地球科学进展 ›› 2024, Vol. 39 ›› Issue (8): 823 -836. doi: 10.11867/j.issn.1001-8166.2024.062

研究论文 上一篇    下一篇

海绵城市建设中的次暴雨总量控制率及调蓄能力评估:以南宁市竹排冲流域为例
刘妙清 1( ), 杨云川 1 , 2 , 3( ), 闭光琼 1, 廖丽萍 1 , 2 , 3, 黎倩云 1, 陈佳盛 1, 黄雨虹 1   
  1. 1.广西大学 土木建筑工程学院,广西 南宁 530004
    2.广西大学 广西岩溶区水安全与智慧调控工程研究中心,广西 南宁 530004
    3.广西大学 广西防灾减灾与工程安全重点实验室,广西 南宁 530004
  • 收稿日期:2024-04-16 修回日期:2024-07-10 出版日期:2024-08-10
  • 通讯作者: 杨云川 E-mail:lmqsl181@163.com;yyc_sciences@163.com
  • 基金资助:
    国家自然科学基金项目(42261017);广西自然科学基金项目(2021GXNSFBA220025)

Sub-rainstorm Total Control Rate and Storage Capacity Assessment in Sponge City Construction: A Case Study of the Zhupaichong Basin in Nanning

Miaoqing LIU 1( ), Yunchuan YANG 1 , 2 , 3( ), Guangqiong BI 1, Liping LIAO 1 , 2 , 3, Qianyun LI 1, Jiasheng CHEN 1, Yuhong HUANG 1   

  1. 1.College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
    2.Engineering Research Center of Water Security and Intelligent Regulation in Karst Area, Guangxi University, Nanning 530004, China
    3.Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China
  • Received:2024-04-16 Revised:2024-07-10 Online:2024-08-10 Published:2024-09-10
  • Contact: Yunchuan YANG E-mail:lmqsl181@163.com;yyc_sciences@163.com
  • About author:LIU Miaoqing, Master student, research areas include sponge city storm waterlogging simulation and coping resilience research. E-mail: lmqsl181@163.com
  • Supported by:
    the National Natural Science Foundation of China(42261017);Guangxi Natural Science Foundation(2021GXNSFBA220025)

目前次暴雨量的调控指标在内涵界定、时变性、空间异质性及多目标性等诸多方面存在不足,导致了当前海绵设施建设的主观性和事后评价的滞后性,同时也限制了科学有效快速地推进中国系统化全域海绵城市建设。首先以南宁市竹排冲流域为例,针对上述调控指标问题开展多目标情景的现状下垫面次暴雨径流模拟,分析了该区域次暴雨总量控制率及其对应的海绵设施综合调蓄量的空间异质性。结果表明:研究区次暴雨总量控制率均值为0.500(0.25 a)~0.257(100 a),与南宁市海绵城市建设的75%控制率目标相差甚远。要实现该控制率目标,还需要增加的海绵设施综合调蓄量为200(0.25 a)~950 m3/hm2(100 a)(不含外排)和70(0.25 a)~420 m3/hm2(100 a)(含外排)。最后提出了全域海绵城市建设持续推进的定量指导系统框架“次暴雨总量控制率及调蓄量时空信息图谱”,可综合考虑上述次暴雨量调控指标的诸多问题,全过程定量指导各类海绵设施的多阶段设计、建设和运行效果,为科学有效快速地推进中国系统化全域海绵城市建设提供重要支撑。

Regulation indicators for sub-rainstorm quantities currently exhibit deficiencies in various aspects, such as connotation definition, temporal variability, spatial heterogeneity, and multi-objectiveness. These shortcomings have led to a subjective and retrospective evaluation delay in the construction of sponge facilities, thereby hindering the scientific, efficient, and rapid advancement of systematic, full-scale sponge city construction in China. Using the Zhupaichong Basin in Nanning City as an example, a sub rainstorm runoff simulation under multi-objective scenarios of the current underlying surface (2020) was conducted to address the aforementioned regulatory indicator issues. The spatial heterogeneity of the sub rainstorm total control rate and the corresponding comprehensive storage capacity of sponge facilities in this area were analyzed. The results indicated that the average sub-rainstorm total control rate in the study area ranges from 0.500 (0.25 years) to 0.257 (100 years), which is significantly below the 75% control rate target set for the construction of sponge cities in Nanning. To achieve this target, additional comprehensive storage capacities of sponge facilities (excluding external discharge) ranging from 200 m3/hm2 (0.25 years) to 950 m3/hm2 (100 years) and (including external discharge) from 70 m3/hm2 (0.25 years) to 420 m3/hm2 (100 years) are required. A quantitative guidance system framework for the continuous promotion of full-scale sponge city construction, termed the “Sub-rainstorm Total Control Rate and Storage Capacity Spatio-temporal Information Map,” was proposed. This framework can comprehensively address the various issues of sub rainstorm quantity regulation indicators and quantitatively guide the multistage design, construction, and operational effectiveness of various sponge facilities, thereby providing crucial support for the scientific, efficient, and rapid advancement of systematic full-scale sponge city construction in China.

