地球科学进展 ›› 2024, Vol. 39 ›› Issue (4): 391 -404. doi: 10.11867/j.issn.1001-8166.2024.030

综述与评述 上一篇    下一篇

青藏高原及周边石冰川识别、冰储量及动力学过程研究进展
刘锦波 1( ), 张勇 2( ), 刘时银 3, 王欣 1, 蒋宗立 1   
  1. 1.湖南科技大学 地球科学与空间信息工程学院,湖南 湘潭 411201
    2.湖南科技大学 资源环境与安全 工程学院,湖南 湘潭 411201
    3.云南大学 国际河流与生态安全研究院,云南 昆明 650500
  • 收稿日期:2023-12-19 修回日期:2024-03-15 出版日期:2024-04-10
  • 通讯作者: 张勇 E-mail:Liu_jinbo2000@163.com;yong.zhang@hnust.edu.cn
  • 基金资助:
    国家自然科学基金项目(42171134)

Research on the Identification, Ice Volume, and Dynamic Processes of Rock Glaciers in the Tibetan Plateau and Surrounding Regions

Jinbo LIU 1( ), Yong ZHANG 2( ), Shiyin LIU 3, Xin WANG 1, Zongli JIANG 1   

  1. 1.School of Earth Sciences and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan Hunan 411201, China
    2.School of Resource, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan Hunan 411201, China
    3.Institute of International Rivers and Eco-security, Yunnan University, Kunming 650500, China
  • Received:2023-12-19 Revised:2024-03-15 Online:2024-04-10 Published:2024-04-26
  • Contact: Yong ZHANG E-mail:Liu_jinbo2000@163.com;yong.zhang@hnust.edu.cn
  • About author:LIU Jinbo, Master student, research area includes cryospheric environment. E-mail: Liu_jinbo2000@163.com
  • Supported by:
    the National Natural Science Foundation of China(42171134)

青藏高原及周边分布着数量众多的石冰川,因其独特的蓄水功能和气候响应特征,不仅影响区域潜在的固态水资源,还增加了相应灾害发生的风险,受到越来越多的关注。当前,对石冰川识别、冰储量估算及其动力学过程模拟的探讨还较为缺乏,导致无法准确评估广大无资料或缺资料地区的石冰川变化及其气候响应特征。在系统梳理青藏高原及周边石冰川分布特征的基础上,综合回顾和总结了石冰川识别方法、冰储量估算方法、动力学过程及其模拟的研究进展。受观测数据缺乏和方法不确定性等问题的限制,当前青藏高原及周边石冰川编目、识别和冰储量估算精度仍面临诸多挑战。展望未来,应深入认识气候—石冰川动力学过程的相互作用机制,强化天—空—地多层次、多角度和多手段的石冰川监测,集成人工智能和新观测技术的石冰川识别和冰储量估算方法,准确评估气候变化条件下青藏高原及周边石冰川变化、未来趋势及其影响,进而服务于青藏高原及周边区域社会经济可持续发展。

The Tibetan Plateau and its surroundings are home to a significant number of rock glaciers. These formations, due to their unique characteristics of water storage and response to climate, not only impact the solid water resources in the region but also contribute to an increased risk of corresponding disasters, garnering growing attention. However, there remains a notable gap in research concerning the identification of rock glaciers, estimation of ice volume, and simulation of dynamic processes. This gap hinders the accurate assessment of changes in rock glaciers and their climate response characteristics in areas lacking data. This review systematically analyzes the distribution characteristics of rock glaciers in the Tibetan Plateau and its surroundings while comprehensively investigating the research progress on the identification of rock glaciers, estimation of ice volume, and understanding of dynamic processes. Due to the scarcity of observational data and methodological uncertainties, numerous challenges persist in the identification of rock glaciers, estimation of ice volume, and simulation of dynamic processes in the Tibetan Plateau and its surroundings. In the future, efforts will focus on deepening our understanding of the interaction mechanisms between climate and the dynamic processes of rock glaciers. This will involve strengthening monitoring efforts using Space-Air-Ground-based multi-level, multi-angle, and multi-method approaches. Furthermore, the integration of artificial intelligence and new observation technologies into methods for identifying rock glaciers and estimating ice volume will be pursued. These advancements will enable the accurate evaluation of changes, future trends, and impacts of rock glaciers on the Tibetan Plateau and its surroundings under climate change conditions, ultimately supporting the sustainable social and economic development of the region.

