地球科学进展 ›› 2024, Vol. 39 ›› Issue (8): 847 -861. doi: 10.11867/j.issn.1001-8166.2024.056

研究论文 上一篇    下一篇

多期溶蚀胶结作用对生物碎屑灰岩物性的影响:以伊拉克 A油田白垩系 MishrifMi4段为例
段广慧 1( ), 伏美燕 1( ), 邓亚 2, 许家铖 2, 钟治奇 1, 吴冬 1, 刘兆恒 1, 王思宜 1   
  1. 1.成都理工大学 能源学院,四川 成都 610059
    2.中国石油勘探开发研究院,北京 100083
  • 收稿日期:2023-12-26 修回日期:2024-06-17 出版日期:2024-08-10
  • 通讯作者: 伏美燕 E-mail:duangh578@163.com;fumeiyan08@cdut.cn
  • 基金资助:
    成都理工大学国家级大学生创新创业训练计划项目(s202310616040)

Effect of Multi-stage Dissolution and Cementation on Physical Properties of Cretaceous Bioclastic Limestone in the A Oilfield, Iraq

Guanghui DUAN 1( ), Meiyan FU 1( ), Ya DENG 2, Jiacheng XU 2, Zhiqi ZHONG 1, Dong WU 1, Zhaoheng LIU 1, Siyi WANG 1   

  1. 1.College of Energy, Chengdu University of Technology, Chengdu 610059, China
    2.Research Institute of Petroleum Exploration & Development, Beijing 100083, China
  • Received:2023-12-26 Revised:2024-06-17 Online:2024-08-10 Published:2024-08-26
  • Contact: Meiyan FU E-mail:duangh578@163.com;fumeiyan08@cdut.cn
  • About author:DUAN Guanghui, Master student, research area includes reservoir characteristics. E-mail: duangh578@163.com
  • Supported by:
    the National College Students’ Innovation and Entrepreneurship Training Program of Chengdu University of Technology(s202310616040)

伊拉克A油田Mishrif组Mi4段生物碎屑灰岩经历了不同期次的溶蚀和胶结作用,为了探究多期溶蚀胶结作用对生物碎屑灰岩物性的影响,以及分析同生—早成岩期溶蚀和胶结作用的主控因素。基于岩心观察、薄片鉴定和图像分析等定性—半定量分析方法,结合胶结物的岩相学特征、碳氧同位素、阴极发光以及流体包裹体均一温度等数据,划分了Mi4段生物碎屑灰岩的溶蚀和胶结期次。结果表明:Mi4段存在同生—早成岩和中成岩改造,共发育同生期组构选择性溶蚀、同生—早成岩期暴露溶蚀、同生—早成岩期胶结、中成岩期溶蚀以及同生—早成岩期叠加中成岩期胶结5种溶蚀胶结期次。同生—早成岩期溶蚀胶结相对储层物性改造明显,该阶段形成的成岩相中溶蚀相的物性最好,渗透率范围为6.96×10-3~27.73×10-3 μm2。同生—早成岩期的溶蚀作用受生物碎屑类型控制,富藻屑泥粒灰岩为主的Mi4-2层溶蚀程度最高,其次为藻屑含量稍低的Mi4-3和Mi4-4层;同生—早成岩期的胶结作用受古地貌和储层到层序界面距离的影响,在四级层序界面之下的Mi4-1层胶结程度最高。

The bioclastic limestone of the Mi4 section of the Mishrif Formation has undergone multiple phases of dissolution and cementation in oilfield A in Iraq. To investigate the impact of multiphase dissolution and cementation on the physical properties of bioclastic limestone and analyze the primary controlling factors during the dissolution and cementation of the early stages of the process. Based on qualitative and semi-quantitative analysis methods, including core observation, thin-section identification, image analysis, petrographic characteristics, carbon and oxygen isotopes, cathodoluminescence, and fluid inclusion homogenization temperature data, the dissolution and cementation periods of Mi4 bioclastic limestone were divided. These results indicate that the bioclastic limestone in the Mi4 section underwent diagenetic transformation during the eogenetic-early and mesodiagenetic stages, resulting in five phases of dissolution cementation. Eogenetic fabric selective dissolution, eogenetic-early diagenetic karstification, mesogenetic dissolution, eogenetic-early diagenetic cementation, and eogenetic-early diagenesis superimposed with mesodiagenetic cementation. The physical properties significantly evolve during eogenetic-early diagenetic due to solution-cementation processes with permeability ranging from 6.96~27.73×10-3 μm2. Dissolution was found to be controlled by bioclastic types during both the eogenetic-early stages, with algae-rich pelitic limestone exhibiting the highest degree, followed by the Mi4-3 and Mi4-4 layers with low algae-debris content. Furthermore, it was observed that the paleo-geomorphology and distance between reservoirs influenced the cementation process during the eogenetic-early stage, with the Mi4-1 layer showing the highest degree under the quaternary sequence interface.