中图分类号: 

图1 南宁市竹排冲流域高程及主干路网分布图
(a)竹排冲流域范围;(b)流域高程水系信息;(c)流域主干路网分布
Fig. 1 Elevation and trunk road network distribution map of Zhupaichong watershed in Nanning
(a) Zhupaichong watershed extent; (b) Watershed elevation and water system information; (c) Distribution of trunk road network in the watershed
图2 竹排冲流域不同重现期的180 min设计暴雨过程线
Fig. 2 180 min design rainstorm hydrograph with different return period in Zhupaichong watershed
图3 竹排冲流域子汇水分区、管网概化、平均坡度及土地利用类型图
(a)、(b)和(c)分别表示流域管道、排水口分布和子汇水区划分,(c)中数字为子汇水区编号;(d)和(e)分别表示流域平均坡度和土地类型
Fig. 3 Map of sub-catchmentspipe networksaverage slope and land use types in Zhupaichong watershed
(a), (b) and (c) Indicate that basin pipelines, outlet distribution and sub-catchment delineation respectively. The numbers in the figure (c)indicate sub-watershed IDs; (d) and (e) Indicate that average basin slope and land type respectively
表1 SWMM模型不确定性系数参考范围和率定值
Table 1 Uncertainty factor reference ranges and rates of SWMM
表2 SWMM模型参数率定校准过程
Table 2 SWMM model parameter calibration process
图4 流域1 a2 a3 a重现期综合径流系数与SWMM模拟径流系数的Pearson相关系数图
Fig. 4 Pearson correlation coefficients between the combined runoff coefficients and the SWMM modelled runoff coefficients for basin 1 a2 a and 3 a return periods
图5 2020年竹排冲流域现状下垫面的次暴雨总量控制率分布
Fig. 5 Distribution of sub-storm total control rates for the current subsurface of the Zhupaichong watershed in 2020
图6 实现目标控制率的竹排冲流域下垫面综合调蓄量分布(不考虑外排)
Fig. 6 Distribution of integrated storage in the sub-basin of the Zhupaichong watershed for achieving the target control ratewithout considering external discharges
图7 实现目标控制率的竹排冲流域下垫面综合调蓄量分布图(考虑外排)
Fig. 7 Distribution of integrated storage in the sub-basin of the Zhupaichong watershed for achieving the target control ratetaking into account external discharges
图8 全域海绵城市建设可持续推进的次暴雨总量控制率及其调蓄量时空信息图谱
Fig. 8 Spatial and temporal information mapping of sub-storm total rainfall control rate and storage volume for sustainable sponge city construction in the whole region
22 中华人民共和国住房和城乡建设部. 海绵城市建设评价标准 [S].北京: 中国建筑工业出版社, 2019.
23 XIA Jun, SHI Wei, WANG Qiang, et al. Discussion of several hydrological issues regarding sponge city construction[J]. Water Resources Protection, 2017, 33(1):1-8.
夏军, 石卫, 王强, 等.海绵城市建设中若干水文学问题的研讨[J].水资源保护, 2017, 33(1):1-8.
