地球科学进展 ›› 2024, Vol. 39 ›› Issue (8): 801 -812. doi: 10.11867/j.issn.1001-8166.2024.064

综述与评述 上一篇    下一篇

沉积植物古 DNA在第四纪植被重建中的应用
徐海涛 1 , 2( ), 李泉 1 , 2( ), 赵艳 1 , 2   
  1. 1.中国科学院地理科学与资源研究所 陆地表层格局与模拟院重点实验室, 北京 100101
    2.中国科学院大学, 北京 100049
  • 收稿日期:2024-06-11 修回日期:2024-07-26 出版日期:2024-08-10
  • 通讯作者: 李泉 E-mail:xuhaitao3418@igsnrr.ac.cn;liquan@igsnrr.ac.cn
  • 基金资助:
    国家重点研发计划项目(2022YFF0801501);国家自然科学基金项目(42277454)

Application of Plant Sedimentary Ancient DNA in Quaternary Vegetation Reconstruction

Haitao XU 1 , 2( ), Quan LI 1 , 2( ), Yan ZHAO 1 , 2   

  1. 1.Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-06-11 Revised:2024-07-26 Online:2024-08-10 Published:2024-09-10
  • Contact: Quan LI E-mail:xuhaitao3418@igsnrr.ac.cn;liquan@igsnrr.ac.cn
  • About author:XU Haitao,Ph. D student, research areas include paleoecology and paleoclimate. E-mail: xuhaitao3418@igsnrr.ac.cn
  • Supported by:
    the National Key Research and Development Program of China(2022YFF0801501);The National Natural Science Foundation of China(42277454)

沉积植物古DNA是分析古植被信息的前沿手段,可以从分子生物学视角为古植被和古环境重建提供更开阔的视野。分析了沉积植物古DNA保存的主要影响因素;概述了沉积植物古DNA分析流程;综述了沉积植物古DNA在重建植物群落动态演变过程、气候与环境变化以及生态演化对人类活动的响应等领域的相关研究进展,沉积植物古DNA分析通过提供快速和高分辨率的古植物物种信息,能够重建植物群落演变过程,定量、半定量重建古气候,并探究人类农牧活动对生态系统的影响。未来的研究中应该构建更加完善的植物物种DNA分类参考数据库,加强沉积植物古DNA分子的埋藏学研究,推广其在第四纪古环境研究中的应用,同时构建多指标记录以获得更完整的古生态信息。沉积植物古DNA将在古植被与气候变化以及人类活动关系研究中发挥更广泛的作用。

Plant sedimentary ancient DNA is an advanced method to analyze the information on paleovegetation, which can provide a broader perspective and additional details regarding paleovegetation and paleoenvironment from the perspective of molecular biology. We analyzed the main factors influencing the preservation of ancient plant sedimentary DNA. In addition, we outline the process of plant sedimentary ancient DNA analysis. We synthesized the progress of research on plant sedimentary ancient DNA in the dynamic evolutionary processes of plant communities, the reconstruction of climate and environmental changes, and the reconstruction of ecological evolutionary responses to human activities. By providing rapid, high-resolution information on ancient plant species, the ancient DNA analysis of plant sediments can be used to reconstruct the evolution of plant communities, quantitatively and semi-quantitatively reconstruct paleoclimates, and explore the impacts of human agricultural and pastoral activities on ecosystems. In the future, we should construct more perfect reference data for the DNA classification of plant species, strengthen the burial study of plant sedimentary ancient DNA molecules, promote the application of plant sedimentary ancient DNA in Quaternary paleoenvironmental research, and combine it with multiple indices to obtain more detailed paleoecological information. Therefore, plant sedimentary ancient DNA plays an important role in understanding the relationships between ancient vegetation, climate change, and human activity.

