地球科学进展 ›› 2024, Vol. 39 ›› Issue (8): 837 -846. doi: 10.11867/j.issn.1001-8166.2024.058
研究论文 上一篇 下一篇
收稿日期:
修回日期:
出版日期:
通讯作者:
基金资助:
Qingyun LONG 1( ), Tong ZHANG 1( ), Che WANG 2, Tao CHE 3, Cunde XIAO 1
Received:
Revised:
Online:
Published:
Contact:
About author:
Supported by:
冰架崩解对南极质量损失和动力过程有着直接影响,因此研究其变化的空间特征、环境条件和受控因子尤为重要。基于机器学习算法和冰盖动力模式,利用2005—2020年南极冰架崩解遥感数据、冰架表面裂隙数据、冰架支撑值、南极冰架损伤空间分布数据以及表面融化数据,结合机器学习二元分类算法,分析了18种影响冰架动力过程的特征要素的重要性,并测算7种不同机器学习算法的准确性。结果表明,随机森林算法在冰架崩解事件的二元分类中具备最高准确率,其中,冰架表面流速和冰架表面融水对冰架崩解具有较高的影响,表明利用冰架自身动力性质和外部环境影响因子进行冰架崩解的预测具有一定的可行性。后续需进一步耦合动力模式和机器学习算法,并构建相应的数值模式体系,来刻画更高时空分辨率的冰架崩解事件强度和范围。
Ice-shelf calving has a direct impact on Antarctic mass loss and dynamic processes, and it is particularly important to study its spatial characteristics, environmental conditions, and controlling factors. Based on the machine learning algorithms and ice sheet dynamic models, utilizing remote sensing data on Antarctic ice shelf calving from 2005 to 2020, ice shelf surface fracture data, ice shelf buttressing value, spatial distribution data of Antarctic ice shelf damage, and basal melting data, combined with machine learning binary classification, the importance of 18 characteristic elements influencing ice shelf dynamic processes was analyzed, and the accuracy of seven different machine learning algorithms was calculated. The results indicate that the random forest algorithm achieves the highest accuracy in the binary classification of ice shelf calving and that surface meltwater has a significant impact on ice shelf collapse, indicating the feasibility of using both the intrinsic dynamics of the ice shelf and external environmental factors for prediction. Subsequent efforts should further couple dynamic models with machine learning algorithms and establish corresponding numerical modeling systems to depict ice-shelf calving events with higher spatiotemporal resolutions in terms of intensity and extent.
中图分类号:
P343.6