24 WANG Hong, DING Liuqian, CHENG Xiaotao, et al. Hydrologic control criteria framework in the United States and its referential significance to China[J]. Journal of Hydraulic Engineering, 2015,46(11): 1 261-1 271, 1 279.
王虹, 丁留谦, 程晓陶, 等.美国城市雨洪管理水文控制指标体系及其借鉴意义[J].水利学报, 2015,46(11): 1 261-1 271, 1 279.
25 CHE Wu, ZHANG Kun, ZHANG Wei, et al. Analysis of initial rainfall and total runoff volume control[J]. China Water & Wastewater, 2016,32(6):9-14.
车伍, 张鹍, 张伟, 等.初期雨水与径流总量控制的关系及其应用分析[J].中国给水排水, 2016,32(6):9-14.
26 ZHANG Jianyun, WANG Yintang, HU Qingfang, et al. Discussion and views on some issues of the sponage city construction in China[J]. Advances in Water Science, 2016, 27(6): 793-799.
张建云, 王银堂, 胡庆芳, 等.海绵城市建设有关问题讨论[J].水科学进展, 2016, 27(6): 793-799.
27 YANG Moyuan, PAN Xingyao, LIU Honglu, et al. Accurate calculation of the volume capture ratio of annual rainfall considering the field rainfall evolution[J]. Journal of Hydraulic Engineering, 2019, 50(12): 1 510-1 517,1 528.
杨默远, 潘兴瑶, 刘洪禄, 等.考虑场次降雨年际变化特征的年径流总量控制率准确核算[J].水利学报, 2019, 50(12): 1 510-1 517,1 528.
28 ZHANG Xinyue, GAO Xiaolu, CHAI Qi, et al. Analyzing spatial-temporal pattern and climate factors of blue-green space in urban built-up areas in prefecture- level cities in China[J]. Journal of Geo-information Science, 2023, 25(1):190-207.
张歆越, 高晓路, 柴琪, 等.中国地级城市建成区蓝绿空间时空格局及其气候影响因素分析[J].地球信息科学学报, 2023, 25(1):190-207.
29 MOLNAR P, BURLANDO P. Variability in the scale properties of high-resolution precipitation data in the Alpine climate of Switzerland[J]. Water Resources Research, 2008, 44(10). DOI:10.1029/2007WR006142 .
30 Ministry of Housing and Urban-rural Development of the People’s Republic of China. Standard for design of outdoor wastewater engineering: [S].Beijing: China Planning Press, 2021.
中华人民共和国住房和城乡建设部. 室外排水设计标准: [S].北京: 中国计划出版社, 2021.
31 LI Q Y, YANG Y C, LIAO H X, et al. The simulation, regulation capacity assessment and coping strategy of rainstorm runoff waterlogging in Zhu Pai-Chong Basin of Nanning, China[J]. Journal of Environmental Management, 2023, 332. DOI: 10.1016/j.jenvman.2023.117395 .
32 CHEN Qiuling, LIN Kairong, CHEN Wenlong, et al. Study on storm flood control in multi-scale sponge city system[J]. Journal of Hydraulic Engineering, 2022, 53(7): 862-875.
陈秋伶, 林凯荣, 陈文龙, 等.多尺度海绵城市系统雨洪控制研究[J].水利学报, 2022, 53(7): 862-875.
33 RONG Guiwen, GAN Danni, LI Shanshan, et al. Area proportion optimization of different LID facilities and effect of runoff pollution control[J]. Water Resources Protection, 2022, 38(3): 168-173,204.
戎贵文, 甘丹妮, 李姗姗, 等.不同LID设施的面积比例优选及径流污染控制效果[J].水资源保护, 2022, 38(3):168-173,204.
34 MEI C, LIU J H, WANG H, et al. Integrated assessments of green infrastructure for flood mitigation to support robust decision-making for sponge city construction in an urbanized watershed[J]. Science of the Total Environment, 2018, 639: 1 394-1 407.
35 WANG Leizhi, YUN Zhaode, HU Qingfang, et al. Comparison and enlightenment of urban stormwater management indicator system at home and abroad[J]. Water Resources Protection, 2022, 38(2): 25-31.
