation and numerical simulation
(a) The Ganges River in India (modified after reference [ 35 ]); (b) The Jamuna River in Bangladesh
图8 现代沉积与数值模拟规模数据对比
Fig. 8 The scale data comparison of modern sedimentary and numerical Simulation
图9 河心滩和河边滩长宽比范围
Fig. 9 The length to width ratio range of the middle bar and side bar
图10 顺物源方向上不同演化阶段下河心滩和河边滩的内部构型差异
ee’和gg’分别为500和600步长下河心滩的剖面;ff’和hh’分别为600和700步长下河边滩的剖面
Fig. 10 The internal architecture differences of the middle bar and side bar in longitudinal source section
ee’ and gg’ represent the section of middle bar at 500 and 600 steps; ff’ and hh’ represent the section of side bar at 600 and 700 steps
图11 切物源方向上不同演化阶段下河心滩和河边滩的内部构型差异
aa’和cc’分别为600和900步长下河心滩的剖面;bb’和dd’分别为500和600步长下河边滩的剖面
Fig. 11 The internal architecture differences of the middle bar and side bar in transverse source section
aa’ and cc’ represent the section of middle bar at 600 and 900 steps; bb’ and dd’ represent the section of side bar at 500 and 600 steps
图12 演化成熟的河心滩内部解剖
(a)~(c)切物源方向剖面AA’、BB’和CC’;(d)顺物源方向剖面DD’;(e)平面分布图; ~ 代表不同期次增生体
Fig. 12 The internal architecture of the middle bar
(a)~(c) The transverse section AA’, BB’ and CC’; (d) Longitudinal source profile DD’; (e) The plane view of the middle bar; ~ Represents different stages of accretions
图13 演化成熟的河边滩内部解剖
(a)~(c)切物源方向剖面AA’、BB’和CC’;(d)顺物源方向剖面DD’;(e)平面分布图; ~ ? 代表不同期次增生体
Fig. 13 The internal architecture of the side bar
(a)~(c) The transverse section AA’, BB’ and CC’; (d) Longitudinal source profile DD’; (e) The plane view of the side bar; ~ ? Represents different stages of accretions
表2 河心滩和河边滩的对比
Table 2 The comparison between the middle and side bar
1 ALLEN J R L. Studies in fluviatile sedimentation: bars, bar-complexes and sandstone sheets (low-sinuosity braided streams) in the brownstones (L. Devonian), Welsh borders[J]. Sedimentary Geology, 1983, 33(4): 237-293.
2 BRIDGE J S. The interaction between channel geometry, water flow, sediment transport and deposition in braided rivers[J]. Geological Society, London, Special Publications, 1993, 75(1): 13-71.
3 BEST J L, ASHWORTH P J, BRISTOW C S, et al. Three-dimensional sedimentary architecture of a large, mid-channel sand braid bar, Jamuna River, Bangladesh[J]. Journal of Sedimentary Research, 2003, 73(4): 516-530.
4 SKELLY R L, BRISTOW C S, ETHRIDGE F G. Architecture of channel-belt deposits in an aggrading shallow sandbed braided river: the lower Niobrara River, northeast Nebraska[J]. Sedimentary Geology, 2003, 158(3/4): 249-270.
5 YU Xinghe, MA Xingxiang, MU Longxin, et al. Geological model and hierarchical interface analysis of braided river reservoir[M]. Beijing: Petroleum Industry Press, 2004.
于兴河, 马兴祥, 穆龙新,等.辫状河储层地质模式及层次界面分析[M]. 北京: 石油工业出版社, 2004.
6 ZHANG Changmin, YIN Taiju, ZHAO Lei, et al. Analysis of internal architectural features of braided river reservoirs[J]. Geological Science and Technology Information, 2013, 32(4): 7-13.
张昌民, 尹太举, 赵磊,等. 辫状河储层内部建筑结构分析[J]. 地质科技情报, 2013, 32(4): 7-13.
