地球科学进展 doi: 10.11867/j.issn.1001-8166.2024.030

   

青藏高原及周边石冰川识别、冰储量及 动力学过程研究进展
刘锦波1,张勇2*,刘时银3,王欣1,蒋宗立1   
  1. (1. 湖南科技大学 地球科学与空间信息工程学院,湖南 湘潭 411201;2. 湖南科技大学 资源环境与安全 工程学院,湖南 湘潭 411201;3. 云南大学 国际河流与生态安全研究院,云南 昆明 650500)
  • 通讯作者: 张勇,教授,主要从事冰冻圈变化与水资源研究. E-mail:yong.zhang@hnust.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(编号:42171134,42171137)资助.

Research on the Identification, Ice Volume and Dynamic Process of Rock Glaciers in the Tibetan Plateau and Surroundings

LIU Jinbo1, ZHANG Yong2, LIU Shiyin3, WANG Xin1, JIANG Zongli1   

  1. (1. School of Earth Sciences and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan Hunan 411201, China; 2. School of Resource, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan Hunan 411201, China; 3. Institute of International Rivers and Eco-security, Yunnan University, Kunming 650500, China)
  • Contact: ZHANG Yong, Professor, research areas include glacier change and water resources. E-mail: yong.zhang@hnust.edu.cn
  • About author:LIU Jinbo, Master student, research area includes cryospheric environment. E-mail: Liu_jinbo2000@163.com
  • Supported by:
    Project supported by the National Natural Science Foundation of China (Grant No. 42171134, Grant No. 42171137).
青藏高原及周边分布着数量众多的石冰川,因其独特的蓄水功能和气候响应特征,不仅影 响区域潜在的固态水资源,还增加了相应灾害发生的风险,越来越受到人们的关注。当前,对石冰 川识别、冰储量估算及其动力学过程模拟的探讨还较为缺乏,导致无法准确评估广大无资料或缺 资料地区的石冰川变化及其气候响应特征。在系统梳理青藏高原及周边石冰川分布特征的基础 上,综合回顾和总结了石冰川识别方法、冰储量估算方法、动力学过程及其模拟的研究进展。受观 测数据缺乏和方法不确定性等问题的限制,当前青藏高原及周边石冰川编目、识别和冰储量估算 精度仍面临诸多挑战。展望未来,深入认识气候—石冰川动力学过程的相互作用机制,强化天— 空—地多层次、多角度、多手段的石冰川监测,集成人工智能和新观测技术的石冰川识别和冰储量 估算方法,准确评估气候变化条件下青藏高原及周边石冰川变化、未来趋势及其影响,进而服务于 青藏高原及周边区域社会经济可持续发展。
There are a large number of rock glaciers in the Tibetan Plateau and surroundings. Because of its unique water storage and climate response, rock glaciers not only affect the potential solid water resources in the region, but also increase the risk of corresponding disasters, which has attracted more and more attention. Currently, there is a lack of study on the identification of rock glaciers, ice volume estimation and simulation of dynamic processes, which results in the inability to accurately assess changes in rock glaciers and their climate response characteristics in regions with no or missing data.This review systematically analyzes the distribution characteristics of rock glaciers in the Tibetan Plateau and surroundings, and comprehensively investigates the research progress on the identification of rock glaciers, ice volume estimation, and dynamic processes. Due to the lack of observation data and the uncertainty of methods, there still remain many challenges in rock glacier identification, ice volume estimation and dynamic process simulation on the Tibetan Plateau and surroundings. In the future, we will deeply understand the interaction mechanism between climate and dynamic processes of rock glaciers, strengthen the multi-level, multi-angle and multi-method monitoring based on Space-Air-Ground, and integrate artificial intelligence and new observation technology into rock glacier identification and ice volume estimation methods. Then, we can accurately evaluate the changes, future trends and impacts of rock glaciers in the Tibetan Plateau and surroundings under climate change conditions, serving the sustainable social and economic development of the Tibetan Plateau and surroundings.

中图分类号: 

[1] 张井勇. 面向碳中和的气候变化预估与风险研究新框架[J]. 地球科学进展, 2025, 40(1): 15-20.
[2] 陈梦佳, 白炜, 张成铭, 刘文艳, 高泽永. 多年冻土区热喀斯特湖水—热—碳循环过程研究进展[J]. 地球科学进展, 2025, 40(1): 82-98.
[3] 袁星, 周诗玙, 马凤, 王钰淼, 郝奕, 梁妙玲, 陈李楠. 气候和下垫面变化下骤旱形成演变机制研究进展[J]. 地球科学进展, 2024, 39(9): 877-888.
[4] 许菡颖, 韩存博, 马耀明, 张蕴帅. 青藏高原大气边界层数值模拟研究进展[J]. 地球科学进展, 2024, 39(9): 915-929.
[5] 魏泽勋, 徐腾飞, 方越, 王晶, 秦秉斌, 胡石建, 李颖, 聂珣炜, 张志祥, 李志, 曹智勇, 马强. 热带太平洋—印度洋洋际交换及其气候效应的观测研究[J]. 地球科学进展, 2024, 39(8): 788-800.
[6] 么嘉棋, 常奂宇, 王梦然, 陈敏, 莫凡, 徐南, 温振, 曹永强. 新一代水文水资源监测卫星SWOT数据特征、应用与展望[J]. 地球科学进展, 2024, 39(4): 374-390.
[7] 刘锦波, 张勇, 刘时银, 王欣, 蒋宗立. 青藏高原及周边石冰川识别、冰储量及动力学过程研究进展[J]. 地球科学进展, 2024, 39(4): 391-404.
[8] 程久菊, 吕新苗, 朱立平, 马庆峰, SIMA HUMAGAIN, KHUM PAUDAYAL N. 珠穆朗玛峰北坡桤木属大气花粉传输路径与来源[J]. 地球科学进展, 2024, 39(4): 419-428.
[9] 倪杰, 吴通华, 张雪, 朱小凡, 陈杰, 杜宜臻. 19792022年三江源地区大气冻融指数时空变化特征分析[J]. 地球科学进展, 2024, 39(12): 1299-1310.
[10] 杨建锋, 左力艳, 余韵, 张翠光, 徐犇研. 行星边界框架下水资源治理理念与转型方向[J]. 地球科学进展, 2024, 39(11): 1123-1135.
[11] 兰措. 气候变化背景下陆面模式研究进展及不足[J]. 地球科学进展, 2024, 39(1): 46-55.
[12] 胥佩, 李茂善, 常娜, 龚铭, 伏薇. 藏东南林芝地区冬季大气边界层参数化方案适应性研究[J]. 地球科学进展, 2023, 38(9): 954-966.
[13] 刘操, 饶维龙, 孙文科. 利用大地测量手段推算印度板块与欧亚板块初始碰撞时间[J]. 地球科学进展, 2023, 38(7): 745-756.
[14] 丁一汇, 柳艳菊, 徐影, 吴萍, 薛童, 汪靖, 石英, 张颖娴, 宋亚芳, 王朋岭. 全球气候变化的区域响应:中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望[J]. 地球科学进展, 2023, 38(6): 551-562.
[15] 姚楠, 马耀明. 亚洲三大高原感热变化及其对中国天气气候协同影响研究进展[J]. 地球科学进展, 2023, 38(6): 580-593.
阅读次数
全文


摘要