地球科学进展 ›› 2024, Vol. 39 ›› Issue (8): 813 -822. doi: 10.11867/j.issn.1001-8166.2024.061

综述与评述 上一篇    下一篇

沙尘气溶胶数值模式与资料同化的研究进展、问题与展望
范亚伟 1 , 2( ), 杜鹤强 1( ), 杨胜飞 1 , 2, 颜长珍 1, 刘秀帆 1 , 2, 刘欣雷 1 , 2   
  1. 1.中国科学院西北生态环境资源研究院,干旱区生态安全与可持续发展重点实验室,甘肃 兰州 730000
    2.中国科学院大学,北京 100049
  • 收稿日期:2024-05-11 修回日期:2024-07-13 出版日期:2024-08-10
  • 通讯作者: 杜鹤强 E-mail:fanyawei@nieer.ac.cn;dilikexue119@163.com
  • 基金资助:
    国家自然科学基金项目(42271016)

Research Progress, Problems and Prospects of Numerical Modelling and Data Assimilation of Sand and Dust Aerosols

Yawei FAN 1 , 2( ), Heqiang DU 1( ), Shengfei YANG 1 , 2, Changzhen YAN 1, Xiufan LIU 1 , 2, Xinlei LIU 1 , 2   

  1. 1.Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-05-11 Revised:2024-07-13 Online:2024-08-10 Published:2024-09-10
  • Contact: Heqiang DU E-mail:fanyawei@nieer.ac.cn;dilikexue119@163.com
  • About author:FAN Yawei, Ph. D student, research areas include sand and dust aerosols. E-mail: fanyawei@nieer.ac.cn
  • Supported by:
    the National Natural Science Foundation of China(42271016)

沙尘气溶胶对气候变化、生态环境和人类生命健康均会产生严重影响,亟待对其进行系统性研究。数值模式是研究沙尘气溶胶的有效工具,能够模拟沙尘的起动、传输、扩散及清除等过程。然而,由于起沙参数化方案的不完整及模式输入场的不确定性,导致数值模式的模拟结果存在较大误差。以此为立足点,论述沙尘气溶胶观测方式、数值模式发展历程、起沙参数化方案进展以及资料同化研究进展。并基于目前的研究现状,分析现阶段利用数值模式进行沙尘气溶胶研究过程中存在的问题,进一步提出未来的发展方向。通过全面回顾沙尘气溶胶数值模拟的研究进程,以期为相关领域研究提供参考和启发。

Dust aerosols have a profound impact on climate change, the ecological environment, and public health, highlighting the importance of systematic research. Numerical models serve as effective tools for the investigation of dust aerosols because they enable the simulation of processes, including dust emission, transport, dispersion, and deposition. However, substantial discrepancies remain in the simulation outputs of numerical models, which are largely attributed to incomplete dust emission parameterization schemes and uncertainties in the model input fields. We focus on methodologies for dust aerosol observation, advancements in numerical model development, progress in dust emission parameterization, and recent strides in data assimilation research. Based on the current research status, we analyzed issues in the research of dust aerosols using numerical models and outlined prospective avenues for future research. Through a comprehensive review of the advancements in numerical simulation studies of dust aerosols, we hope to offer valuable insights and serve as a reference for further research in related fields.

中图分类号: 