中图分类号: 

图1 Web of Science数据库沉积植物古DNA研究出版文献数量统计(19882023年)
Fig. 1 Statistics on the number of published articles on plant sedimentary ancient DNA research in databases of Web of Science1988-2023
图2 沉积植物古DNA研究地点示意图
Fig. 2 Illustration of plant sedimentary ancient DNA research sites
图3 沉积植物古DNA分析的简化流程图
Fig. 3 Simplified workflow of plant sedimentary ancient DNA analysis
表1 几种常用提取 DNA方案的优点和局限性概述
Table 1 Overview of the advantages and limitations of several commonly used DNA extraction protocols
表2 沉积植物古 DNA序列的鉴别方法对比
Table 2 Comparison of identification methods for plant sedimentary ancient DNA sequences
表3 与沉积植物古 DNA研究相关文献
Table 3 Publications related to the study of plant sedimentary ancient DNA
序号 研究地点 研究对象 技术方法 鉴定水平 参考文献
1 西伯利亚东北部 冰芯及多年冻土沉积物 DNA条形码技术 27
2 意大利Adamello冰川 冰芯及多年冻土沉积物 宏条形码技术 72
3 格陵兰岛北部Kap København 冰芯及多年冻土沉积物 鸟枪法宏基因组技术 73
4 挪威Trøndelag湖 湖泊沉积物 宏条形码技术 74
5 挪威和瑞典边界Rundtjørna湖和Klocka湖 湖泊沉积物 宏条形码技术 75
6 格陵兰Comarum湖 湖泊沉积物 宏条形码技术 45
7 阿尔卑斯山Anterne湖 湖泊沉积物 宏条形码技术 31
8 格陵兰Bliss湖 湖泊沉积物 宏条形码技术 76
9 挪威Skartjørna湖 湖泊沉积物 宏条形码技术 68
10 北美Charlie湖和Spring湖 湖泊沉积物 鸟枪法宏基因组技术 13
11 非洲Sele湖 湖泊沉积物 宏条形码技术 77
12 西伯利亚地区 湖泊沉积物 宏条形码技术 78
13 挪威Uhca Rohci湖 湖泊沉积物 宏条形码技术 79
14 西伯利亚地区 湖泊沉积物 宏条形码技术 32
15 阿尔卑斯山Sulsseewli湖 湖泊沉积物 宏条形码技术 80
16 非洲Gahinga沼泽 泥炭沉积物 宏条形码技术 81
17 芬兰Kaarreoja 泥炭沉积物 宏条形码技术 33
18 俄罗斯西北Seida 泥炭沉积物 宏条形码技术 33
19 非洲乌干达Mubwindi沼泽区 泥炭沉积物 鸟枪法宏基因组技术 82
20 新西兰北岛Hukanui 洞穴沉积物 DNA条形码技术 83
图4 基于不同代用指标检测到的植物类群比例的韦恩图
Fig. 4 Venn diagrams show the proportion of plant taxa commonly detected by different proxies
1 DANIAU A L, DESPRAT S, ALEMAN J C, et al. Terrestrial plant microfossils in palaeoenvironmental studies, pollen, microcharcoal and phytolith: towards a comprehensive understanding of vegetation, fire and climate changes over the past one million years [J]. Revue de Micropaleontologie, 2019, 63: 1-35.
2 ZHAO Y, TZEDAKIS P C, LI Q, et al. Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years [J]. Science Advances, 2020, 6(19). DOI:10.1126/sciadv.aay6193 .
3 ZHANG N M, CAO X Y, XU Q H, et al. Vegetation change and human-environment interactions in the Qinghai Lake Basin, northeastern Tibetan Plateau, since the last Deglaciation [J]. Catena, 2022, 210. DOI:10.1016/j.catena.2021.105892 .
4 POSTIGO-MIJARRA J M, ALTOLAGUIRRE Y, MORENO- DOMÍNGUEZ R, et al. Climatic reconstruction at the early Miocene La Rinconada mine (Ribesalbes-Alcora Basin, eastern Spain) based on Coexistence Approach, CLAMP and LMA analysis [J]. Review of Palaeobotany and Palynology, 2022, 304. DOI:10.1016/j.revpalbo.2022.104714 .