7 WANG Min, MU Longxin, ZHAO Guoliang, et al. Architecture analysis of reservoirs in branching-and wandering-based braided rivers: taking FN field, Sudan as an example[J]. Earth Science Frontiers, 2017, 24(2): 246-256.
王敏, 穆龙新, 赵国良, 等. 分汊与游荡型辫状河储层构型研究: 以苏丹FN油田为例[J]. 地学前缘, 2017, 24(2): 246-256.
8 MIALL A D. A review of the braided-river depositional environment[J]. Earth-Science Reviews, 1977, 13(1). DOI:10.1016/0012-8252(77)90055-1 .
9 MIALL A D. Architectural-element analysis: a new method of facies analysis applied to fluvial deposits[J]. Earth-Science Reviews, 1985, 22(4): 261-308.
10 LIAO Baofang, ZHANG Weimin, LI Lie, et al. Study on modern deposit of a braided stream and factes model—taking the Yongding River as an example[J]. Acta Sedimentologica Sinica, 1998, 16(1): 34-39, 50.
廖保方, 张为民, 李列, 等. 辫状河现代沉积研究与相模式: 中国永定河剖析[J]. 沉积学报, 1998, 16(1): 34-39, 50.
11 JIA Ailin, WANG Guoting, MENG Dewei, et al. Well pattern infilling strategy to enhance oil recovery of giant low-permeability tight gasfield: a case study of Sulige gasfield, Ordos Basin[J]. Acta Petrolei Sinica, 2018, 39(7): 802-813.
贾爱林, 王国亭, 孟德伟, 等. 大型低渗—致密气田井网加密提高采收率对策: 以鄂尔多斯盆地苏里格气田为例[J]. 石油学报, 2018, 39(7): 802-813.
12 LI W, COLOMBERA L, YUE D L, et al. Controls on the morphology of braided rivers and braid bars: an empirical characterization of numerical models[J]. Sedimentology, 2023, 70(1): 259-279.
13 CANT D J, WALKER R G. Fluvial processes and facies sequences in the sandy braided South Saskatchewan River, Canada[J]. Sedimentology, 1978, 25(5): 625-648.
14 SAMBROOK SMITH G H, ASHWORTH P J, BEST J L, et al. The sedimentology and alluvial architecture of the sandy braided South Saskatchewan River, Canada[J]. Sedimentology, 2006, 53(2): 413-434.
15 ASHWORTH P J, SAMBROOK SMITH G H, BEST J L, et al. Evolution and sedimentology of a channel fill in the sandy braided South Saskatchewan River and its comparison to the deposits of an adjacent compound bar[J]. Sedimentology, 2011, 58(7): 1 860-1 883.
16 HUNDEY E J, ASHMORE P E. Length scale of braided river morphology[J]. Water Resources Research, 2009, 45(8). DOI:10.1029/2008WR007521 .
17 BRIDGE J S, LUNT I A. Depositional models of braided rivers[Z]. Special Publication 36: International Association of Sedimentologists, 2006.
18 GUO Y, LI S H, HE F Q, et al. Sedimentary characteristics and internal architecture of a sandy braided river: insights from a numerical model[J]. Water, 2023, 15(23). DOI:10.3390/w15234119 .
19 LUNT I A, BRIDGE J S, TYE R S. A quantitative, three-dimensional depositional model of gravelly braided rivers[J]. Sedimentology, 2004, 51(3): 377-414.
20 SMITH G S, BEST J, BRISTOW C, et al. Braided rivers: where have we come in 10 years? Progress and future needs[M]// Braided rivers: process, deposits, ecology and management. UK: Blackwell Publishing Ltd. Oxford, 2006: 1-10.
21 YANG Lisha, CHEN Bintao, LI Shunli, et al. Pattern of genesis-based mudstone distribution for sandy braided river: a case study of sandy braided-river outcrop, Datong, Shanxi Province, China[J]. Natural Gas Geoscience, 2013, 24(1): 93-98.
杨丽莎, 陈彬滔, 李顺利, 等. 基于成因类型的砂质辫状河泥岩分布模式: 以山西大同侏罗系砂质辫状河露头为例[J]. 天然气地球科学, 2013, 24(1): 93-98.