中图分类号: 

图1 伊拉克A油田构造位置 19
Fig. 1 Structural location of A Oilfield in Iraq 19
图2 伊拉克A油田MishrifMi4段构造等值线图
Fig. 2 Structure contour map of Mi4 section of Mishrif FormationA Oilfield in Iraq
图3 伊拉克A油田Mi4段地层综合柱状图
Fig. 3 Composite column chart of Mi4 section of A Oilfield in Iraq
图4 伊拉克A油田Mi4段溶蚀胶结期次识别的岩相学特征
(a) 早期暴露标志, X-16: 2 732.48 m, Mi4-3; (b) 绿藻的溶蚀特征, X-12: 2 802.02 m, Mi4-1; (c) 生物体腔孔,底栖有孔虫组织被溶蚀形成的体腔孔, X-M5: 2 812.60 m, Mi4-1; (d) 团块状方解石胶结,岩心上可见白斑, X-4H: 2 770.17 m, Mi4-1; (e)溶孔, X-16: 2 822.11 m, Mi4-3; (f) 非组构选择性溶孔, X-4H: 2 769.57 m, Mi4-1; (g) 铸模孔内部方解石,中等亮度发光, X-4H: 2 778.96 m, Mi4-3; (h) 溶孔充填次生方解石, X-M5: 2 812.60 m, Mi4-1; (i) 棘皮次生加大, X-12: 2 853.11 m, Mi4-5; (j) 砂屑的等厚环边胶结, X-13: 2 955.98 m, Mi4-5; (k) 棘皮次生加大的胶结物, 弱阴极发光, X-1H: 2 803.20 m, Mi4-1; (l) 裂缝,X-4H: 2 769.90 m, Mi4-1; (m) 缝合线, X-4H: 2 787.72 m, Mi4-4; (n) 裂缝内部被方解石充填, X-4H: 2 776.79 m, Mi4-2; (o) 次生方解石裂缝充填, X-12: 2 800.60 m, Mi4-1
Fig. 4 Petrographic characteristics of identification of dissolution cementation stages of Mi4 section of A Oilfield in Iraq
(a) Exposure marker of early stage, X-16: 2 732.48 m, Mi4-3; (b) Corrosion characteristics of green algae, X-12: 2 802.02 m, Mi4-1; (c) Visceral foramen, visceral foramen formed by dissolution of benthic foraminifera tissue, X-M5: 2 812.60 m, Mi4-1; (d) Lumpy calcite cement, white spots on the core, X-4H: 2 770.17 m, Mi4-1; (e) Dissolved pore, X-16: 2 822.11 m, Mi4-3; (f) Non-fabric selective solution pore, X-4H: 2 769.57 m, Mi4-1; (g) Calcite filled inside the mold pores, showing medium luminosity, X-4H: 2 778.96 m, Mi4-3; (h) Dissolve holes filled with calcite, X-M5: 2 812.60 m, Mi4-1; (i) The outer edge of the acanthoderm increases axially, X-12: 2 853.11 m, Mi4-5; (j) Microcrystalline cement of sand chips, X-13: 2 955.98 m, Mi4-5; (k) The cement with secondary enlargement of acanthoderm shows weak light, X-1H: 2 803.20 m, Mi4-1; (l) Fissure, X-4H: 2 769.9 m, Mi4-1; (m) Stylolites, X-4H: 2 787.72 m, Mi4-4; (n) The fracture is filled with calcite, X-4H: 2 776.79 m, Mi4-2; (o) Secondary calcite filling fracture, X-12: 2 800.60 m, Mi4-1
表1 伊拉克 A油田 Mi4段胶结物的碳氧同位素组成
Table 1 Carbon and oxygen isotope composition of fillings in Mi4 section of A Oilfield in Iraq
图5 伊拉克A油田Mi4段充填物的碳氧同位素交汇图