中图分类号: 

1 YAO Tandong, WU Guangjian, XU Baiqing, et al. Asian Water Tower change and its impacts[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1 203-1 209.
姚檀栋,邬光剑,徐柏青,等.“亚洲水塔”变化与影响[J]. 中国科学院院刊,2019, 34(11): 1 203-1 209.
2 IMMERZEEL W W, LUTZ A F, ANDRADE M, et al. Importance and vulnerability of the world’s water towers[J]. Nature, 2020, 577: 364-369.
3 YAO T D, BOLCH T, CHEN D L, et al. The imbalance of the Asian Water Tower[J]. Nature Reviews Earth & Environment, 2022, 577: 618-632.
4 DING Yongjian, ZHANG Shiqiang, WU Jinkui,et al. Recent progress on studies on cryospheric hydrological processes changes in China[J]. Advances in Water Science, 2020, 31(5): 690-702.
丁永建,张世强,吴锦奎,等.中国冰冻圈水文过程变化研究新进展[J]. 水科学进展,2020, 31(5): 690-702.
5 WANG Ninglian, YAO Tandong, XU Baiqing, et al. Spatiotemporal pattern, trend and influence of glacier change in Tibetan Plateau and surroundings under global warming[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1 220-1 232.
王宁练,姚檀栋,徐柏青,等. 全球变暖背景下青藏高原及周边地区冰川变化的时空格局与趋势及影响[J]. 中国科学院院刊,2019, 34(11): 1 220-1 232.
6 QIN Dahe, YAO Tandong, DING Yongjian, et al. Glossary of cryosphere science (revised)[M]. Beijing: China Meteorological Press, 2016.
秦大河,姚檀栋,丁永建,等. 冰冻圈科学辞典(修订版)[M]. 北京:气象出版社,2016.
7 QIU Guoqing, LIU Jingren, LIU Hongxu. Geocryological glossary[M]. Lanzhou:Gansu Science and Technology Press,1994.
邱国庆,刘经仁,刘鸿绪. 冻土学辞典[M]. 兰州:甘肃科学技术出版社,1994.
8 ZHANG X F, FENG M, ZHANG H, et al. Detecting rock glacier displacement in the central Himalayas using multi-temporal InSAR[J]. Remote Sensing, 2021, 13(23). DOI:10.3390/rs13234738 .
9 LIU L, MILLAR C I, WESTFALL R D, et al. Surface motion of active rock glaciers in the Sierra Nevada, California, USA: inventory and a case study using InSAR[J]. The Cryosphere, 2013, 7(4): 1 109-1 119.
10 RANGECROFT S, HARRISON S, ANDERSON K, et al. A first rock glacier inventory for the Bolivian Andes[J]. Permafrost and Periglacial Processes, 2014, 25(4): 333-343.
11 RANGECROFT S, HARRISON S, ANDERSON K. Rock glaciers as water stores in the Bolivian Andes:an assessment of their hydrological importance[J]. Arctic, Antarctic, and Alpine Research, 2015, 47(1): 89-98.
12 BOSSON J B, LAMBIEL C. Internal structure and current evolution of very small debris-covered glacier systems located in alpine permafrost environments[J]. Frontiers in Earth Science, 2016, 4. DOI:10.3389/feart.2016.00039 .
13 JONES D B, HARRISON S, ANDERSON K, et al. Rock glaciers and mountain hydrology: a review[J]. Earth-Science Reviews, 2019, 193: 66-90.
14 JONES D B, HARRISON S, ANDERSON K, et al. The distribution and hydrological significance of rock glaciers in the Nepalese Himalaya[J]. Global and Planetary Change, 2018, 160: 123-142.
15 LI M, YANG Y, PENG Z, et al. Assessment of rock glaciers and their water storage in Guokalariju, Tibetan Plateau[J]. The Cryosphere, 2024, 18: 1-16. DOI:10.5194/tc-18-1-2024 .
16 JONES D B, HARRISON S, ANDERSON K, et al. Mountain rock glaciers contain globally significant water stores[J]. Scientific Reports, 2018, 8(1). DOI: 10.1038/s41598-018-21244-w .