5 WANG W M. Phytoliths reveal cycling Pleistocene climate changes at a Paleolithic site in the lower reaches of the Yangtze River, East China [J]. Review of Palaeobotany and Palynology, 2022, 306. DOI:10.1016/j.revpalbo.2022.104764 .
6 SHEN Y C, SWEENEY L, LIU M M, et al. Reconstructing burnt area during the Holocene: an Iberian case study [J]. Climate of the Past, 2022, 18(5): 1 189-1 201.
7 ANDERSON-CARPENTER L L, MCLACHLAN J S, JACKSON S T, et al. Ancient DNA from lake sediments: bridging the gap between paleoecology and genetics [J]. BMC Evolutionary Biology, 2011, 11(1). DOI:10.1186/1471-2148-11-30 .
8 PARDUCCI L, BENNETT K D, FICETOLA G F, et al. Ancient plant DNA in lake sediments [J]. The New Phytologist, 2017, 214(3): 924-942.
9 HIGUCHI R G, WRISCHNIK L A, OAKES E, et al. Mitochondrial DNA of the extinct quagga: relatedness and extent of postmortem change [J]. Journal of Molecular Evolution, 1987, 25(4): 283-287.
10 ENDICOTT P, HO S Y W, STRINGER C. Using genetic evidence to evaluate four palaeoanthropological hypotheses for the timing of Neanderthal and modern human origins [J]. Journal of Human Evolution, 2010, 59(1): 87-95.
11 LAZARIDIS I, PATTERSON N, MITTNIK A, et al. Ancient human genomes suggest three ancestral populations for present-day Europeans [J]. Nature, 2014, 513(7 518): 409-413.
12 FORSTER P, HARDING R, TORRONI A, et al. Origin and evolution of native American mtDNA variation: a reappraisal [J]. American Journal of Human Genetics, 1996, 59(4): 935-945.
13 PEDERSEN M W, RUTER A, SCHWEGER C, et al. Postglacial viability and colonization in North America’s ice-free corridor [J]. Nature, 2016, 537(7 618): 45-49.
14 SERRANO J G, ORDÓÑEZ A C, FREGEL R. Paleogenomics of the prehistory of Europe: human migrations, domestication and disease [J]. Annals of Human Biology, 2021, 48(3): 179-190.
15 LARSON G, ALBARELLA U, DOBNEY K, et al. Ancient DNA, pig domestication, and the spread of the Neolithic into Europe [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(39): 15 276-15 281.
16 SMITH O, MOMBER G, BATES R, et al. Sedimentary DNA from a submerged site reveals wheat in the British Isles 8000 years ago [J]. Science, 2015, 347: 998-1 001.
17 SHARMA P P, KALUZIAK S T, PÉREZ -PORRO A R, et al. Phylogenomic interrogation of arachnida reveals systemic conflicts in phylogenetic signal [J]. Molecular Biology and Evolution, 2014, 31(11): 2 963-2 984.
18 PETERSEN G, JOHANSEN B, SEBERG O. PCR and sequencing from a single pollen grain [J]. Plant Molecular Biology, 1996, 31(1): 189-191.
19 SUYAMA Y, KAWAMURO K, KINOSHITA I, et al. DNA sequence from a fossil pollen of Abies spp. from Pleistocene peat [J]. Genes & Genetic Systems, 1996, 71(3): 145-149.
20 TORTI A, LEVER M A, JORGENSEN B B. Origin, dynamics, and implications of extracellular DNA pools in marine sediments [J]. Marine Genomics, 2015, 24 Pt 3: 185-196.
21 CAPO E, GIGUET-COVEX C, ROUILLARD A, et al. Lake sedimentary DNA research on past terrestrial and aquatic biodiversity: overview and recommendations [J]. Quaternary, 2021, 4(1). DOI:10.3390/quat4010006 .
