1 |
FANG Guohong, WEI Zexun. The South China Sea branch of the throughflow from Pacific to Indian Ocean and its oceanography significance in the South China Sea[C]// Collection of the tropical marine environment and climate change symposium 2002. Guangzhou: South China Sea Institute of Oceanology, Chinese Academy of Sciences, 2002: 2-4.
|
|
方国洪, 魏泽勋. 太平洋—印度洋贯穿流南海分支及其南海海洋学意义[C]// 2002热带海洋环境和气候变化研讨会论文摘要集. 广州:中国科学院南海海洋研究所, 2002: 2-4.
|
2 |
FANG G H, SUSANTO D, SOESILO I, et al. A note on the South China Sea shallow interocean circulation[J]. Advances in Atmospheric Sciences, 2005, 22(6): 946-954.
|
3 |
FANG G H, WANG Y G, WEI Z X, et al. Interocean circulation and heat and freshwater budgets of the South China Sea based on a numerical model[J]. Dynamics of Atmospheres and Oceans, 2009, 47(1/2/3): 55-72.
|
4 |
QU T D, SONG Y T, YAMAGATA T. An introduction to the South China Sea throughflow: its dynamics, variability, and application for climate[J]. Dynamics of Atmospheres and Oceans, 2009, 47(1/2/3): 3-14.
|
5 |
DU Y, QU T D. Three inflow pathways of the Indonesian throughflow as seen from the simple ocean data assimilation[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2): 233-256.
|
6 |
WYRTKI K. Physical oceanography of the southeast Asian waters[M]. La Jolla: University of California Scripps Institution of Oceanography, 1961.
|
7 |
GORDON A L, FINE R A. Pathways of water between the Pacific and Indian Ocean in the Indonesian seas[J]. Nature, 1996, 379: 146-149.
|
8 |
QU T D, DU Y, MEYERS G, et al. Connecting the tropical Pacific with Indian Ocean through South China Sea[J]. Geophysical Research Letters, 2005, 32(24). DOI:10.1029/2005GL024698 .
|
9 |
WANG D X, LIU Q Y, HUANG R X, et al. Interannual variability of the South China Sea throughflow inferred from wind data and an ocean data assimilation product[J]. Geophysical Research Letters, 2006, 33(14). DOI:10.1029/2006GL026316 .
|
10 |
HU D X, WU L X, CAI W J, et al. Pacific western boundary currents and their roles in climate[J]. Nature, 2015, 522: 299-308.
|
11 |
HIRST A C, GODFREY J S. The role of Indonesian throughflow in a global ocean GCM[J]. Journal of Physical Oceanography, 1993, 23(6): 1 057-1 086.
|
12 |
WAJSOWICZ R. Air-sea interaction over the Indian Ocean due to variations in the Indonesian throughflow[J]. Climate Dynamics, 2002, 18(5): 437-453.
|
13 |
GORDON A. Oceanography of the Indonesian seas and their throughflow[J]. Oceanography, 2005, 18(4): 14-27.
|
14 |
YUAN D L, WANG J, XU T F, et al. Forcing of the Indian Ocean dipole on the interannual variations of the tropical Pacific Ocean: roles of the Indonesian throughflow[J]. Journal of Climate, 2011, 24(14): 3 593-3 608.
|
15 |
GORDON A L. Interocean exchange of thermocline water[J]. Journal of Geophysical Research: Oceans, 1986, 91(C4): 5 037-5 046.
|
16 |
BROEKER W. The great ocean conveyor[J]. Oceanography, 1991, 4(2): 79-89.
|
17 |
WEI Z X, LI S J, SUSANTO R D, et al. An overview of 10-year observation of the South China Sea branch of the Pacific to Indian Ocean throughflow at the Karimata Strait[J]. Acta Oceanologica Sinica, 2019, 38(4): 1-11.
|
18 |
WEI Zexun, XU Tengfei, WANG Yonggang, et al. Progress and prospect on the study of tidal mixing in the Indonesian seas[J]. Advances in Marine Science, 2021, 39(1): 1-8.
|
|
魏泽勋, 徐腾飞, 王永刚, 等. 印度尼西亚海潮致混合研究现状与展望[J]. 海洋科学进展, 2021, 39(1): 1-8.
|
19 |
YUAN Dongliang, ZHOU Hui, WANG Zheng, et al. The multi-scale variability of the oceancirculation at the Pacific entrance of the Indonesian throughflow and its scientific importance[J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1 156-1 168.
|
|
袁东亮,周慧,王铮, 等. 印尼贯穿流源区环流的多尺度变异及其科学重要性[J]. 海洋与湖沼, 2017, 48(6): 1 156-1 168.
|
20 |
WYRTKI K. Indonesian through flow and the associated pressure gradient[J]. Journal of Geophysical Research: Oceans, 1987, 92(C12): 12 941-12 946.
|
21 |
PIOLA A R, GORDON A L. Pacific and Indian Ocean upper-layer salinity budget[J]. Journal of Physical Oceanography, 1984, 14(4): 747-753.