王磊之, 云兆得, 胡庆芳, 等. 国内外城市雨洪管理指标体系对比及启示[J]. 水资源保护, 2022, 38(2): 25-31.
36 DONG X, GUO H, ZENG S Y. Enhancing future resilience in urban drainage system: green versus grey infrastructure[J]. Water Research, 2017, 124: 280-289.
37 HUANG Jinhui, DUAN Tingting. Comparative study on sponge city development in China and integrated stormwater management in Canada: a case study of Toronto[J]. Water Resources Protection, 2017, 33(5):5-12.
黄津辉, 段亭亭.中国海绵城市开发与加拿大综合雨洪管理对比研究:以多伦多为例[J].水资源保护, 2017, 33(5):5-12.
38 Ministry of Housing and Urban-rural Development of the People’s Republic of China. Sponge city development technical guide—construction of rainwater system with low impact development (Trial) [M]. Beijing: China Architecture & Building Press, 2015.
中华人民共和国住房和城乡建设部.海绵城市建设技术指南——低影响开发雨水系统构建(试行)[M].北京:中国建筑工业出版社, 2015.
39 MEI Chao, LIU Jiahong, WANG Hao, et al. Review on urban design rainstorm [J]. Chinese Science Bulltin, 2017, 62(33):3 873-3 884.
1 IPCC. Climate change 2021: the physical science basis[M]. Cambridge:Cambridge University Press, 2021.
2 WANG Lei, ZHANG Baichao, SHI Ying, et al. Interpretation of the IPCC AR6 on the impacts and risks of climate change[J]. Climate Change Research, 2022, 18(4): 389-394.
王蕾, 张百超, 石英, 等. IPCC AR6报告关于气候变化影响和风险主要结论的解读[J].气候变化研究进展, 2022, 18(4): 389-394.
3 CHEN G Z, LI X, LIU X P, et al. Global projections of future urban land expansion under shared socioeconomic pathways[J]. Nature Communications, 2020, 11. DOI:10.1038/s41467-020-14386-x .
4 ZHANG Jianyun, WANG Yintang, HE Ruimin, et al. Discussion on the urban flood and waterlogging and causes analysis in China[J]. Advances in Water Science, 2016, 27(4): 485-491.
张建云, 王银堂, 贺瑞敏, 等.中国城市洪涝问题及成因分析[J].水科学进展, 2016, 27(4): 485-491.
5 ZHAO Liyuan, WEI Jialing. Impact of urban development on the risk of flooding: a case study of Wuhan City, China[J]. Progress in Geography, 2020, 39(11): 1 898-1 908.
赵丽元, 韦佳伶.城市建设对暴雨内涝空间分布的影响研究——以武汉市主城区为例[J].地理科学进展, 2020, 39(11): 1 898-1 908.
6 YANG Chao, PENG Fangle. Idea and strategy of urban deep underground drainage systems[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(3): 821-826.
杨超, 彭芳乐.城市大深度地下防洪排水体系构想及策略[J].地下空间与工程学报, 2017, 13(3): 821-826.
39 梅超, 刘家宏, 王浩, 等.城市设计暴雨研究综述[J].科学通报, 2017, 62(33):3 873-3 884.
40 ZHOU Shaoyi, LUO Honglei, SU Zhi, et al. Research on a new-generation of rainstorm intensity formula and rainstorm pattern for Nanning [J]. Journal of Meteorological Research and Application, 2017, 38(2):1-5,9.
周绍毅, 罗红磊, 苏志, 等.南宁市新一代暴雨强度公式与暴雨雨型研究[J].气象研究与应用, 2017, 38(2):1-5,9.
41 WANG Xiaojie, XIA Junqiang, DONG Boliang, et al. Simulation of urban flood using the SWMM with the hierarchical catchment partition method[J]. Advances in Water Science, 2022, 33(2):196-207.
王小杰, 夏军强, 董柏良, 等.基于汇水区分级划分的城市洪涝模拟[J].水科学进展, 2022, 33(2):196-207.