Fig. 5 Crossplot of carbon and oxygen isotopes of Mi4 section of A Oilfield in Iraq
表2 微区分析的伊拉克 A油田 Mi4段胶结物的 FeMn含量统计表
Table 2 Statistical table of Fe and Mn content of Mi4 section of A Oilfield in Iraq
图6 伊拉克A油田Mi4段胶结物的阴极发光照片
(a)生屑绿藻泥粒灰岩,X-8H: 2 836.07 m, Mi4-3, 溶孔中充填粒状方解石; (b) 图(a)的正交光照片;(c)图(a)的阴极发光照片,泥晶方解石发暗淡的橙黄色光,溶蚀孔边缘方解石胶结物发桔黄色光;(d) 绿藻生屑泥粒灰岩,X-4H: 2 783.30 m, Mi4-3, 颗粒溶蚀孔内可见方解石完全充填孔隙;(e) 图(d)的正交光照片;(f) 图(d)的阴极发光照片,在溶孔内部发育2期方解石胶结,1期发暗淡光,1期发桔黄色亮光
Fig. 6 Cathodoluminescence photographs of thin sections from the Mi4 section of A Oilfield with different brightnessesIraq
(a) Biocalstic-green algae packstone, X-8H: 2 836.07 m, Mi4-3, calcite filling the dissolved pores; (b) An orthographic photograph of picture (a); (c) Cathodoluminescence photograph of picture (a), bioclastic calcite shows dim yellow, there is a stage of calcite cement grown in the emposieu it shows orange; (d) Green algae-biocalstic packstone, X-4H: 2 783.30 m, Mi4-3, the bioclast suffers from the serious dissolution and later filled with calcite cementation; (e) An orthographic photograph of picture (d); (f) The cathodoluminescence photograph of picture (d), there are two stages of cement grown around bioclast or in emposieu, one shows bright orange, the other shows dim red
图7 阴极发光微区分析的X-4H井,Mi4段胶结物取样位置( ~ )照片
Fig. 7 Photo of cementation sampling location ~ for cathode luminescence microzone analysis in the Mi4 section of X-4H
图8 伊拉克A油田X-4H井, Mi4段方解石胶结/充填物中流体包裹体显微照片
Fig. 8 Micrograph of fluid inclusion enclosed in calcite from the Mi4 section of X-4H of A Oilfield in Iraq
图9 伊拉克A油田Mi4段方解石胶结/充填物中盐水包裹体的均一温度频率分布图
Fig. 9 The histogram of homogenization temperature of salinity inclusions from calcite cement and packing of Mi4 section of A Oilfield in Iraq
图10 伊拉克A油田Mi4段不同溶蚀胶结期次的孔隙演化过程图
Fig. 10 The degree of corrosion and cementation at different stages of corrosion and cementation of Mi4 section of A Oilfield in Iraq
图11 伊拉克A油田Mi4段不同期次的溶蚀胶结
(a) 同生成岩期组构选择性溶蚀相, X-4H: 2 769.18 m, Mi4-1; (b) 同生—早成岩期暴露溶蚀相, X-16: 2 822.11 m, Mi4-3; (c) 同生—早成岩期暴露溶蚀相, X-4H: 2 777.73 m, Mi4-3; (d) 中成岩期溶蚀相, X-8H: 2 822.59 m, Mi4-1; (e) 同生—早成岩期胶结相, X-4H: 2 777.98 m, Mi4-3; (f) 同生—早成岩期叠加中成岩期胶结相, X-4H: 2 772.79 m, Mi4-2
Fig. 11 Different stages of dissolution and cementation of Mi4 section of A Oilfield in Iraq