|
22 |
FINE R A. Direct evidence using tritium data for throughflow from the Pacific into the Indian Ocean[J]. Nature, 1985, 315: 478-480.
|
23 |
GODFREY J S. A sverdrup model of the depth-integrated flow for the world ocean allowing for island circulations[J]. Geophysical & Astrophysical Fluid Dynamics, 1989, 45(1/2): 89-112.
|
24 |
WAJSOWICZ R C. The circulation of the depth-integrated flow around an island with application to the Indonesian throughflow[J]. Journal of Physical Oceanography, 1993, 23(7): 1 470-1 484.
|
25 |
GORDON A, SUSANTO R. Makassar Strait transport: initial estimate based on Arlindo results[J]. Marine Technology Society Journal, 1998, 32: 34-45.
|
26 |
SPRINTALL J, WIJFFELS S E, MOLCARD R, et al. Direct estimates of the Indonesian throughflow entering the Indian Ocean: 2004-2006[J]. Journal of Geophysical Research: Oceans, 2009, 114(C7). DOI:10.1029/2008JC005257 .
|
27 |
GORDON A L, SPRINTALL J, van AKEN H M, et al. The Indonesian throughflow during 2004-2006 as observed by the INSTANT program[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2): 115-128.
|
28 |
SUSANTO R D, FFIELD A, GORDON A L, et al. Variability of Indonesian throughflow within Makassar strait, 2004-2009[J]. Journal of Geophysical Research: Oceans, 2012, 117(C9). DOI: 10.1029/2012JC008096 .
|
29 |
GORDON A L, NAPITU A, HUBER B A, et al. Makassar strait throughflow seasonal and interannual variability: an overview[J]. Journal of Geophysical Research: Oceans, 2019, 124(6): 3 724-3 736.
|
30 |
LEBEDEV K V, YAREMCHUK M I. A diagnostic study of the Indonesian throughflow[J]. Journal of Geophysical Research: Oceans, 2000, 105(C5): 11 243-11 258.
|
31 |
SPRINTALL J, RÉVELARD A. The Indonesian throughflow response to Indo-Pacific climate variability[J]. Journal of Geophysical Research: Oceans, 2014, 119(2): 1 161-1 175.
|
32 |
LIU Q Y, FENG M, WANG D X, et al. Interannual variability of the Indonesian throughflow transport: a revisit based on 30 year expendable bathythermograph data[J]. Journal of Geophysical Research: Oceans, 2015, 120(12): 8 270-8 282.
|
33 |
FENG M, ZHANG N N, LIU Q Y, et al. The Indonesian throughflow, its variability and centennial change[J]. Geoscience Letters, 2018, 5(1). DOI:10.1186/s40562-018-0102-2 .
|
34 |
LI B, YUAN D L, ZHOU H. Water masses in the far western equatorial Pacific during the winters of 2010 and 2012[J]. Journal of Oceanology and Limnology, 2018, 36(5): 1 459-1 474.
|
35 |
WIJFFELS S, MEYERS G. An intersection of oceanic waveguides: variability in the Indonesian throughflow region[J]. Journal of Physical Oceanography, 2004, 34(5): 1 232-1 253.
|
36 |
SHINODA T, ROUNDY P E, KILADIS G N. Variability of intraseasonal Kelvin waves in the equatorial Pacific Ocean[J]. Journal of Physical Oceanography, 2008, 38(5): 921-944.
|
37 |
PUJIANA K, GORDON A L, SPRINTALL J. Intraseasonal Kelvin wave in Makassar Strait[J]. Journal of Geophysical Research: Oceans, 2013, 118(4): 2 023-2 034.
|
38 |
PUJIANA K, MCPHADEN M J, GORDON A L, et al. Unprecedented response of Indonesian throughflow to anomalous Indo-Pacific climatic forcing in 2016[J]. Journal of Geophysical Research: Oceans, 2019, 124(6): 3 737-3 754.
|
39 |
ISKANDAR I, MASUMOTO Y, MIZUNO K, et al. Coherent intraseasonal oceanic variations in the eastern equatorial Indian Ocean and in the Lombok and Ombai Straits from observations and a high-resolution OGCM[J]. Journal of Geophysical Research: Oceans, 2014, 119(2): 615-630.
|
40 |
NAPITU A M, PUJIANA K, GORDON A L. The madden-julian oscillation’s impact on the Makassar Strait surface layer transport[J]. Journal of Geophysical Research: Oceans, 2019, 124(6): 3 538-3 550.
|
41 |
ZHOU Zuyi, JIN Xingchun, WANG Liaoliang, et al. Two closures of the Indonesian seaway and its relationship to the formation and evolution of the Western Pacific Warm Pool[J]. Marine Geology and Quaternary Geology, 2004, 24(1): 7-14.
|
|
周祖翼, 金性春, 王嘹亮, 等. 印尼海道的两度关闭与西太平洋暖池的形成和兴衰[J]. 海洋地质与第四纪地质, 2004, 24(1): 7-14.