22 JIA W H, ANSLAN S, CHEN F H, et al. Sedimentary ancient DNA reveals past ecosystem and biodiversity changes on the Tibetan Plateau: overview and prospects [J]. Quaternary Science Reviews, 2022, 293. DOI:10.1016/j.quascirev.2022.107703 .
23 JOHNSON M D, FREELAND J R, PARDUCCI L, et al. Environmental DNA as an emerging tool in botanical research [J]. American Journal of Botany, 2023, 110(2). DOI:10.1002/ajb2.16120 .
24 PARDUCCI L, SUYAMA Y, LASCOUX M, et al. Ancient DNA from pollen: a genetic record of population history in Scots pine [J]. Molecular Ecology, 2005, 14(9): 2 873-2 882.
25 LI K, STOOF-LEICHSENRING K R, LIU S S, et al. Plant sedimentary DNA as a proxy for vegetation reconstruction in eastern and northern Asia [J]. Ecological Indicators, 2021, 132. DOI:10.1016/j.ecolind.2021.108303 .
26 WILLERSLEV E, CAPPELLINI E, BOOMSMA W, et al. Ancient biomolecules from deep ice cores reveal a forested southern Greenland [J]. Science, 2007, 317(5 834): 111-114.
27 WILLERSLEV E, HANSEN A J, BINLADEN J, et al. Diverse plant and animal genetic records from Holocene and Pleistocene sediments [J]. Science, 2003, 300(5 620): 791-795.
28 WILLERSLEV E, DAVISON J, MOORA M, et al. Fifty thousand years of Arctic vegetation and megafaunal diet [J]. Nature, 2014, 506(7 486): 47-51.
29 ZALE R, HUANG Y T, BIGLER C, et al. Growth of plants on the Late Weichselian ice-sheet during Greenland interstadial-1? [J]. Quaternary Science Reviews, 2018, 185: 222-229.
30 GIGUET-COVEX C, PANSU J, ARNAUD F, et al. Long livestock farming history and human landscape shaping revealed by lake sediment DNA [J]. Nature Communications, 2014, 5(1). DOI:10.1038/ncomms4211 .
31 PANSU J, GIGUET-COVEX C, FICETOLA G F, et al. Reconstructing long-term human impacts on plant communities: an ecological approach based on lake sediment DNA [J]. Molecular Ecology, 2015, 24(7): 1 485-1 498.
32 LIU S S, STOOF-LEICHSENRING K R, KRUSE S, et al. Holocene vegetation and plant diversity changes in the north-eastern siberian treeline region from pollen and sedimentary ancient DNA [J]. Frontiers in Ecology and Evolution, 2020, 8. DOI:10.3389/fevo.2020.560243 .
33 PARDUCCI L, VÄLIRANTA M, SALONEN J S, et al. Proxy comparison in ancient peat sediments: pollen, macrofossil and plant DNA [J]. Philosophical Transactions of the Royal Society of London B Biological Sciences, 2015, 370(1 660). DOI:10.1098/rstb.2013.0382 .
34 RAWLENCE N J, LOWE D J, WOOD J R, et al. Using palaeoenvironmental DNA to reconstruct past environments: progress and prospects [J]. Journal of Quaternary Science, 2014, 29(7): 610-626.
35 LINDAHL T. Instability and decay of the primary structure of DNA [J]. Nature, 1993, 362(6 422): 709-715.
36 MITCHELL D, WILLERSLEV E, HANSEN A. Damage and repair of ancient DNA [J]. Mutation Research, 2005, 571(1/2): 265-276.
37 DALÉN L, HEINTZMAN P D, KAPP J D, et al. Deep-time paleogenomics and the limits of DNA survival [J]. Science, 2023, 382(6 666): 48-53.
38 WILLERSLEV E, COOPER A. Ancient DNA [J]. Proceedings of the Royal Society, 2005, 272(1 558): 3-16.
39 PANIERI G, LUGLI S, MANZI V, et al. Ribosomal RNA gene fragments from fossilized cyanobacteria identified in primary gypsum from the late Miocene, Italy [J]. Geobiology, 2010, 8. DOI:10.1111/j.1472-4669.2009.00230.x .