1 FORSTER P, RAMASWAMY V, ARTAXO P, et al. Climate change 2007: the physical science basis[M]. Geneva: Intergovernmental Panel on Climate Change (IPCC), 2007.
2 SHAO Y P. A model for mineral dust emission[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D17): 20 239-20 254.
3 SHAO Y P, WYRWOLL K H, CHAPPELL A, et al. Dust cycle: an emerging core theme in Earth system science[J]. Aeolian Research, 2011, 2(4): 181-204.
4 ZENDER C S, BIAN H S, NEWMAN D. Mineral Dust Entrainment and Deposition (DEAD) model: description and 1990s dust climatology[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D14). DOI:10.1029/2002JD002775 .
5 SHAO Y. Physical and modeling of wind erosion[M]. Berlin, Germany: Springer Press, 2008.
6 ECK T F, HOLBEN B N, REID J S, et al. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D24): 31 333-31 349.
7 GARNÉS-MORALES G, MONTÁVEZ J P, HALIFA-MARÍN A, et al. Role of aerosols on atmospheric circulation in regional climate experiments over Europe[J]. Atmosphere, 2023, 14(3). DOI:10.3390/atmos14030491 .
8 ZHANG Lu, LI Qianhui, MENG Lu,et al. Research on the development of the deep atmospheric boundary layer, turbulent motion, and dust stagnation[J]. Advances in Earth Science, 2022, 37(10): 991-1 004.
张璐,李倩惠,孟露,等. 深厚大气边界层演变与湍流运动、沙尘滞空的研究[J]. 地球科学进展,2022,37(10):991-1 004.
9 SEINFELD J H, CARMICHAEL G R, ARIMOTO R, et al. ACE-ASIA: regional climatic and atmospheric chemical effects of Asian dust and pollution[J]. Bulletin of the American Meteorological Society, 2004, 85(3): 367-380.
10 TWOMEY S. The influence of pollution on the shortwave albedo of clouds[J]. Journal of the Atmospheric Sciences, 1977, 34(7): 1 149-1 152.
11 BIAN H S, ZENDER C S. Mineral dust and global tropospheric chemistry: relative roles of photolysis and heterogeneous uptake[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D21). DOI:10.1029/2002JD003143 .
12 SHI Guangyu, ZHAO Sixiong. Several scientific issues of studies on the dust storms[J]. Chinese Journal of Atmospheric Sciences, 2003, 27(4): 591-606.
石广玉, 赵思雄. 沙尘暴研究中的若干科学问题[J]. 大气科学, 2003, 27(4): 591-606.
13 LIU J, HAN Y Q, TANG X, et al. Estimating adult mortality attributable to PM2.5 exposure in China with assimilated PM2.5 concentrations based on a ground monitoring network[J]. The Science of the Total Environment, 2016, 568: 1 253-1 262.
14 GAO X G, CAO X J, TIAN P F, et al. Combined observation of a dust storm over the Loess Plateau using a dual-wavelength lidar and an aethalometer[J]. Atmospheric Pollution Research, 2017, 8(6): 1 103-1 112.
15 YANG T, LI H Y, WANG H B, et al. Vertical aerosol data assimilation technology and application based on satellite and ground lidar: a review and outlook[J]. Journal of Environmental Sciences, 2023, 123: 292-305.
16 GAO Qingxian, REN Zhenhai, ZHANG Yungang, et al. Dust event and its formation, development and transportation based on satellite data[J]. Resources Science, 2004, 26(5): 24-29.
高庆先,任阵海,张运刚,等. 利用静止卫星资料跟踪沙尘天气的发生、发展及其传输[J]. 资源科学,2004,26(5): 24-29.
[1] 沈淑婧, 史月琴, 刘卫国, 花少烽, 孙晶. 云降水和人工影响天气暖云催化数值模式研发与应用进展[J]. 地球科学进展, 2024, 39(7): 671-684.
[2] 汪浩笛, 陈诗尧, 鲍森亮, 任开军. 全球格点化海洋环境数据集研究进展[J]. 地球科学进展, 2022, 37(8): 822-840.
[3] 段晚锁, 秦晓昊. 非线性最优扰动方法在热带气旋目标观测研究和外场试验中的应用[J]. 地球科学进展, 2022, 37(2): 165-176.
[4] 高丽,陈静,郑嘉雯,陈权亮. 极端天气的数值模式集合预报研究进展[J]. 地球科学进展, 2019, 34(7): 706-716.
[5] 范峥,李宏,刘向文,徐芳华. 基于局地集合变换卡尔曼滤波的全球海洋资料同化系统设计及算法加速[J]. 地球科学进展, 2019, 34(5): 531-539.
[6] 窦芳丽,陆其峰,郭杨. 全天候卫星微波观测资料变分同化研究进展[J]. 地球科学进展, 2019, 34(11): 1120-1130.
[7] 王世红, 赵一丁, 尹训强, 乔方利. 全球海洋再分析产品的研究现状[J]. 地球科学进展, 2018, 33(8): 794-807.
[8] 马雷鸣, 鲍旭炜. 数值天气预报模式物理过程参数化方案的研究进展[J]. 地球科学进展, 2017, 32(7): 679-687.
[9] 王辉, 万莉颖, 秦英豪, 王毅, 杨学联, 刘洋, 邢建勇, 陈莉, 王彰贵, 仉天宇, 刘桂梅, 杨清华, 吴湘玉, 刘钦燕, 王东晓. 中国全球业务化海洋学预报系统的发展和应用[J]. 地球科学进展, 2016, 31(10): 1090-1104.
[10] 韩成鸣, 李耀东, 史小康. 云分析预报方法研究进展[J]. 地球科学进展, 2015, 30(4): 505-516.
[11] 文军,蓝永超,苏中波,田辉,史小康,张宇,王欣,刘蓉,张堂堂,康悦,吕少宁,张静辉. 黄河源区陆面过程观测和模拟研究进展[J]. 地球科学进展, 2011, 26(6): 575-586.
[12] 朱好,张宏升. 沙尘天气过程临界起沙因子的研究进展[J]. 地球科学进展, 2011, 26(1): 30-38.
[13] 王咏薇,蒋维楣,刘红年. 大气数值模式中城市效应参数化方案研究进展[J]. 地球科学进展, 2008, 23(4): 371-381.
[14] 赵南,沈新勇,丁一汇. 大气运动的慢流形概论[J]. 地球科学进展, 2007, 22(4): 331-340.
[15] 任宏利,丑纪范. 数值模式的预报策略和方法研究进展[J]. 地球科学进展, 2007, 22(4): 376-385.
阅读次数
全文


摘要