|
42 |
SAQAB M M, BOURGET J, TROTTER J, et al. New constraints on the timing of flexural deformation along the northern Australian margin: implications for arc-continent collision and the development of the Timor Trough[J]. Tectonophysics, 2017, 696/697: 14-36.
|
43 |
ZHANG P, XU J, SCHRÖDER J F, et al. Variability of the Indonesian throughflow thermal profile over the last 25-kyr: a perspective from the southern Makassar Strait[J]. Global and Planetary Change, 2018, 169: 214-223.
|
44 |
de VLEESCHOUWER D, AUER G, SMITH R, et al. The amplifying effect of Indonesian throughflow heat transport on Late Pliocene Southern Hemisphere climate cooling[J]. Earth and Planetary Science Letters, 2018, 500: 15-27.
|
45 |
PETRICK B, MARTÍNEZ-GARCÍA A, AUER G, et al. Glacial Indonesian throughflow weakening across the mid-Pleistocene climatic transition[J]. Scientific Reports, 2019, 9. DOI: 10.1038/s41598-019-53382-0 .
|
46 |
FANG G H, SUSANTO R D, WIRASANTOSA S, et al. Volume, heat, and freshwater transports from the South China Sea to Indonesian seas in the boreal winter of 2007-2008[J]. Journal of Geophysical Research: Oceans, 2010, 115(C12). DOI: 10.1029/2010JC006225 .
|
47 |
SPRINTALL J, GORDON A L, FLAMENT P, et al. Observations of exchange between the South China Sea and the Sulu Sea[J]. Journal of Geophysical Research: Oceans, 2012, 117(C5). DOI:10.1029/2011JC007610 .
|
48 |
LIU Qinyan, HUANG Ruixin, WANG Dongxiao, et al. The mutual interaction between the Indonesia through stream and the South China Sea through stream modulation[J]. Chinese Science Bulletin, 2006, 51(): 44-50.
|
|
刘钦燕, 黄瑞新, 王东晓, 等. 印度尼西亚贯穿流与南海贯穿流的相互调制[J]. 科学通报,2006, 51(): 44-50.
|
49 |
LIU Qinyan, WANG Dongxiao, XIE Qiang, et al. Decadal variability of Indonesian throughflow and South China Sea throughflow and its mechanism[J]. Journal of Tropical Oceanography, 2007, 26(6): 1-6.
|
|
刘钦燕, 王东晓, 谢强, 等. 印尼贯穿流与南海贯穿流的年代际变化特征及机制[J]. 热带海洋学报, 2007, 26(6): 1-6.
|
50 |
XU D Y, MALANOTTE-RIZZOLI P. The seasonal variation of the upper layers of the South China Sea (SCS) circulation and the Indonesian Through Flow (ITF): an ocean model study[J]. Dynamics of Atmospheres and Oceans, 2013, 63: 103-130.
|
51 |
HE Z G, FENG M, WANG D X, et al. Contribution of the Karimata Strait transport to the Indonesian throughflow as seen from a data assimilation model[J]. Continental Shelf Research, 2015, 92: 16-22.
|
52 |
SUSANTO R D, WEI Z X, ADI R T, et al. Observations of the Karimata Strait througflow from December 2007 to November 2008[J]. Acta Oceanologica Sinica, 2013, 32(5): 1-6.
|
53 |
WANG Y, XU T F, LI S J, et al. Seasonal variation of water transport through the Karimata Strait[J]. Acta Oceanologica Sinica, 2019, 38(4): 47-57.
|
54 |
XU T F, WEI Z X, SUSANTO R D, et al. Observed water exchange between the South China Sea and Java sea through Karimata Strait[J]. Journal of Geophysical Research: Oceans, 2021, 126(2). DOI:10.1029/2020JC016608 .
|
55 |
WANG Jian, LI Shujiang, XU Tengfei, et al. Study on the water exchange in the Sunda Strait[J]. Advances in Marine Science, 2020, 38(2): 238-252.
|
|
王建, 李淑江, 徐腾飞, 等. 巽他海峡的水交换过程研究[J]. 海洋科学进展, 2020, 38(2): 238-252.
|
56 |
LI S J, WEI Z X, SUSANTO R D, et al. Observations of intraseasonal variability in the Sunda Strait throughflow[J]. Journal of Oceanography, 2018, 74(5): 541-547.
|
57 |
XU T F, LI S J, HAMZAH F, et al. Intraseasonal flow and its impact on the chlorophyll-a concentration in the Sunda Strait and its vicinity[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2018, 136: 84-90.
|
58 |
LEE T, AWAJI T, BALMASEDA M, et al. Consistency and fidelity of Indonesian-throughflow total volume transport estimated by 14 ocean data assimilation products[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2): 201-223.
|
59 |
METZGER E J, HURLBURT H E, XU X, et al. Simulated and observed circulation in the Indonesian seas: 1/12° global HYCOM and the INSTANT observations[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2): 275-300.