40 JIA W H, LIU X Q, STOOF-LEICHSENRING K R, et al. Preservation of sedimentary plant DNA is related to lake water chemistry [J]. Environmental DNA, 2022, 4(2): 425-439.
41 CAPPELLINI E, PROHASKA A, RACIMO F, et al. Ancient biomolecules and evolutionary inference [J]. Annual Review of Biochemistry, 2018, 87: 1 029-1 060.
42 da FONSECA R R, SMITH B D, WALES N, et al. The origin and evolution of maize in the southwestern United States [J]. Nature Plants, 2015, 1(1). DOI:10.1038/nplants.2014.3 .
43 MASCHER M, SCHUENEMANN V J, DAVIDOVICH U, et al. Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley [J]. Nature Genetics, 2016, 48(9): 1 089-1 093.
44 ZOLITSCHKA B, FRANCUS P, OJALA A E K, et al. Varves in lake sediments—a review [J]. Quaternary Science Reviews, 2015, 117: 1-41.
45 PEDERSEN M W, GINOLHAC A, ORLANDO L, et al. A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa [J]. Quaternary Science Reviews, 2013, 75: 161-168.
46 BIRKS H J, BIRKS H H. How have studies of ancient DNA from sediments contributed to the reconstruction of Quaternary floras? [J]. New Phytologist, 2016, 209(2): 499-506.
47 ZAVALA E I, JACOBS Z, VERNOT B, et al. Pleistocene sediment DNA reveals hominin and faunal turnovers at Denisova Cave [J]. Nature, 2021, 595(7 867): 399-403.
48 DÍAZ F P, LATORRE C, CARRASCO-PUGA G, et al. Multiscale climate change impacts on plant diversity in the Atacama Desert [J]. Global Change Biology, 2019, 25(5): 1 733-1 745.
49 ROBE P, NALIN R, CAPELLANO C, et al. Extraction of DNA from soil [J]. European Journal of Soil Biology, 2003, 39(4): 183-190.
50 THOMSEN P F, KIELGAST J, IVERSEN L L, et al. Detection of a diverse marine fish fauna using environmental DNA from seawater samples [J]. PLoS ONE, 2012, 7(8). DOI:10.1371/journal.pone.0041732 .
51 ROHLAND N, GLOCKE I, AXIMU-PETRI A, et al. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing [J]. Nature Protocols, 2018, 13(11): 2 447-2 461.
52 TABERLET P, COISSAC E, POMPANON F, et al. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding [J]. Nucleic Acids Research, 2007, 35(3). DOI:10.1093/nar/gkl938 .
53 MURCHIE T J, KUCH M, DUGGAN A T, et al. Optimizing extraction and targeted capture of ancient environmental DNA for reconstructing past environments using the PalaeoChip Arctic-1.0 bait-set [J]. Quaternary Research, 2021, 99: 305-328.
54 THOMSEN P F, WILLERSLEV E. Environmental DNA—an emerging tool in conservation for monitoring past and present biodiversity [J]. Biological Conservation, 2015, 183: 4-18.
55 CHEN Lian, WU Lin, LIU Yan, et al. Application of environmental DNA metabarcoding in ecology [J]. Acta Ecologica Sinica, 2016, 36(15): 4 573-4 582.
陈炼, 吴琳, 刘燕, 等. 环境DNA metabarcoding及其在生态学研究中的应用 [J]. 生态学报, 2016, 36(15): 4 573-4 582.
56 RIAZ T, SHEHZAD W, VIARI A, et al. ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis [J]. Nucleic Acids Research, 2011, 39(21). DOI:10.1093/nar/gkr732 .
57 REVÉRET A, RIJAL D P, HEINTZMAN P D, et al. Environmental DNA of aquatic macrophytes: the potential for reconstructing past and present vegetation and environments [J]. Freshwater Biology, 2023, 68(11): 1 929-1 950.