17 UNGER-SHAYESTEH K, VOROGUSHYN S, FARINOTTI D, et al. What do we know about past changes in the water cycle of Central Asian headwaters?A review[J]. Global and Planetary Change, 2013, 110: 4-25.
18 JONES D B, HARRISON S, ANDERSON K, et al. Rock glaciers represent hidden water stores in the Himalaya[J]. The Science of the Total Environment, 2021, 793. DOI:10.1016/j.scitotenv.2021.145368 .
19 MÜLLER J, VIELI A, GÄRTNER-ROER I. Rock glaciers on the Run-understanding rock glacier landform evolution and recent changes from numerical flow modeling[J]. The Cryosphere, 2016, 10(6): 2 865-2 886.
20 KÄÄB A, FRAUENFELDER R, ROER I. On the response of rockglacier creep to surface temperature increase[J]. Global and Planetary Change, 2007, 56: 172-187.
21 ARENSON L U, SPRINGMAN S M. Mathematical descriptions for the behaviour of ice-rich frozen soils at temperatures close to 0 °C[J]. Canadian Geotechnical Journal, 2005, 42(2): 431-442.
22 DUNN R J, MILLER J B, WILLETT K M, et al. Global climate[J]. Bulletin of the American Meteorological Society, 2023, 104(9): S11-S145.
23 XU Junli, LIU Shiyin, WANG Jian. Distribution characteristics of rock glaciers in the upstream of Bayu Hydropower Station in Sangri County, Tibet[J]. Journal of Glaciology and Geocryology, 2018, 40(6): 1 207-1 215.
许君利,刘时银,王建. 西藏桑日县巴玉水电站上游石冰川分布特征[J]. 冰川冻土,2018, 40(6): 1 207-1 215.
24 MARCER M, SERRANO C, BRENNING A, et al. Evaluating the destabilization susceptibility of active rock glaciers in the French Alps[J]. The Cryosphere, 2019, 13(1): 141-155.
25 BOECKLI L, BRENNING A, GRUBER S, et al. A statistical approach to modelling permafrost distribution in the European Alps or similar mountain ranges[J]. The Cryosphere, 2012, 6(1): 125-140.
26 RAN Z Z, LIU G N. Rock glaciers in Daxue Shan, south-eastern Tibetan Plateau: an inventory, their distribution, and their environmental controls[J]. The Cryosphere, 2018, 12(7): 2 327-2 340.
27 CAI J X, WANG X W, LIU G X, et al. A comparative study of active rock glaciers mapped from geomorphic- and kinematic-based approaches in Daxue Shan, southeast Tibetan Plateau[J]. Remote Sensing, 2021, 13(23). DOI:10.3390/rs13234931 .
28 CUI Zhijiu. Discovery of Kunlunshan-type rock glaciers and the classification of rock glaciers[J]. Chinese Science Bulletin,1985(3): 365-369.
崔之久. 昆仑山型石冰川的发现及石冰川的最新分类[J]. 科学通报,1984, 29(13): 810-813.
29 ZHU Cheng, CUI Zhijiu, YAO Zeng. Research on the feature of rock glaciers on the central Tian Shan Mountains[J]. Acta Geographica Sinica, 1992, 47(3): 233-241.
朱诚, 崔之久, 姚增. 中天山石冰川特征研究[J]. 地理学报, 1992, 47(3): 233-241.
30 LI Shude, YAO Heqing. Preliminary study of the rock glaciers in the Gongga Mt. area[J]. Journal of Glaciology and Geocryology, 1987, 9(1): 55-60, 54.
李树德, 姚河清. 贡嘎山山地石冰川的初步研究[J]. 冰川冻土, 1987, 9(1): 55-60, 54.
31 LIU Gengnian, XIONG Heigang, CUI Zhijiu,et al. The morphological features and environmental condition of rock glaciers in Tianshan Mountains[J]. Scientia Geographica Sinica,1995, 15(3): 226-233,297.