|
60 |
LIU H L, LI W, ZHANG X H. Climatology and variability of the Indonesian throughflow in an eddy-permitting oceanic GCM[J]. Advances in Atmospheric Sciences, 2005, 22(4): 496-508.
|
61 |
WANG Yonggang, FANG Guohong, WEI Zexun, et al. Interannual variability of the Indonesian throughflow preliminary simulated results of a variable-grid global ocean model[J]. Advances in Marine Science, 2005, 23(2): 127-134.
|
|
王永刚,方国洪,魏泽勋,等. 印度尼西亚贯穿流的年际变化:一个全球变网格海洋模式的初步模拟结果[J].海洋科学进展,2005, 23(2): 127-134.
|
62 |
FENG X, LIU H L, WANG F C, et al. Indonesian throughflow in an eddy-resolving ocean model[J]. Chinese Science Bulletin, 2013, 58(35): 4 504-4 514.
|
63 |
LI M T, GORDON A L, WEI J, et al. Multi-decadal timeseries of the Indonesian throughflow[J]. Dynamics of Atmospheres and Oceans, 2018, 81: 84-95.
|
64 |
XU T F, WEI Z X, ZHAO H F, et al. Simulated Indonesian throughflow in Makassar Strait across the SODA3 products[J]. Acta Oceanologica Sinica, 2024, 43(1): 80-98.
|
65 |
HUMPHRIES U W, WEBB D J. On the Indonesian throughflow in the OCCAM 1/4 degree ocean model[J]. Ocean Science, 2008, 4(3): 183-198.
|
66 |
TILLINGER D, GORDON A L. Fifty years of the Indonesian throughflow[J]. Journal of Climate, 2009, 22(23): 6 342-6 355.
|
67 |
JIANG G Q, WEI J, MALANOTTE-RIZZOLI P, et al. Seasonal and interannual variability of the subsurface velocity profile of the Indonesian throughflow at Makassar Strait[J]. Journal of Geophysical Research: Oceans, 2019, 124(12): 9 644-9 657.
|
68 |
WEI Z X, FANG G H, SUSANTO R D, et al. Tidal elevation, current, and energy flux in the area between the South China Sea and Java Sea[J]. Ocean Science, 2016, 12(2): 517-531.
|
69 |
DING Y, BAO X W, YU H M, et al. A numerical study of the barotropic tides and tidal energy distribution in the Indonesian seas with the assimilated finite volume coastal ocean model[J]. Ocean Dynamics, 2012, 62(4): 515-532.
|
70 |
RAY R, EGBERT G, EROFEEVA S. A brief overview of tides in the Indonesian Seas[J]. Oceanography, 2005, 18(4): 74-79.
|
71 |
TENG Fei, FANG Guohong, WANG Xinyi, et al. Numerical simulation of principal tidal constituents in the Indonesian adjacent seas[J]. Advances in Marine Science, 2013, 31(2): 166-179.
|
|
滕飞, 方国洪, 王新怡, 等. 印度尼西亚近海潮汐潮流的数值模拟[J]. 海洋科学进展, 2013, 31(2): 166-179.
|
72 |
HATAYAMA T, AWAJI T, AKITOMO K. Tidal currents in the Indonesian seas and their effect on transport and mixing[J]. Journal of Geophysical Research: Oceans, 1996, 101(C5): 12 353-12 373.
|
73 |
NIWA Y, HIBIYA T. Estimation of baroclinic tide energy available for deep ocean mixing based on three-dimensional global numerical simulations[J]. Journal of Oceanography, 2011, 67(4): 493-502.
|
74 |
NAGAI T, HIBIYA T. Internal tides and associated vertical mixing in the Indonesian Archipelago[J]. Journal of Geophysical Research: Oceans, 2015, 120(5): 3 373-3 390.
|
75 |
FFIELD A, GORDON A L. Vertical mixing in the Indonesian thermocline[J]. Journal of Physical Oceanography, 1992, 22(2): 184-195.
|
76 |
HATAYAMA T. Transformation of the Indonesian throughflow water by vertical mixing and its relation to tidally generated internal waves[J]. Journal of Oceanography, 2004, 60(3): 569-585.
|
77 |
KOCH-LARROUY A, MADEC G, BOURUET-AUBERTOT P, et al. On the transformation of Pacific water into Indonesian throughflow water by internal tidal mixing[J]. Geophysical Research Letters, 2007, 34(4). DOI:10.1029/2006GL028405 .
|
78 |
NAGAI T, HIBIYA T, BOURUET-AUBERTOT P. Nonhydrostatic simulations of tide-induced mixing in the Halmahera sea: a possible role in the transformation of the Indonesian throughflow waters[J]. Journal of Geophysical Research: Oceans, 2017, 122(11): 8 933-8 943.
|
79 |
KOCH-LARROUY A, LENGAIGNE M, TERRAY P, et al. Tidal mixing in the Indonesian Seas and its effect on the tropical climate system[J]. Climate Dynamics, 2010, 34(6): 891-904.