58 YU D W, JI Y Q, EMERSON B C, et al. Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring [J]. Methods in Ecology and Evolution, 2012, 3(4): 613-623.
59 QUINCE C, WALKER A W, SIMPSON J T, et al. Shotgun metagenomics, from sampling to analysis[J]. Nature Biotechnology, 2017, 35: 833-844.
60 WEYRICH L S, DUCHENE S, SOUBRIER J, et al. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus[J]. Nature, 2017, 544: 357-361.
61 TABERLET P, COISSAC E, POMPANON F, et al. Towards next-generation biodiversity assessment using DNA metabarcoding [J]. Molecular Ecology, 2012, 21(8): 2 045-2 050.
62 BENSON D A, CAVANAUGH M, CLARK K, et al. GenBank [J]. Nucleic Acids Research, 2017, 45(Database issue). DOI:10.1093/nar/gkw1070 .
63 LEINONEN R, AKHTAR R, BIRNEY E, et al. The European nucleotide archive [J]. Nucleic Acids Research, 2011, 39(): D28-D31.
64 SØNSTEBØ J H, GIELLY L, BRYSTING A K, et al. Using next-generation sequencing for molecular reconstruction of past Arctic vegetation and climate [J]. Molecular Ecology Resources, 2010, 10(6): 1 009-1 018.
65 WANG Y C, PEDERSEN M W, ALSOS I G, et al. Late Quaternary dynamics of Arctic biota from ancient environmental genomics [J]. Nature, 2021, 600: 86-92.
66 ALSOS I G, LAMMERS Y, YOCCOZ N G, et al. Plant DNA metabarcoding of lake sediments: how does it represent the contemporary vegetation [J]. PLoS ONE, 2018, 13(4). DOI:10.1371/journal.pone.0195403 .
67 ARMBRECHT L H, COOLEN M J L, LEJZEROWICZ F, et al. Ancient DNA from marine sediments: precautions and considerations for seafloor coring, sample handling and data generation [J]. Earth-Science Reviews, 2019, 196. DOI:10.1016/j.earscirev.2019.102887 .
68 ALSOS I G, SJÖGREN P, EDWARDS M E, et al. Sedimentary ancient DNA from Lake Skartjørna, Svalbard: assessing the resilience of arctic flora to Holocene climate change [J]. Holocene, 2016, 26(4): 627-642.
69 CLARKE C L, ALSOS I G, EDWARDS M E, et al. A 24,000-year ancient DNA and pollen record from the Polar Urals reveals temporal dynamics of arctic and boreal plant communities [J]. Quaternary Science Reviews, 2020, 247. DOI:10.1016/j.quascirev.2020.106564 .
70 SAWYER S, KRAUSE J, GUSCHANSKI K, et al. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA[J]. PLoS ONE, 2012, 7(3). DOI:10.1371/journal.pone.0034131 .
71 JÓNSSON H, GINOLHAC A, SCHUBERT M, et al. MapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters[J]. Bioinformatics, 2013, 29(13): 1 682-1 684.
72 VAROTTO C, PINDO M, BERTONI E, et al. A pilot study of eDNA metabarcoding to estimate plant biodiversity by an alpine glacier core (Adamello glacier, North Italy) [J]. Scientific Reports, 2021, 11. DOI:10.1038/s41598-020-79738-5 .
73 KJÆR K H, WINTHER PEDERSEN M, de SANCTIS B, et al. A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA [J]. Nature, 2022, 612(7 939): 283-291.
74 PARDUCCI L, JØRGENSEN T, TOLLEFSRUD M M, et al. Glacial survival of boreal trees in northern Scandinavia[J]. Science, 2012, 335(6072): 1 083-1 086.
75 PARDUCCI L, MATETOVICI I, FONTANA S L, et al. Molecular- and pollen-based vegetation analysis in lake sediments from central Scandinavia[J]. Molecular Ecology, 2013, 22(13): 3 511-3 524.