(a) Eogenetic fabric selective dissolution facies, X-4H: 2 769.18 m, Mi4-1; (b) Eogenetic-early diagenetic karstification facies, X-16: 2 822.11 m, Mi4-3; (c) Eogenetic-early diagenetic karstification facies, X-4H: 2 777.73 m, Mi4-3; (d) Mesogenetic dissolution facies, X-8H: 2 822.59 m, Mi4-1; (e) Eogenetic-early diagenetic cementation facies, X-4H: 2 777.98 m, Mi4-3; (f) Eogenetic-early diagenetic superposed with mesodiagenetic cementation facies, X-4H: 2 772.79 m, Mi4-2
图12 伊拉克A油田Mi4段各岩相面孔率占比直方图
Fig. 12 Pore evolution process of different dissolution and cementation stages of Mi4 section of A Oilfield in Iraq
图13 伊拉克A油田Mi4段不同溶蚀胶结期次的溶蚀胶结程度
Fig. 13 The degree of corrosion and cementation different stages of corrosion and cementation of Mi4 setion of A Oilfield in Iraq
图14 3口典型井Mi4各小层同生—早成岩期和中成岩期的胶结物和溶孔含量统计图
Fig. 14 Statistical maps of cement and pore contents in eogenetic-early diagenetic and meso-diagenetic stages of Mi4 sections
图15 X-1HX-4HX-8HMi4-1层顶界下胶结程度对比图
Fig. 15 X-1HX-4HX-8H cementation degree in the later Mi4-1 layer
1 HAN Haiying, TIAN Zhongyuan, XU Zhenyong, et al. Genesis and distribution of high permeable streaks of the Cretaceous bioclastic limestone reservoir in W Oilfield, Iraq[J]. Marine Origin Petroleum Geology, 2022, 27(3): 261-270.
韩海英, 田中元, 徐振永, 等. 伊拉克W油田白垩系生物碎屑灰岩储层高渗层成因及分布规律[J]. 海相油气地质, 2022, 27(3): 261-270.
2 LIN Tengfei, WANG Xueling, ZHANG Qingchun, et al. Footprint suppression of seismic data in large bioclastic limestone ressrvoirs in Middle East[J]. Journal of Yangtze University(Natural Science Edition), 2019, 16(7): 15-19.
林腾飞, 王雪玲, 张庆春, 等. 中东地区大型生屑灰岩油藏地震数据采集脚印压制方法[J]. 长江大学学报(自然科学版), 2019, 16(7): 15-19.
3 QIAO Zhanfeng, SUN Yuanhui, CAO Peng, et al. Genesis and development law of barrier and baffles and high permeable streak in the massive bioclastic reservoir: a case study of the Upper Cretaceous Mishrif formation in H Oilfield, Iraq[J]. Marine Origin Petroleum Geology, 2022, 27(1): 71-83.
乔占峰, 孙圆辉, 曹鹏, 等. 巨厚灰岩油藏中隔夹层与高渗层成因与发育规律——以伊拉克H油田Mishrif组为例[J]. 海相油气地质, 2022, 27(1): 71-83.
4 MA Wenxin. Carbonate reservoir characteristics and formation mechanism of Cretaceous Cenomanian-Turonian in MA Oilfield Iraq[D]. Chengdu: Chengdu University of Technology, 2014.