|
80 |
NAGAI T, HIBIYA T. Combined effects of tidal mixing in Narrow Straits and the Ekman transport on the sea surface temperature cooling in the southern Indonesian seas[J]. Journal of Geophysical Research: Oceans, 2020, 125(11). DOI:10.1029/2020JC016314 .
|
81 |
SPRINTALL J, GORDON A L, WIJFFELS S E, et al. Detecting change in the Indonesian seas[J]. Frontiers in Marine Science, 2019, 6. DOI:10.3389/fmars.2019.00257 .
|
82 |
ALFORD M H, PEACOCK T, MACKINNON J A, et al. The formation and fate of internal waves in the South China Sea[J]. Nature, 2015, 521: 65-69.
|
83 |
HUANG X D, CHEN Z H, ZHAO W, et al. An extreme internal solitary wave event observed in the northern South China Sea[J]. Scientific Reports, 2016, 6. DOI:10.1038/srep30041 .
|
84 |
SUSANTO R D, MITNIK L, ZHENG Q A. Ocean internal waves observed in the Lombok strait[J]. Oceanography, 2005, 18(4): 80-87.
|
85 |
PURWANDANA A, CUYPERS Y. Characteristics of internal solitary waves in the Maluku Sea, Indonesia[J]. Oceanologia, 2023, 65(2): 333-342.
|
86 |
PURWANDANA A, CUYPERS Y, SURINATI D, et al. Observed internal solitary waves in the northern Bali waters, Indonesia[J]. Regional Studies in Marine Science, 2023, 57. DOI: 10.1016/j.rsma.2022.102764 .
|
87 |
ZHANG X D, LI X F. Combination of satellite observations and machine learning method for internal wave forecast in the Sulu and Celebes seas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4): 2 822-2 832.
|
88 |
HE Y H, FENG M, XIE J S, et al. Spatiotemporal variations of mesoscale eddies in the Sulu Sea[J]. Journal of Geophysical Research: Oceans, 2017, 122(10): 7 867-7 879.
|
89 |
HAO Z J, XU Z H, FENG M, et al. Dynamics of interannual eddy kinetic energy variability in the Sulawesi Sea revealed by OFAM3[J]. Journal of Geophysical Research: Oceans, 2022, 127(8). DOI:10.1029/2022JC018815 .
|
90 |
HAO Z J, XU Z H, FENG M, et al. Seasonal variability of eddy kinetic energy in the Banda Sea revealed by an ocean model: an energy budget perspective[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2023, 211. DOI:10.1016/j.dsr2.2023.105320 .
|
91 |
SUN Li’na, ZHANG Jie, MENG Junmin, et al. Influence of mesoscale eddy on internal solitary wave propagation in the northern South China Sea based on remote sensing[J]. Haiyang Xuebao,2022, 44(7): 137-144.
|
|
孙丽娜,张杰,孟俊敏,等. 基于遥感的南海北部中尺度涡对内孤立波传播的影响[J]. 海洋学报,2022, 44(7): 137-144.
|
92 |
SPRINTALL J, GORDON A L, KOCH-LARROUY A, et al. The Indonesian seas and their role in the coupled ocean-climate system[J]. Nature Geoscience, 2014, 7: 487-492.
|
93 |
SASAKI H, KIDA S, FURUE R, et al. An increase of the Indonesian throughflow by internal tidal mixing in a high-resolution quasi-global ocean simulation[J]. Geophysical Research Letters, 2018, 45(16): 8 416-8 424.
|
94 |
DU Y, WANG F, WANG T Y, et al. Multi-scale ocean dynamical processes in the Indo-Pacific convergence zone and their climatic and ecological effects[J]. Earth-Science Reviews, 2023, 237. DOI:10.1016/j.earscirev.2023.104313 .
|
95 |
HU S J, SPRINTALL J. Interannual variability of the Indonesian throughflow: the salinity effect[J]. Journal of Geophysical Research: Oceans, 2016, 121(4): 2 596-2 615.
|
96 |
HU S J, SPRINTALL J. Observed strengthening of interbasin exchange via the Indonesian seas due to rainfall intensification[J]. Geophysical Research Letters, 2017, 44(3): 1 448-1 456.
|
97 |
GORDON A L, SUSANTO R D, VRANES K. Cool Indonesian throughflow as a consequence of restricted surface layer flow[J]. Nature, 2003, 425: 824-828.
|
98 |
GORDON A L, HUBER B A, METZGER E J, et al. South China Sea throughflow impact on the Indonesian throughflow[J]. Geophysical Research Letters, 2012, 39(11). DOI:10.1029/2012GL052021 .
|
99 |
WANG Weiwen, YU Yongqiang, LI Chao, et al. An investigation of the South China Sea throughflow and its impact on upper layer heat content of the South China Sea using LICOM[J]. Haiyang Xuebao, 2010, 32(2): 1-11.
|
|
王伟文, 俞永强, 李超, 等. LICOM模拟的南海贯穿流及其对南海上层热含量的影响[J]. 海洋学报, 2010, 32(2): 1-11.