42 WANG Lihui, CHEN Xin, YAN Fuen. On construction method of storm model based on GIS and SWMM[J]. Journal of Municipal Technology, 2020, 38(4):183-188.
王立辉, 陈欣, 闫福恩.基于GIS和SWMM的雨洪模型构建方法研究[J].市政技术, 2020, 38(4):183-188.
43 ZHOU Yi, YU Minghui, CHEN Yongxiang. Estimation of sub-catchment width in SWMM[J]. China Water & Wastewater, 2014, 30(22):61-64.
周毅, 余明辉, 陈永祥. SWMM子汇水区域宽度参数的估算方法介绍[J].中国给水排水, 2014, 30(22):61-64.
44 LI Chunlin, LIU Miao, HU Yuanman, et al. Simulation on the control effect of low impact development measures of sponge city based on Storm Water Management Model (SWMM)[J]. Chinese Journal of Applied Ecology, 2017, 28(8):2 405-2 412.
7 XIA Jun, ZHANG Yongyong, ZHANG Yin, et al. Research and prospects of water problems in construction of sponge cities in China[J]. Yangtze River, 2017, 48(20): 1-5,27.
夏军, 张永勇, 张印, 等.中国海绵城市建设的水问题研究与展望[J].人民长江, 2017, 48(20): 1-5,27.
8 HUANG Danping, BAI Long. Distribution characteristics of urban waterlogging in Nanning and application of its monitoring and early warning system[J]. Journal of Institute of Disaster Prevention, 2019, 21(4): 84-89.
黄丹萍, 白龙.南宁城市内涝分布特征及其监测预警系统应用分析[J].防灾科技学院学报, 2019, 21(4): 84-89.
9 Ministry of Emergency Management of the People's Republic of China. Henan Zhengzhou “7·20” very heavy rainstorm disaster investigation report released[R/OL]. (2022-1-21) [2022-01-27]. .
中华人民共和国应急管理部.河南郑州“7·20”特大暴雨灾害调查报告[R/OL].(2022-1-21) [2022-01-27]. .
10 LI H, DING L Q, REN M L, et al. Sponge city construction in China: a survey of the challenges and opportunities[J]. Water, 2017, 9(9). DOI:10.3390/w9090594 .
11 WANG Hongru. The country’s 30 sponge city pilot, 19 cities flooded this year[J]. China Economic Weekly, 2016(35): 48-50.
王红茹.全国30个海绵城市试点, 19城今年出现内涝[J].中国经济周刊, 2016(35): 48-50.
12 YIN D K, CHEN Y, JIA H F, et al. Sponge city practice in China: a review of construction, assessment, operational and maintenance[J]. Journal of Cleaner Production, 2021, 280.DOI:10.1016/j.jclepro.2020.124963 .
13 NGUYEN T T, NGO H H, GUO W S, et al. Implementation of a specific urban water management—sponge city[J]. The Science of the Total Environment, 2019, 652: 147-162.
14 XU Zongxue, YE Chenlei, LIAO Ruting. Integrated management technology for urban flooding/waterlogging disaster:research progress and case study[J]. Advances in Earth Science, 2023, 38(11): 1 107-1 120.
徐宗学, 叶陈雷, 廖如婷.城市洪涝灾害协同治理:研究进展与应用案例[J].地球科学进展, 2023, 38(11): 1 107-1 120.
15 WANG Zhugen, LI Xiaolei, HUANG Rui, et al. Strategy of potential rainwater storage space exploitation under the background of sponge city[J]. Modern Urban Research, 2016, 31(7): 23-28.
王祝根, 李晓蕾, 黄蕊, 等. 海绵城市背景下的潜在蓄水空间开发策略[J]. 现代城市研究, 2016, 31(7): 23-28.
16 WANG Hao, JIA Yangwen. Theory and study methodology of dualistic water cycle in river basins under changing conditions[J]. Journal of Hydraulic Engineering, 2016, 47(10): 1 219-1 226.
王浩, 贾仰文.变化中的流域“自然—社会”二元水循环理论与研究方法[J].水利学报, 2016, 47(10): 1 219-1 226.