刘耕年,熊黑钢,崔之久,等. 天山石冰川的形态与发育条件[J]. 地理科学,1995, 15(3): 226-233, 297.
32 WANG X W, LIU L, ZHAO L, et al. Mapping and inventorying active rock glaciers in the northern Tien Shan of China using satellite SAR interferometry[J]. The Cryosphere, 2017, 11(2): 997-1 014.
33 HASSAN J, CHEN X Q, MUHAMMAD S, et al. Rock glacier inventory, permafrost probability distribution modeling and associated hazards in the Hunza River Basin, Western Karakoram, Pakistan[J]. The Science of the Total Environment, 2021, 782. DOI:10.1016/j.scitotenv.2021.146833 .
34 REINOSCH E, GERKE M, RIEDEL B,et al. Rock glacier inventory of the western Nyainqêntanglha Range,Tibetan Plateau,supported by InSAR time series and automated classification[J]. Permafrost and Periglacial Processes,2021,32:657-672.
35 BOLCH T, YAO T D, BHATTACHARYA A, et al. Earth observation to investigate occurrence, characteristics and changes of glaciers, glacial lakes and rock glaciers in the Poiqu River Basin (Central Himalaya)[J]. Remote Sensing, 2022, 14(8). DOI: 10.3390/rs14081927 .
36 GUO Zhiming. Inventorying and spatial distribution of rock glaciers in the Yarlung Zangbo River Basin[D]. Kunming: Yunnan University, 2019.
郭志明. 雅鲁藏布江流域石冰川编目及空间分布特征研究[D]. 昆明: 云南大学, 2019.
37 XU Jinhao, FENG Min, WANG Jianbang, et al. Automatically identifying rock glacier based on Gaofen satellite image and deep learning[J]. Remote Sensing Technology and Application, 2020, 35(6): 1 329-1 336.
徐瑾昊, 冯敏, 王建邦, 等. 基于高分遥感数据和深度学习的石冰川自动提取研究[J]. 遥感技术与应用, 2020, 35(6): 1 329-1 336.
38 ZHOU Yu, LI Guoyu, MA Wei, et al. Formation mechanism,movement characteristics and hydrological effect of rock glaciers:a review[J]. Journal of Glaciology and Geocryology, 2023, 45(2): 409-422.
周宇,李国玉,马巍,等. 石冰川形成机制、运动特征及水文效应研究进展[J]. 冰川冻土,2023, 45(2): 409-422.
39 JANKE J R, BELLISARIO A C, FERRANDO F A. Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile[J]. Geomorphology, 2015, 241: 98-121.
40 HU Y, LIU L, HUANG L, et al. Mapping and characterizing rock glaciers in the arid west Kunlun of China[J]. ESS Open Archive,2022. DOI:10.1002/essoar.10512700.1 .
41 CUI Zhijiu, ZHU Cheng. Temperature structure types and movement mechanisms of rock glaciers in the source region of Urumqi River[J]. Chinese Science Bulletin, 1989, 34(2): 134-137.
崔之久,朱诚. 天山乌鲁木齐河源区石冰川的温度结构类型与运动机制[J]. 科学通报,1989, 34(2): 134-137.
42 DELALOYE R, BARBOUX C, BODIN X, et al. Rock glacier inventories and kinematics: a new IPA Action Group[C]// Proceedings of the 5th european conference on permafrost. Chamonix-Mont Blanc, France, 2018: 392-393.
43 HAEBERLI W, HALLET B, ARENSON L, et al. Permafrost creep and rock glacier dynamics[J]. Permafrost and Periglacial Processes, 2006, 17(3): 189-214.
44 BERTHLING I. Beyond confusion: rock glaciers as cryo-conditioned landforms[J]. Geomorphology, 2011, 131: 98-106.
45 WAHRHAFTIG C,COX A. Rock glaciers in the Alaska Range[J]. Geological Society of America Bulletin, 1959, 70(4):383-436.