22 CHEN Bintao, YU Xinghe, WANG Tianqi, et al. Lithofacies and architectural characteristics of sandy braided river deposits: a case from outcrops of the Middle Jurassic Yungang Formation in the Datong Basin, Shanxi Province[J]. Oil & Gas Geology, 2015, 36(1): 111-117.
陈彬滔, 于兴河, 王天奇, 等. 砂质辫状河岩相与构型特征: 以山西大同盆地中侏罗统云冈组露头为例[J]. 石油与天然气地质, 2015, 36(1): 111-117.
23 LI S L, YU X H, CHEN B T, et al. Quantitative characterization of architecture elements and their response to base-level change in A sandy braided fluvial system at A mountain front[J]. Journal of Sedimentary Research, 2015, 85(10): 1 258-1 274.
24 LI Shunli, YU Xinghe, JIANG Tao, et al. Characteristics and abandoned channel patterns of braided-to-meandering river transitions[J]. Acta Sedimentologica Sinica, 2017, 35(1): 1-9.
李胜利, 于兴河, 姜涛, 等. 河流辫—曲转换特点与废弃河道模式[J]. 沉积学报, 2017, 35(1): 1-9.
25 SHAN Jingfu, CHEN Xinxin, TANG Jun. Study on the reservoir configuration and gas distribution law of sandy braided rivers[J]. Bulletin of Science and Technology, 2017, 33(10): 29-33.
单敬福, 陈欣欣, 汤军. 砂质辫状河储层构型及天然气分布规律研究[J]. 科技通报, 2017, 33(10): 29-33.
26 MOSSELMAN E. Hydraulic geometry of straight alluvial channels and the principle of least action[J]. Journal of Hydraulic Research, 2004, 42(2): 219-222.
27 LESSER G R, ROELVINK J A, Van KESTER J A T M, et al. Development and validation of a three-dimensional morphological model[J]. Coastal Engineering, 2004, 51(8/9): 883-915.
28 van der WEGEN M, ROELVINK J A. Long-term morphodynamic evolution of a tidal embayment using a two-dimensional, process-based model[J]. Journal of Geophysical Research: Oceans, 2008, 113(C3). DOI:10.1029/2006JC003983 .
29 WEN Lifeng, WU Shenghe, YUE Dali. New distribution pattern of mudstone interlayer within batture bar reservoir of braided river—a case study of field outcrops in Wuguantun[J]. Petroleum Geology and Engineering, 2016, 30(4): 5-7, 145.
温立峰, 吴胜和, 岳大力. 粗粒辫状河心滩内部泥质夹层分布新模式: 以吴官屯野外露头为例[J]. 石油地质与工程, 2016, 30(4): 5-7, 145.
30 WANG Yue, CHEN Shiyue, LI Tianbao, et al. Braided river sand body architecture and heterogeneity of Permian in Palougou outcrop[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(6): 1-8.
王越, 陈世悦, 李天宝, 等. 扒楼沟剖面二叠系辫状河砂体构型与非均质性特征[J]. 中国石油大学学报(自然科学版), 2016, 40(6): 1-8.
31 CHEN Dongyang, WANG Feng, CHEN Hongde, et al. Characterization of braided river reservoir architecture of the Upper Paleozoic He8 member on Fugu Tianshengqiao outcrop, eastern Ordos Basin[J]. Oil & Gas Geology, 2019, 40(2): 335-345.
陈东阳, 王峰, 陈洪德, 等. 鄂尔多斯盆地东部府谷天生桥剖面上古生界下石盒子组8段辫状河储层构型表征[J]. 石油与天然气地质, 2019, 40(2): 335-345.
32 SCHUURMAN F, MARRA W A, KLEINHANS M G. Physics-based modeling of large braided sand-bed rivers: bar pattern formation, dynamics, and sensitivity[J]. Journal of Geophysical Research: Earth Surface, 2013, 118(4): 2 509-2 527.