|
100 |
KIDA S, RICHARDS K J, SASAKI H. The fate of surface freshwater entering the Indonesian seas[J]. Journal of Geophysical Research: Oceans, 2019, 124(5): 3 228-3 245.
|
101 |
ZHANG L L, HU D X, HU S J, et al. Mindanao current/undercurrent measured by a subsurface mooring[J]. Journal of Geophysical Research: Oceans, 2014, 119(6): 3 617-3 628.
|
102 |
LI Xiang, YUAN Dongliang, LI Yao, et al. Moored observations of currents and water mass properties between Talaud and Halmahera islands at the entrance of the Indonesian seas[J]. Journal of Physical Oceanography, 2021, 51(12): 3 557-3 572.
|
103 |
YUAN D L, LI X, WANG Z, et al. Observed transport variations in the Maluku channel of the Indonesian seas associated with western boundary current changes[J]. Journal of Physical Oceanography, 2018, 48(8): 1 803-1 813.
|
104 |
YUAN D L, YIN X L, LI X, et al. A Maluku Sea intermediate western boundary current connecting Pacific Ocean circulation to the Indonesian throughflow[J]. Nature Communications, 2022, 13. DOI: 10.1038/s41467-022-29617-6 .
|
105 |
TOOLE J M, MILLARD R C, WANG Z, et al. Observations of the Pacific north equatorial current bifurcation at the philippine coast[J]. Journal of Physical Oceanography, 1990, 20(2): 307-318.
|
106 |
LUKAS R, FIRING E, HACKER P, et al. Observations of the Mindanao Current during the western equatorial Pacific Ocean circulation study[J]. Journal of Geophysical Research: Oceans, 1991, 96(C4): 7089-7104.
|
107 |
LI X, YUAN D L, WANG Z, et al. Moored observations of transport and variability of Halmahera sea currents[J]. Journal of Physical Oceanography, 2020, 50(2): 471-488.
|
108 |
LINDSTROM E, LUKAS R, FINE R, et al. The western equatorial Pacific Ocean circulation study[J]. Nature, 1987, 330: 533-537.
|
109 |
TSUCHIYA M. Flow path of the Antarctic Intermediate Water in the western equatorial South Pacific Ocean[J]. Deep Sea Research Part A: Oceanographic Research Papers, 1991, 38: S273-S279.
|
110 |
FINE R A, LUKAS R, BINGHAM F M, et al. The western equatorial Pacific: a water mass crossroads[J]. Journal of Geophysical Research: Oceans, 1994, 99(C12): 25 063-25 080.
|
111 |
ZHANG Z X, PRATT L J, WANG F, et al. Intermediate intraseasonal variability in the western tropical Pacific Ocean: meridional distribution of equatorial rossby waves influenced by a tilted boundary[J]. Journal of Physical Oceanography, 2020, 50(4): 921-933.
|
112 |
QU T D, LINDSTROM E J. Northward intrusion of Antarctic intermediate water in the Western Pacific[J]. Journal of Physical Oceanography, 2004, 34(9): 2 104-2 118.
|
113 |
YUAN D L, ZHANG Z C, CHU P C, et al. Geostrophic circulation in the tropical North Pacific Ocean based on Argo profiles[J]. Journal of Physical Oceanography, 2014, 44(2): 558-575.
|
114 |
WANG F, WANG J N, GUAN C, et al. Mooring observations of equatorial currents in the upper 1000 m of the western Pacific Ocean during 2014[J]. Journal of Geophysical Research: Oceans, 2016, 121(6): 3 730-3 740.
|
115 |
HU D X, WANG F, SPRINTALL J, et al. Review on observational studies of western tropical Pacific Ocean circulation and climate[J]. Journal of Oceanology and Limnology, 2020, 38(4): 906-929.
|
116 |
LI X, YANG Y, LI R, et al. Structure and dynamics of the Pacific north equatorial subsurface current[J]. Scientific Reports, 2020, 10. DOI:10.1038/s41598-020-68605-y .
|
117 |
LI M T, YUAN D L, GORDON A L, et al. A strong sub-thermocline intrusion of the north equatorial subsurface current into the Makassar strait in 2016-2017[J]. Geophysical Research Letters, 2021, 48(8). DOI: 10.1029/2021GL092505 .
|
118 |
DONGUY J R, MEYERS G. Observations of geostrophic transport variability in the western tropical Indian Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1995, 42(6): 1 007-1 028.
|
119 |
QU T D, MEYERS G. Seasonal characteristics of circulation in the southeastern tropical Indian Ocean[J]. Journal of Physical Oceanography, 2005, 35(2): 255-267.
|
120 |
MEYERS G, BAILEY R J, WORBY A P. Geostrophic transport of Indonesian throughflow[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1995, 42(7): 1 163-1 174.
|
121 |
MEYERS G. Variation of Indonesian throughflow and the El Niño-Southern Oscillation[J]. Journal of Geophysical Research: Oceans, 1996, 101(C5): 12 255-12 263.