76 EPP L S, GUSSAROVA G, BOESSENKOOL S, et al. Lake sediment multi-taxon DNA from North Greenland records early post-glacial appearance of vascular plants and accurately tracks environmental changes[J]. Quaternary Science Reviews, 2015, 117: 152-163.
77 BREMOND L, FAVIER C, FICETOLA G F, et al. Five thousand years of tropical lake sediment DNA records from Benin [J]. Quaternary Science Reviews, 2017, 170: 203-211.
78 NIEMEYER B, EPP L S, STOOF-LEICHSENRING K R, et al. A comparison of sedimentary DNA and pollen from lake sediments in recording vegetation composition at the Siberian treeline [J]. Molecular Ecology Resources, 2017, 17(6): e46-e62.
79 CLARKE C L, EDWARDS M E, BROWN A G, et al. Holocene floristic diversity and richness in northeast Norway revealed by sedimentary ancient DNA(sedaDNA) and pollen [J]. Boreas, 2018, 48(2): 299-316.
80 GARCÉS-PASTOR S, COISSAC E, LAVERGNE S, et al. High resolution ancient sedimentary DNA shows that alpine plant diversity is associated with human land use and climate change [J]. Nature Communications, 2022, 13(1). DOI:10.1038/s41467-022-34010-4 .
81 BOESSENKOOL S, MCGLYNN G, EPP L S, et al. Use of ancient sedimentary DNA as a novel conservation tool for high-altitude tropical biodiversity[J]. Conservation Biology, 2014, 28(2): 446-455.
82 DOMMAIN R, ANDAMA M, McDONOUGH M M, et al. The challenges of reconstructing tropical biodiversity with sedimentary ancient DNA: a 2200-year-long metagenomic record from bwindi impenetrable forest, Uganda[J]. Frontiers in Ecology and Evolution, 2020, 8. DOI:10.3389/fevo.2020.00218 .
83 HAILE J, HOLDAWAY R, OLIVER K, et al. Ancient DNA chronology within sediment deposits: are paleobiological reconstructions possible and is DNA leaching a factor?[J]. Molecular Biology and Evolution, 2007, 24(4): 982-989.
84 PARDUCCI L, ALSOS I G, UNNEBERG P, et al. Shotgun environmental DNA, pollen, and macrofossil analysis of lateglacial lake sediments from southern Sweden[J]. Frontiers in Ecology and Evolution, 2019, 7. DOI:10.3389/fevo.2019.00189 .
85 MA Rui, CHEN Jianhui, LIU Jianbao, et al. Progress in the application of lake sediment DNA in climate and environmental change and ecosystem response [J]. Journal of Lake Sciences, 2021, 33(3): 653-666.
马睿, 陈建徽, 刘建宝, 等. 湖泊沉积物DNA在气候环境变化和生态系统响应研究中的应用[J]. 湖泊科学, 2021, 33(3): 653-666.
86 PEDERSEN M W, OVERBALLE-PETERSEN S, ERMINI L, et al. Ancient and modern environmental DNA [J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2015, 370(1 660). DOI:10.1098/rstb.2013.0383 .
87 VOLDSTAD L H, ALSOS I G, FARNSWORTH W R, et al. A complete Holocene lake sediment ancient DNA record reveals long-standing high Arctic plant diversity hotspot in northern Svalbard [J]. Quaternary Science Reviews, 2020, 234. DOI:10.1016/j.quascirev.2020.106207 .
88 LIU S S, KRUSE S, SCHERLER D, et al. Sedimentary ancient DNA reveals a threat of warming-induced alpine habitat loss to Tibetan Plateau plant diversity [J]. Nature Communications, 2021, 12(1). DOI:10.1038/s41467-021-22986-4 .
89 WANG Rong, ZHANG Ke, LIU Jianbao, et al. The importance of lake ecosystem evolution for anthropocene research [J]. Journal of Lake Sciences, 2024,36(2):333-338.