17 CHEN Wenlong, XU Zongxue, ZHANG Yin, et al. Theoretical framework and application of urban rainstorm flood control in high-density cities[J]. Journal of Hydraulic Engineering, 2022, 53(7): 769-778.
陈文龙, 徐宗学, 张印, 等. 高密度城市暴雨洪涝治理理论框架及其应用研究[J]. 水利学报, 2022, 53(7): 769-778.
18 XU Zongxue, LI Peng. Progress on hydrological response to urbanization: mechanisms, methods and solutions[J]. Water Resources Protection, 2022, 38(1): 7-17.
徐宗学, 李鹏.城市化水文效应研究进展:机理、方法与应对措施[J].水资源保护, 2022, 38(1): 7-17.
19 ZHAO H T, ZOU C L, ZHAO J, et al. Role of low-impact development in generation and control of urban diffuse pollution in a pilot sponge city: a paired-catchment study[J]. Water, 2018, 10(7). DOI:10.3390/w10070852 .
44 李春林, 刘淼, 胡远满, 等.基于暴雨径流管理模型(SWMM)的海绵城市低影响开发措施控制效果模拟[J].应用生态学报, 2017, 28(8): 2 405-2 412.
45 LIU Xingpo. Parameter calibration method for urban rainfall-runoff model based on runoff coefficient[J]. Water & Wastewater Engineering, 2009, 45(11): 213-217.
刘兴坡. 基于径流系数的城市降雨径流模型参数校准方法[J]. 给水排水, 2009, 45(11): 213-217.
46 Department of Housing and Urban and Rural Construction of Zhejiang Province. Notice on issuing the guidelines of planning and design guidelines of sponge city in Zhejiang Province (Trial)[Z]. 2017.
浙江省住房和城乡建设厅. 关于印发《浙江省海绵城市规划设计导则(试行)》的通知[Z]. 2017.
47 JIN Junwei, HUANG Liping, CHENG Wei. Explanation of total annual runoff volume control indexes for sponge city development of Chongqing City[J]. China Water & Wastewater, 2016, 32(6): 15-18.
靳俊伟, 黄丽萍, 程巍. 重庆市海绵城市年径流总量控制指标解读[J]. 中国给水排水, 2016, 32(6): 15-18.
48 Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical code for rainwater management and utilization of building and sub-district: [S]. Beijing: China Architecture & Building Press, 2007.
中华人民共和国住房和城乡建设部. 建筑与小区雨水控制及利用工程技术规范: [S]. 北京: 中国建筑工业出版社, 2007.
20 REN Nanqi, ZHANG Jianyun, WANG Xiuheng. Promoting the sponge city construction widely to eliminate urban waterlogging and create livable environment[J]. Acta Scientiae Circumstantiae, 2020, 40(10): 3 481-3 483.
任南琪, 张建云, 王秀蘅.全域推进海绵城市建设, 消除城市内涝, 打造宜居环境[J].环境科学学报, 2020, 40(10): 3 481-3 483.
21 Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical code for rainwater management and utilization of building and sub-district: [S]. Beijing: China Architecture & Building Press, 2017.
中华人民共和国住房和城乡建设部. 建筑与小区雨水控制及利用工程技术规范: [S]. 北京: 中国建筑工业出版社, 2017.
22 Ministry of Housing and Urban-rural Development of the People’s Republic of China. Assessment standard for sponge city construction effect [S]. Beijing: China Architecture & Building Press, 2019.
[1] 徐宗学, 叶陈雷, 廖如婷. 城市洪涝灾害协同治理:研究进展与应用案例[J]. 地球科学进展, 2023, 38(11): 1107-1120.
[2] 刘铸, 李忠勤. 近期冰川表面径流系数变化的影响因素----以天山乌鲁木齐河源1号冰川为例[J]. 地球科学进展, 2016, 31(1): 103-112.
[3] 陈仁升, 阳勇, 韩春坛, 刘俊峰, 康尔泗, 宋耀选, 刘章文. 高寒区典型下垫面水文功能小流域观测试验研究[J]. 地球科学进展, 2014, 29(4): 507-514.
阅读次数
全文


摘要