马文辛. 伊拉克MA油田白垩系森诺曼—土仑阶碳酸盐岩储层特征及形成机理[D].成都:成都理工大学, 2014.
5 SHEN Anjiang, ZHAO Wenzhi, HU Anping, et al. Major factors controlling the development of marine carbonate reservoirs[J]. Petroleum Exploration and Development, 2015, 42(5): 545-554.
沈安江, 赵文智, 胡安平, 等. 海相碳酸盐岩储集层发育主控因素[J]. 石油勘探与开发, 2015, 42(5): 545-554.
6 LI Fengfeng, GUO Rui, SONG Shiqi. Reservoir characteristics of carbonate rock of Mishrif formation in Cretaceous, M Oilfield in the Middle East[J]. Journal of China University of Petroleum(Edition of Natural Science), 2015, 42(5): 12-24.
李峰峰, 郭睿, 宋世琦. 中东M油田白垩系Mishrif组碳酸盐岩储层特征及主控因素[J]. 中国石油大学学报(自然科学版), 2021, 45(6): 12-24.
7 HAN Haiying, MU Longxin, GUO Rui, et al. Characteristics and controlling factors of Cretaceous bioclastic limestone reservoirs in Ahdeb Oilfield, Iraq[J]. Marine Origin Petroleum Geology, 2014, 19(2): 54-63.
韩海英, 穆龙新, 郭睿, 等. 伊拉克艾哈代布油田白垩系生物碎屑灰岩储集层特征及主控因素[J]. 海相油气地质, 2014, 19(2): 54-63.
8 YU Yichang, SUN Longde, SONG Xinmin, et al. Sedimentary diagenesis of rudist shoal and its control on reservoirs: a case study of Cretaceous Mishrif formation, H Oilfield, Iraq[J]. Petroleum Exploration and Development, 2018, 45(6): 1 007-1 019.
余义常, 孙龙德, 宋新民, 等. 厚壳蛤滩沉积成岩特征及对储集层的控制作用——以伊拉克H油田白垩系Mishrif组为例[J]. 石油勘探与开发, 2018, 45(6): 1 007-1 019.
9 YU Yichang, SONG Xinmin, GUO Rui, et al. Bioclastic types and its controlling effects on reservoir physical of Mishrif formation in H Oilfield, Iraq[J]. Geological Review, 2019, 65(Suppl.1) : 263-264.
余义常, 宋新民, 郭睿, 等. 伊拉克H油田Mishrif组生物碎屑类型及对储层物性的控制作用[J]. 地质论评, 2019, 65(): 263-264.
10 LI Fengfeng, GUO Rui, LIU Lifeng, et al. Heterogeneity genesis of bioclastic limestone reservoirs of Cretaceous Mishrif formation in M Oilfield, Iraq[J]. Journal of Earth Sciences and Environment, 2020, 42(3): 297-312.
李峰峰, 郭睿, 刘立峰, 等. 伊拉克M油田白垩系Mishrif组生物碎屑灰岩储集层非均质性成因[J]. 地球科学与环境学报, 2020, 42(3): 297-312.
11 LI Fengfeng, GUO Rui, SONG Shiqi, et al. Impacts of the sedimentation and diagenesis on reservior physical property under the control of sequence: a case study of the Cretaceous Mishrif Formation, A Oilfield in the Middle East [J]. Geological Journal of China Universities, 2021, 27(4): 432-443.
李峰峰, 郭睿, 宋世琦, 等. 层序格架约束下沉积、成岩作用对岩石物性的控制:以中东A油田白垩系Mishrif组为例[J].高校地质学报, 2021, 27(4): 432-443.
12 WANG H, SHI K B, MA Y S, et al. Control of depositional and diagenetic processes on the reservoir properties of the Mishrif Formation in the AD Oilfield, Central Mesopotamian Basin, Iraq[J]. Marine and Petroleum Geology, 2021, 132. DOI:10.1016/j.marpetgeo.2021.105202 .