王荣,张科,刘建宝,等.湖泊流域生态系统演化对人类世研究的重要意义[J].湖泊科学,2024,36(2):333-338.
90 LENDVAY B, BÁLINT M, PÁL I, et al. Plant macrofossils from lake sediment as the material to assess ancient genetic diversity: did deforestation influence Norway spruce (Picea abies) in the South Carpathians?[J]. Quaternary International, 2018, 477: 106-116.
91 BIRKS H H. Plant macrofossil introduction [M]. Amsterdam:Elsevier,2007.
92 SJÖGREN P, EDWARDS M E, GIELLY L, et al. Lake sedimentary DNA accurately records 20th century introductions of exotic conifers in Scotland[J]. New Phytologist, 2017, 213(2): 929-941.
93 JØRGENSEN T, HAILE J, MÖLLER P, et al. A comparative study of ancient sedimentary DNA, pollen and macrofossils from permafrost sediments of northern Siberia reveals long-term vegetational stability[J]. Molecular Ecology, 2012, 21(8): 1 989-2 003.
94 PORTER T M, GOLDING G B, KING C, et al. Amplicon pyrosequencing late Pleistocene permafrost: the removal of putative contaminant sequences and small-scale reproducibility [J]. Molecular Ecology Resources, 2013, 13(5): 798-810.
95 FICETOLA G F, TABERLET P, COISSAC E. How to limit false positives in environmental DNA and metabarcoding? [J]. Molecular Ecology Resources, 2016, 16(3): 604-607.
96 BIRKS H H, BIRKS H J B. Future uses of pollen analysis must include plant macrofossils [J]. Journal of Biogeography, 2000, 27(1): 31-35.
[1] 王梦迪, 马明明, 邱煜丹, 黄惠欣, 刘秀铭. 古近纪 Danian期早期热事件 Dan-C2研究进展[J]. 地球科学进展, 2023, 38(5): 483-492.
[2] 何志, 田军. 中中新世气候转型期太平洋深层环流变化与碳循环[J]. 地球科学进展, 2023, 38(1): 17-31.
[3] 丁奕凡, 田军. 晚中新世以来印度尼西亚海道及印度尼西亚贯穿流的协同演化及其气候效应研究进展[J]. 地球科学进展, 2022, 37(11): 1165-1180.
[4] 魏思华, 田军. 晚中新世低大气 pCO2 背景下暖室气候的成因机制[J]. 地球科学进展, 2022, 37(4): 417-428.
[5] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[6] 田少华,肖国桥,杨欢. GDGTs在黄土古环境重建中的研究进展[J]. 地球科学进展, 2020, 35(5): 465-477.
[7] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[8] 雒聪文,马玉贞,王凯,李丹丹. 东亚地区 MIS 5时期孢粉记录的植被与气候研究进展[J]. 地球科学进展, 2019, 34(5): 540-551.
[9] 马晓旭,刘传联,金晓波,张洪瑞,马瑞罡. 长链烯酮在古大气二氧化碳分压重建的应用[J]. 地球科学进展, 2019, 34(3): 265-274.
[10] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[11] 宗秀兰, 宋友桂, 李越. 蚯蚓方解石颗粒——一种新的古气候信息记录载体[J]. 地球科学进展, 2018, 33(9): 983-993.
[12] 梁文癸, 闻新宇. 古AO/NAO的研究进展[J]. 地球科学进展, 2016, 31(11): 1137-1150.
[13] 胡玉, 陈建徽, 王海鹏, 吕飞亚, 魏国英. 基于摇蚊的古环境和古气候国内外研究进展与展望[J]. 地球科学进展, 2016, 31(8): 870-884.
[14] 丁晓东, 郑立伟, 高树基. 新仙女木事件研究进展 *[J]. 地球科学进展, 2014, 29(10): 1095-1109.
[15] 刘佳,张廷军. 利用钻孔温度梯度重建过去气候变化进展[J]. 地球科学进展, 2013, 28(4): 429-446.
阅读次数
全文


摘要