地球科学进展 ›› 2024, Vol. 39 ›› Issue (8): 772 -787. doi: 10.11867/j.issn.1001-8166.2024.060

综述与评述 上一篇    下一篇

土坷垃与泥疙瘩:如何认识和表征土壤团聚体生物物理结构?
赵正 1 , 2( ), 冯潇 1 , 3, 刘成 1 , 4, 陈硕桐 1 , 5, 刘志伟 1 , 2, 王燕 1 , 2, 夏少攀 1 , 2, 刘晓雨 1 , 2, 卞荣军 1 , 2, 张旭辉 1 , 2, 程琨 1 , 2, 郑聚锋 1 , 2, 李恋卿 1 , 2, 潘根兴 1 , 2( )   
  1. 1.南京农业大学 资源环境学院土壤学系,江苏 南京 210095
    2.南京农业大学 农业资源与生态环境研究所,江苏 南京 210095
    3.太原工业学院 环境与安全工程系,山西 太原 030008
    4.浙江科技大学 环境与资源学院,浙江 杭州 310008
    5.扬州大学 环境科学与工程学院,江苏 扬州 225127
  • 收稿日期:2024-06-14 修回日期:2024-07-10 出版日期:2024-08-10
  • 通讯作者: 潘根兴 E-mail:zhaozhengqs@163.com;pangenxing@aliyun.com
  • 基金资助:
    国家自然科学基金项目(42077082)

Dust or Dirt: How to Understand and Characterize the Biophysical Architecture of Soil Aggregate System

Zheng ZHAO 1 , 2( ), Xiao FENG 1 , 3, Cheng LIU 1 , 4, Shuotong CHEN 1 , 5, Zhiwei LIU 1 , 2, Yan WANG 1 , 2, Shaopan XIA 1 , 2, Xiaoyu LIU 1 , 2, Rongjun BIAN 1 , 2, Xuhui ZHANG 1 , 2, Kun CHENG 1 , 2, Jufeng ZHENG 1 , 2, Lianqing LI 1 , 2, Genxing PAN 1 , 2( )   

  1. 1.Department of Soil Science, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
    2.Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
    3.Department of Environmental and Safety Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China
    4.School of Environment and Resources, Zhejiang University of Science and Technology, Hangzhou 310008, China
    5.College of Environmental Science and Engineering, Yangzhou University, Yangzhou Jiangsu, 225127, China
  • Received:2024-06-14 Revised:2024-07-10 Online:2024-08-10 Published:2024-09-10
  • Contact: Genxing PAN E-mail:zhaozhengqs@163.com;pangenxing@aliyun.com
  • About author:ZHAO Zheng, Ph. D student, research area includes soil science research. E-mail: zhaozhengqs@163.com
  • Supported by:
    the National Natural Science Foundation of China(42077082)

近20年来土壤团聚体的研究逐渐成为土壤学研究的主要方向,其理论和方法不断推陈出新。通过回顾土壤团聚体形成发育的基本理论沿革,梳理了土壤团聚体粒径分组、组分分析和结构表征的技术沿革,讨论和归纳了土壤团聚体分离制备和生物物理结构解剖分析的技术方法,并凝练了对土壤团聚体系统的本质科学认识。得到的主要认识包括: 土壤团聚体是土壤中矿物质、有机质和生物质相互作用构成的最小微域构造单元,应赋予功能性土壤颗粒的本质地位; 土壤中不同层级团聚体的不同微域分布格式是土壤异质性和功能多样性的原由; 土壤团聚体的最终本质是土壤(生物)动态孔隙系统,不同层级团聚体在总孔度、孔径及其堆砌构造上或者说团聚体—孔隙的偶联构造上具有固有的特征; 主要可从宏团聚体—微团聚体—(未团聚的)粉黏粒3个层级的组合关系来表征土壤团聚体系统,可用“石榴”模式来理解粉黏粒和微团聚体进一步发育为宏团聚体; 在团聚体分离制备方法中,尽管干筛法和润筛法对于干土样本应用较多,但湿筛法制备的样品更接近于团聚体的自然形成和稳定; 计算机断层扫描孔隙微形貌技术提供了刻画团聚体孔隙系统并与土壤生命过程和生态系统服务相联系的定量化和可视化技术途径。未来需要通过广泛国际合作发展全球土壤团聚体系统的定量化解剖、功能化分析和可视化呈现的通用方法和实验室操作规范,以便从团聚体系统层面解构土壤复杂系统,特别是生物多样性系统,为开发基于团聚体理论的全球土壤管理政策及技术路径提供科学依据和参考。