13 HAN Xinyi. Research progress on rock classification methods of beach facies reservoirs in the Middle East[J]. Henan Science and Technology, 2022, 41(2): 112-114.
韩心奕. 中东地区滩相储层岩石分类方法研究进展[J]. 河南科技, 2022, 41(2): 112-114.
14 TIAN Zepu, LIU Bo, GAO Jixian. Diagenesis of bioclastic carbonates of the Cretaceous Mishrif Formation in the Rumaila Oil field, Iraq[J]. Journal of Stratigraphy, 2016, 40(1): 41-50.
田泽普, 刘波, 高计县. 伊拉克鲁迈拉油田白垩系Mishrif组碳酸盐岩生物碎屑和成岩作用特点[J]. 地层学杂志, 2016, 40(1): 41-50.
15 CANTRELL D L, SHAH R A, OU J, et al. Depositional and diagenetic controls on reservoir quality: example from the Upper Cretaceous Mishrif Formation of Iraq[J]. Marine and Petroleum Geology, 2020, 118. DOI:10.1016/j.marpetgeo.2020.104415 .
16 JIN Zhimin, TAN Xiucheng, GUO Rui, et al. Pore structure characteristics and control factors of carbonate reser-voirs: the Cretaceous Mishrif formation, Halfaya Oilfield, Iraq[J]. Acta Sedimentologica Sinica, 2018, 36(5): 981-994.
金值民, 谭秀成, 郭睿, 等. 伊拉克哈法亚油田白垩系Mishrif组碳酸盐岩孔隙结构及控制因素[J]. 沉积学报, 2018, 36(5): 981-994.
17 MAO Xianyu, SONG Benbiao, TIAN Changbing. Diagenesis of bioclastic limestone in Mishrif Formation and its control on reservoir quality of X Oilfield in Middle East[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(1): 17-32.
毛先宇, 宋本彪, 田昌炳. 中东地区X油田Mishrif组生物碎屑灰岩成岩作用特征及其对储层品质的差异控制[J]. 油气地质与采收率, 2021, 28(1): 17-32.
18 YU Yichang, SONG Xinmin, GUO Rui, et al. Differential diagenesis and reservoir characteristics of bio-clastic limestone: a case study on the Cretaceous Mishrif Formation in HF Oilfield, Iraq[J]. Journal of Palaeogeography, 2018, 20(6): 1 053-1 067.
余义常, 宋新民, 郭睿, 等. 生物碎屑灰岩差异成岩及储集层特征: 以伊拉克HF油田白垩系Mishirif组为例[J]. 古地理学报, 2018, 20(6): 1 053-1 067.
19 ZHOU Wen, GUO Rui, FU Meiyan, et al. Characteristics and origin of Cretaceous limestone reservoir with bio-moldic pore and intrafossil pore, in AHDEB Oilfield, Iraq[J]. Acta Petrologica Sinica, 2014, 30(3): 813-821.
周文, 郭睿, 伏美燕, 等. 伊拉克艾哈代布油田白垩系生物铸模孔及体腔孔发育的灰岩储层特征及成因分析[J]. 岩石学报, 2014, 30(3): 813-821.
20 GUO Rui, FU Meiyan, ZHAO Limin, et al. Sediment facies of Khasib formation in Ahdeb oil field and its controlling effects on carbonate reservoir development[J]. Mineralogy and Petrology, 2014, 34(1): 95-103.
郭睿, 伏美燕, 赵丽敏, 等. 艾哈代布油田Khasib组沉积相及其对储层发育的控制[J]. 矿物岩石, 2014, 34(1): 95-103.
21 SHARLAND P R, CASEY D M, DAVIES R B, et al. Arabian plate sequence stratigraphy-revisions to SP2[J]. GeoArabia, 2004, 9(1): 199-214.
22 REULET J. Carbonate reservoir in a marine shelf sequence Mishrif Formation Cretaceous of the Middle East[M]. New York: John Wiley and Sons, 1982.