46 IKEDA A, MATSUOKA N. Degradation of talus‐derived rock glaciers in the Upper Engadin,Swiss Alps[J]. Permafrost and Periglacial Processes, 2002, 13(2): 145-161.
47 IKEDA A, MATSUOKA N, KÄÄB A. Fast deformation of perennially frozen debris in a warm rock glacier in the Swiss Alps: an effect of liquid water[J]. Journal of Geophysical Research: Earth Surface, 2008, 113. DOI:10.1029/2007JF000859 .
48 DELALOYE R, PERRUCHOUD E, AVIAN M, et al. Recent interannual variations of rock glacier creep in the European Alps[C]// Ninth international conference on permafrost. Fairbanks, Alaska, United States, 2008: 343-348.
49 DELALOYE R, ECHELARD T. IPA Action Group rock glacier inventories and kinematics: towards standard guidelines for inventorying rock glaciers. Baseline concepts v 4.1[EB/OL]. 2020. [2022-06-12]. .
50 MASSONNET D, FEIGL K L. Radar interferometry and its application to changes in the Earth's surface[J]. Reviews of Geophysics, 1998, 36(4): 441-500.
51 KÄÄB A. Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: examples using digital aerial imagery and ASTER data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2002, 57: 39-52.
52 KÄÄB A, HAEBERLI W, GUDMUNDSSON G H. Analysing the creep of mountain permafrost using high precision aerial photogrammetry: 25 years of monitoring Gruben rock glacier, Swiss Alps[J]. Permafrost and Periglacial Processes, 1997, 8(4): 409-426.
53 AVIAN M, KELLERER-PIRKLBAUER A, BAUER A. LiDAR for monitoring mass movements in permafrost environments at the cirque Hinteres Langtal, Austria, between 2000 and 2008[J]. Natural Hazards and Earth System Sciences, 2009, 9(4): 1 087-1 094.
[1] 么嘉棋, 常奂宇, 王梦然, 陈敏, 莫凡, 徐南, 温振, 曹永强. 新一代水文水资源监测卫星 SWOT数据特征、应用与展望[J]. 地球科学进展, 2024, 39(4): 374-390.
[2] 程久菊, 吕新苗, 朱立平, 马庆峰, SIMA HUMAGAIN, KHUM PAUDAYAL N. 珠穆朗玛峰北坡桤木属大气花粉传输路径与来源[J]. 地球科学进展, 2024, 39(4): 419-428.
[3] 兰措. 气候变化背景下陆面模式研究进展及不足[J]. 地球科学进展, 2024, 39(1): 46-55.
[4] 胥佩, 李茂善, 常娜, 龚铭, 伏薇. 藏东南林芝地区冬季大气边界层参数化方案适应性研究[J]. 地球科学进展, 2023, 38(9): 954-966.
[5] 刘操, 饶维龙, 孙文科. 利用大地测量手段推算印度板块与欧亚板块初始碰撞时间[J]. 地球科学进展, 2023, 38(7): 745-756.
[6] 丁一汇, 柳艳菊, 徐影, 吴萍, 薛童, 汪靖, 石英, 张颖娴, 宋亚芳, 王朋岭. 全球气候变化的区域响应:中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望[J]. 地球科学进展, 2023, 38(6): 551-562.
[7] 姚楠, 马耀明. 亚洲三大高原感热变化及其对中国天气气候协同影响研究进展[J]. 地球科学进展, 2023, 38(6): 580-593.
[8] 李育, 段俊杰, 李海烨, 高铭君, 张宇欣, 薛雅欣. 全新世青藏高原及周边典型湖泊演化模拟[J]. 地球科学进展, 2023, 38(4): 388-400.
[9] 薄立明, 魏伟, 赵浪, 尹力, 夏俊楠. 青藏高原水生态空间格局时空演化特征及驱动机制[J]. 地球科学进展, 2023, 38(4): 401-413.
[10] 王春晓, 马耀明, 韩存博. 青藏高原大气边界层结构及其发展机制研究[J]. 地球科学进展, 2023, 38(4): 414-428.
[11] 吴景全, 李全莲, 武小波, 王宁练, 康世昌, 王世金. 青藏高原不同载体中微生物类脂物 GDGTs的研究进展及展望[J]. 地球科学进展, 2023, 38(11): 1158-1172.
[12] 左其亭. 水资源可持续利用研究历程及其对我国现代治水的贡献[J]. 地球科学进展, 2023, 38(1): 1-8.
[13] 李耀辉, 于敬磊, 谷娟, 桑文军, 靳晓琳, 黄玉. 民航飞行 CO2 排放及其对气候变化影响研究综述[J]. 地球科学进展, 2023, 38(1): 9-16.
[14] 陈小刚, 李凌, 杜金洲. 红树林和盐沼湿地间隙水交换过程及其碳汇潜力[J]. 地球科学进展, 2022, 37(9): 881-898.
[15] 田子晗, 张勇勇, 赵文智, 王丽莎, 王川, 康文蓉, 吴绍雄. 宇宙射线中子技术的中尺度土壤水研究进展及在荒漠绿洲区的应用[J]. 地球科学进展, 2022, 37(9): 979-990.
阅读次数
全文


摘要