|
122 |
DOMINGUES C M, MALTRUD M E, WIJFFELS S E, et al. Simulated Lagrangian pathways between the Leeuwin Current system and the upper-ocean circulation of the southeast Indian Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(8/9/10): 797-817.
|
123 |
SMITH R L, HUYER A, GODFREY J S, et al. The Leeuwin current off western Australia, 1986-1987[J]. Journal of Physical Oceanography, 1991, 21(2): 323-345.
|
124 |
FENG M, MEYERS G, PEARCE A, et al. Annual and interannual variations of the Leeuwin Current at 32°S[J]. Journal of Geophysical Research: Oceans, 2003, 108(C11). DOI: 10.1029/2002JC001763 .
|
125 |
RIDGWAY K R, CONDIE S A. The 5500-km-long boundary flow off western and southern Australia[J]. Journal of Geophysical Research: Oceans, 2004, 109(C4). DOI: 10.1029/2003JC001921 .
|
126 |
SPRINTALL J, WIJFFELS S, MOLCARD R, et al. Direct evidence of the South Java Current system in Ombai Strait[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2): 140-156.
|
127 |
SIEDLER G, ROUAULT M, LUTJEHARMS J R E. Structure and origin of the subtropical South Indian Ocean Countercurrent[J]. Geophysical Research Letters, 2006, 33(24). DOI: 10.1029/2006GL027399 .
|
128 |
PALASTANGA V, van LEEUWEN P J, SCHOUTEN M W, et al. Flow structure and variability in the subtropical Indian Ocean: instability of the South Indian Ocean Countercurrent[J]. Journal of Geophysical Research: Oceans, 2007, 112(C1). DOI: 10.1029/2005JC003395 .
|
129 |
MENEZES V V, PHILLIPS H E, SCHILLER A, et al. South Indian Countercurrent and associated fronts[J]. Journal of Geophysical Research: Oceans, 2014, 119(10): 6 763-6 791.
|
130 |
MENEZES V V, PHILLIPS H E, VIANNA M L, et al. Interannual variability of the South Indian Countercurrent[J]. Journal of Geophysical Research: Oceans, 2016, 121(5): 3 465-3 487.
|
131 |
WAITE A M, THOMPSON P A, PESANT S, et al. The Leeuwin Current and its eddies: an introductory overview[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(8/9/10): 789-796.
|
132 |
FENG M, BENTHUYSEN J, ZHANG N N, et al. Freshening anomalies in the Indonesian throughflow and impacts on the Leeuwin Current during 2010-2011[J]. Geophysical Research Letters, 2015, 42(20): 8 555-8 562.
|
133 |
WANG J, YUAN D L, LI X, et al. Moored observations of the Savu strait currents in the Indonesian Seas[J]. Journal of Geophysical Research: Oceans, 2020, 125(7). DOI:10.1029/2020JC016082 .
|
134 |
LIANG L L, XUE H J. The reversal Indian Ocean waters[J]. Geophysical Research Letters, 2020, 47(14). DOI: 10.1029/2020GL088269 .
|
135 |
YANG L N, ZHOU L, LI S J, et al. Spreading of the South Pacific tropical water and Antarctic intermediate water over the maritime continent[J]. Journal of Geophysical Research: Oceans, 2018, 123(6): 4 423-4 446.
|
136 |
DURGADOO J V, RÜHS S, BIASTOCH A, et al. Indian Ocean sources of Agulhas leakage[J]. Journal of Geophysical Research: Oceans, 2017, 122(4): 3 481-3 499.
|
137 |
LATIF M, BARNETT T P. Interactions of the tropical oceans[J]. Journal of Climate, 1995, 8(4): 952-964.
|
138 |
YANG J L, LIU Q Y, XIE S P, et al. Impact of the Indian Ocean SST basin mode on the Asian summer monsoon[J]. Geophysical Research Letters, 2007, 34(2). DOI: 10.1029/2006GL028571 .
|
139 |
KLEIN S A, SODEN B J, LAU N C. Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge[J]. Journal of Climate, 1999, 12(4): 917-932.
|
140 |
IZUMO T, VIALARD J, LENGAIGNE M, et al. Influence of the state of the Indian Ocean Dipole on the following year’s El Niño[J]. Nature Geoscience, 2010, 3(3): 168-172.
|
141 |
YUAN D L, ZHOU H, ZHAO X. Interannual climate variability over the tropical Pacific Ocean induced by the Indian Ocean Dipole through the Indonesian throughflow[J]. Journal of Climate, 2013, 26(9): 2 845-2 861.
|
142 |
WANG J, YUAN D L. Roles of western and eastern boundary reflections in the interannual sea level variations during negative Indian Ocean Dipole events[J]. Journal of Physical Oceanography, 2015, 45(7): 1 804-1 821.