With growing concerns about ecosystem functioning and the services provided by soil, the study of soil aggregates has increasingly become a central discipline of modern soil science, with ongoing updates to consensus and methodology. In this review, we provide a holistic overview of the understanding and characterization of the soil aggregate system that has emerged over the last two decades. The evolution of concepts related to soil aggregation, size fractionation, and structural characterization is presented, along with discussions on the separation and examination of the biophysical structure. Additionally, the final core scientific consensus on the soil hierarchy system is synthesized. The key points of understanding soil aggregates are as follows: Soil aggregates are considered the fundamental micro-architectural and functional units, composed of mineral particles, organic matter, and microbiomes through their interactions and co-occurrence, thus representing the basic functional particles of soil in nature; The micro-spatial distribution of soil aggregates at different hierarchical levels results in the heterogeneity and functional diversity of soil; The ultimate nature of soil aggregates can be envisioned as an embedded bio-pore system, created through the dual structure of aggregates and the associated pore system governed by the hierarchical aggregate system; A soil aggregate system is generally represented by three major hierarchical size fractions: macroaggregates, microaggregates, and the silt/clay fraction, with macroaggregates formed by binding microaggregates and/or silt-clay particles with coarse organic matter, resembling a pomegranate structure; Wet sieving of field-moist samples is recommended for the preparation of soil aggregate separates, although dry or moist sieving is often used for samples from drylands; μCT tomography technology is a powerful tool for quantifying and visualizing the pore system of soil aggregates, with the potential to link soil life processes to ecosystem services. Global cooperation is encouraged to develop a unified protocol for fractionating, quantifying, and visualizing the soil hierarchy system of aggregates across the world’s soils. With these developments, the complex soil system, particularly its biodiversity, can be explored at the aggregate scale. Based on the updated understanding and characterization of the soil aggregate system, nature-based solutions for global soil management policies and technical options will be provided, contributing to Earth’s sustainability.

中图分类号: 