33 van de LAGEWEG W I, van DIJK W M, KLEINHANS M G. Morphological and stratigraphical signature of floods in A braided gravel-bed river revealed from flume experiments[J]. Journal of Sedimentary Research, 2013, 83(11): 1 032-1 045.
34 SCHUURMAN F, KLEINHANS M G. Bar dynamics and bifurcation evolution in a modelled braided sand-bed river[J]. Earth Surface Processes and Landforms, 2015, 40(10): 1 318-1 333.
35 ZHANG K, WU S H, FENG W J, et al. Bar dynamics in a sandy braided river: insights from sediment numerical simulations[J]. Sedimentary Geology, 2020, 396. DOI:10.1016/j.sedgeo.2019.105557 .
36 SCHUURMAN F, KLEINHANS M G, MIDDELKOOP H. Network response to disturbances in large sand-bed braided rivers[J]. Earth Surface Dynamics, 2016, 4(1): 25-45.
37 ZHANG Ke, WU Shenghe, FENG Wenjie, et al. Discussion on evolution of bar in sandy braided river: insights from sediment numerical simulation and modern bar[J]. Acta Sedimentologica Sinica, 2018, 36(1): 81-91.
张可, 吴胜和, 冯文杰, 等. 砂质辫状河心滩坝的发育演化过程探讨: 沉积数值模拟与现代沉积分析启示[J]. 沉积学报, 2018, 36(1): 81-91.
38 ZHANG Xianguo, ZHANG Yuheng, ZHANG Tao, et al. Analysis of braided bar evolution based on numerical simulation of deposition process[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(2): 1-9.
张宪国, 张育衡, 张涛, 等. 基于沉积数值模拟的辫状河心滩演化[J]. 中国石油大学学报(自然科学版), 2020, 44(2): 1-9.
39 NIU Bo, GAO Xingjun, ZHAO Yingcheng, et al. Architecture characterization and modeling of channel bar in paleo-braided river: a case study of dense well pattern area of Sazhong in Daqing oilfield[J]. Acta Petrolei Sinica, 2015, 36(1): 89-100.
牛博, 高兴军, 赵应成, 等. 古辫状河心滩坝内部构型表征与建模: 以大庆油田萨中密井网区为例[J]. 石油学报, 2015, 36(1): 89-100.
40 FENG Wei, YU Xiaotao. Characteristics and formation mechanism of lateral accretion bodies of braided rivers[J]. China Manganese Industry, 2017, 35(2): 1-3.
奉伟, 喻小涛. 辫状河侧积体的特征及形成机理[J]. 中国锰业, 2017, 35(2): 1-3.
41 ZHOU Yinbang, WU Shenghe, JI Bingyu, et al. Research progress on the characterization of fluvial reservoir architecture[J]. Advances in Earth Science, 2011, 26(7): 695-702.
周银邦, 吴胜和, 计秉玉, 等. 曲流河储层构型表征研究进展[J]. 地球科学进展, 2011, 26(7): 695-702.
42 LIU Fenliang, GAO Hongshan, LI Zongmeng, et al. Terraces development and their implications for valley evolution of the Jinsha River since late Pleistocene near Longjie, Yunnan[J]. Advances in Earth Science, 2020, 35(4): 431-440.
刘芬良, 高红山, 李宗盟, 等. 金沙江龙街段晚更新世以来的阶地发育与河谷地貌演化[J]. 地球科学进展, 2020, 35(4): 431-440.
43 MENG Xianmeng, HUANG Meng, HUANG Jie, et al. Recent advances in influencing mechanisms and evolution models of watershed geomorphology and river network structure[J]. Advances in Earth Science, 2023, 38(8): 780-789.
孟宪萌, 黄檬, 黄杰, 等. 流域地貌与河网结构影响机制及其演化模型的研究进展[J]. 地球科学进展, 2023, 38(8): 780-789.
[1] 冯斌,赵峰华,王淑华. 地震分频解释技术在河道砂预测中的应用[J]. 地球科学进展, 2012, 27(5): 510-514.
阅读次数
全文


摘要