|
143 |
ZHOU Q, DUAN W S, MU M, et al. Influence of positive and negative Indian Ocean Dipoles on ENSO via the Indonesian throughflow: results from sensitivity experiments[J]. Advances in Atmospheric Sciences, 2015, 32(6): 783-793.
|
144 |
ZHOU Q, MU M, DUAN W S. The initial condition errors occurring in the Indian Ocean temperature that cause “spring predictability barrier” for El Niño in the Pacific Ocean[J]. Journal of Geophysical Research: Oceans, 2019, 124(2): 1 244-1 261.
|
145 |
WANG J N, MA Q, WANG F, et al. Linking seasonal-to-interannual variability of intermediate currents in the southwest tropical Pacific to wind forcing and ENSO[J]. Geophysical Research Letters, 2021, 48(5). DOI: 10.1029/2021GL092440 .
|
146 |
MAYER M, BALMASEDA M A. Indian Ocean impact on ENSO evolution 2014-2016 in a set of seasonal forecasting experiments[J]. Climate Dynamics, 2021, 56(7): 2 631-2 649.
|
147 |
XIE S P, HU K M, HAFNER J, et al. Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño[J]. Journal of Climate, 2009, 22(3): 730-747.
|
148 |
WANG B, WU R G, FU X. Pacific-East Asian teleconnection: how does ENSO affect East Asian climate?[J]. Journal of Climate, 2000, 13(9): 1 517-1 536.
|
149 |
WU B, LI T, ZHOU T J. Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer[J]. Journal of Climate, 2010, 23(11): 2 974-2 986.
|
150 |
LI Z, YU W D, LI K P, et al. Modulation of interannual variability of tropical cyclone activity over Southeast Indian Ocean by negative IOD phase[J]. Dynamics of Atmospheres and Oceans, 2015, 72: 62-69.
|
151 |
LI Z, XU Z C, FANG Y, et al. Influence of the interdecadal Pacific oscillation on super cyclone activities over the bay of Bengal during the primary cyclone season[J]. Atmosphere, 2022, 13(5). DOI: 10.3390/atmos13050685 .
|
152 |
WANG Jianing, WANG Fan, ZHANG Linlin. Construction and operation of a deep-sea scientific observation network in the western Pacific[J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1 471-1 479.
|
|
汪嘉宁,王凡,张林林. 西太平洋深海科学观测网的建设和运行[J]. 海洋与湖沼, 2017, 48(6): 1 471-1 479.
|
153 |
WANG Fan, ZHOU Hui, WANG Jianing, et al. Review and prospect on international ocean circulation and climate observation projects in Indo-Pacific convergence region[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(7): 939-953.
|
|
王凡, 周慧, 汪嘉宁, 等. 印太交汇区海洋环流与气候观测国际计划回顾与展望[J]. 中国科学院院刊, 2022, 37(7): 939-953.
|
154 |
HUANG Ke, WANG Dongxiao, WANG Weiqiang, et al. Multi-scale variability of tropical Indian Ocean circulation revealed by recent observations[J]. Science China: Earth Sciences, 2018, 48(6): 692-704.
|
|
黄科, 王东晓, 王卫强, 等. 近期观测揭示的热带印度洋环流多尺度变率[J]. 中国科学: 地球科学, 2018, 48(6): 692-704.
|
155 |
LIANG Zhanlin, HE Yunkai, LI Jian, et al. General survey of oceanographic comprehensive scientific cruise in eastern Indian Ocean[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2018, 10(3): 257-263.
|
|
梁湛林, 何云开, 李健, 等. 东印度洋海洋学综合科学考察航次概况[J]. 南京信息工程大学学报(自然科学版), 2018, 10(3): 257-263.
|
156 |
WEI Zexun, ZHENG Quanan, YANG Yongzeng, et al. Physical oceanography research in China over past 70 years: overview of development history and academic achievements[J]. Haiyang Xuebao,2019, 41(10):23-64.
|
|
魏泽勋,郑全安,杨永增,等. 中国物理海洋学研究70年:发展历程、学术成就概览[J]. 海洋学报,2019, 41(10): 23-64.
|
157 |
XIE T X, NEWTON R, SCHLOSSER P, et al. Long-term mean mass, heat and nutrient flux through the Indonesian seas, based on the tritium inventory in the Pacific and Indian Oceans[J]. Journal of Geophysical Research: Oceans, 2019, 124(6): 3 859-3 875.
|
158 |
DURAND M, FU L L, LETTENMAIER D P, et al. The surface water and ocean topography mission: observing terrestrial surface water and oceanic submesoscale eddies[J]. Proceedings of the IEEE, 2010, 98(5): 766-779.
|
159 |
XU Yongsheng, GAO Le, ZHANG Yunhua. New generation altimetry satellite SWOT and its reference to China’s swath altimetrysatellite[J]. Remote Sensing Technology and Application, 2017, 32(1): 84-94.
|
|
徐永生, 高乐, 张云华. 美国新一代测高卫星SWOT: 评述我国宽刈幅干涉卫星的发展借鉴[J]. 遥感技术与应用, 2017, 32(1): 84-94.
|