1 LEHMANN J, BOSSIO D A, KÖGEL-KNABNER I, et al. The concept and future prospects of soil health[J]. Nature Reviews Earth and Environment, 2020, 1(10): 544-553.
2 BANERJEE S, van der HEIJDEN M G A. Soil microbiomes and one health[J]. Nature Reviews Microbiology, 2023, 21(1): 6-20.
3 FAO. Soils, where food begins: how can soils continue to sustain the growing need for food production in the current fertilizer crisis?[M]. Rome, Italy: FAO, 2023.
4 SHEN Q R, PAN G X. Inaugural editorial: soil science and environment[J]. Soil Science and Environment, 2022, 1(1): 1-2.
5 PAN Genxing, ZHOU Jianmin. Encyclopedia of China (the third edition): agricultural resources and environment[M]. Beijing: Encyclopedia of China Publishing House, 2022.
潘根兴, 周建民. 中国大百科全书(第三版)·农业资源与环境[M]. 北京: 中国大百科全书出版社, 2022.
6 LI Baoguo, ZHOU Hu, WANG Gang, et al. Explore the “transparent” soils: soilporelogy has sailed[J]. Acta Pedologica Sinica, 2023, 60(5): 1 221-1 230.
李保国, 周虎, 王钢, 等. 探索 “透明” 土壤体: 土壤孔隙学的时代已经启航[J]. 土壤学报, 2023, 60(5): 1 221-1 230.
7 LIU Yalong, WANG Ping, WANG Jingkuan. Formation and stability mechanism of soil aggregates: progress and prospect[J]. Acta Pedologica Sinica, 2023, 60(3): 627-643.
刘亚龙, 王萍, 汪景宽. 土壤团聚体的形成和稳定机制: 研究进展与展望[J]. 土壤学报, 2023, 60(3): 627-643.
8 AMELUNG W, TANG N, SIEBERS N, et al. Architecture of soil microaggregates: advanced methodologies to explore properties and functions[J]. Journal of Plant Nutrition and Soil Science, 2024, 187(1): 17-50.
9 SMIRNOV. Soviet soil scientist—the life and theory of Williams[M]. Beijing: Compilation Committee of North China Institute of Agricultural Sciences, 1950.
斯米尔诺夫. 苏联大土壤学家——威廉斯的生平及其学说[M]. 北京: 华北农业科学研究所编译委员会, 1950.
10 EDWARDS A P, BREMNER J M. Microaggregates in soils[J]. Journal of Soil Science, 1967, 18(1): 64-73.
11 TISDALL J M, OADES J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982, 33(2): 141-163.
12 OADES J M, WATERS A G. Aggregate hierarchy in soils[J]. Soil Research, 1991, 29(6): 815-828.
13 JASTROW J D, MILLER R M. Soil aggregate stabilization and carbon sequestration: feedbacks through organomineral associations[M]// LAL R, KIMBLE J M, FOLLETT R F, et al. Soil processes and the carbon cycle. Boca Raton: CRC Press, 1997: 1-17.
14 TISDALL J M. Possible role of soil microorganisms in aggregation in soils[J]. Plant and Soil, 1994, 159(1): 115-121.
15 MILLER R M, JASTROW J D. Mycorrhizal fungi influence soil structure[M]// KAPULNIK Y, DOUDS D D. Arbuscular mycorrhizas: physiology and function. Dordrecht: Springer, 2000: 3-18.
16 ELLIOTT E T, COLEMAN D C. Let the soil work for us[J]. Ecological Bulletins, 1988(39): 23-32.
17 SHIPITALO M J, PROTZ R. Chemistry and micromorphology of aggregation in earthworm casts[J]. Geoderma, 1989, 45(3/4): 357-374.
18 MORA P, SEUGÉ C, CHOTTE J L, et al. Physico-chemical typology of the biogenic structures of termites and earthworms: a comparative analysis[J]. Biology and Fertility of Soils, 2003, 37(4): 245-249.
19 GOLCHIN A, OADES J M, SKJEMSTAD J O, et al. Soil structure and carbon cycling[J]. Soil Research, 1994, 32(5): 1 043-1 068.
20 SIX J, ELLIOTT E T, PAUSTIAN K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000, 32(14): 2 099-2 103.
21 SCHULZE E D, FREIBAUER A. Carbon unlocked from soils[J]. Nature, 2005, 437(7 056): 205-206.
22 SIX J, PAUSTIAN K, ELLIOTT E T, et al. Soil structure and organic matter I. distribution of aggregate-size classes and aggregate-associated carbon[J]. Soil Science Society of America Journal, 2000, 64(2): 681-689.
23 BALESDENT J, CHENU C, BALABANE M. Relationship of soil organic matter dynamics to physical protection and tillage[J]. Soil and Tillage Research, 2000, 53(3/4): 215-230.
24 JASTROW J D. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter[J]. Soil Biology and Biochemistry, 1996, 28(4/5): 665-676.
[1] 张彧行, 翁白莎, 严登华. 基于文献可视化分析的土壤团聚体研究进展[J]. 地球科学进展, 2022, 37(4): 429-438.
[2] 刘强, 袁延飞, 刘一帆, 石美, 王潇, 罗先香, 李霄云, 郑浩, 李锋民. 生物炭对盐渍化土壤改良的研究进展[J]. 地球科学进展, 2022, 37(10): 1005-1024.
阅读次数
全文


摘要