23 AQRAWI A A M, THEHNI G A, SHERWANI G H, et al. Mid-cretaceous rudist-bearing carbonates of the Mishrif Formation: an important reservoir sequence in the Mesopotamian Basin, Iraq[J]. Journal of Petroleum Geology, 1998, 21(1): 57-82.
24 LI Fengfeng, GUO Rui, LIU Lifeng, et al. Sequence architecture and reservoir distribution of the Cretaceous Mishrif Formation in M Oilfield, Iraq[J]. Acta Sedimentologica Sinica, 2020, 38(4): 838-850.
李峰峰, 郭睿, 刘立峰, 等. 伊拉克M油田白垩系Mishrif组层序构型及储层展布[J]. 沉积学报, 2020, 38(4): 838-850.
25 HAN Haiying, GUO Rui, WANG Jun, et al. Sequence stratigraphic framework and sedimentary evolution of the Gretaceous in southern Iraq[J]. Earth Science Frontiers, 2023,30(2): 122-138.
韩海英, 郭睿, 王君, 等, 伊拉克南部白垩系层序格架与沉积特征[J]. 地学前缘, 2023, 30(2): 122-138.
26 LI Fengfeng, YE Yu, GUO Rui, et al. Microfacies and sedimentary model of the Cretaceous Cenomanian-lower Turonian in southeastern Iraq[J]. Marine Origin Petroleum Geology, 2022, 27(1): 33-44.
李峰峰, 叶禹, 郭睿, 等. 伊拉克东南部白垩系塞诺曼阶—土伦阶下部沉积微相与沉积模式[J]. 海相油气地质, 2022, 27(1): 33-44.
27 HUANG Sijing, TONG Hongpeng, HUANG Keke, et al. Application of cathodoluminescence analyse to the recovery of feldspar content in sandstone—a case study of upper paleozoic of ordos basin and Xujiahe Formation of western in Sichuan Depression, Sichuan Basin[J]. Advances in Earth Science, 2007.22(5): 495-503.
黄思静, 佟宏鹏, 黄可可, 等, 四川盆地东北部三叠系飞仙关组碳酸盐岩成岩作用和白云岩成因的研究现状和存在问题[J]. 地球科学进展, 2007, 22(5): 495-503.
28 DING Na. Reliability analysis of Mg/Ca ratio of paleo-seawater indicated by Lower and Middle Ordovician Echinoderm bone geochemical characteristics [D]. Beijing: Peking University, 2013.
丁娜. 下—中奥陶统棘皮动物骨骼地球化学特征指示古海水Mg/Ca比的可靠性分析[D]. 北京:北京大学, 2013.
29 VEIZER J, ALA D, AZMY K, et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161(1/2/3): 59-88.
30 VERMA M K, AHLBRANDT T S, AL-GAILANI M. Petroleum reserves and undiscovered resources in the total petroleum systems of Iraq: reserve growth and production implications[J]. GeoArabia, 2004, 9(3): 51-74.
31 KAUFMAN A J, KNOLL A H. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995, 73: 27-49.
32 CHARREAU J, KENT-CORSON M L, BARRIER L, et al. A high-resolution stable isotopic record from the Junggar Basin (NW China): implications for the paleotopographic evolution of the Tianshan Mountains[J]. Earth and Planetary Science Letters, 2012, 341/342/343/344: 158-169.
33 VEIZER Jan. Chemical diagenesis of carbonates:theory and application of trace element technique[M]. Tulsa, Oklahoma: SEPM Society for Sedimentary Geology, 1983.
34 ZHANG Xiulian. Relationship between carbon and oxygen stable isotope in carbonate rocks and paleosalinty and paleotemperature of seawater[J]. Acta Sedimentologica Sinica, 1985, 3(4) : 17-30.
张秀莲. 碳酸盐岩中氧、碳稳定同位素与古盐度、古水温的关系[J]. 沉积学报,1985, 3(4) :17-30.
35 WANG Huanling. Carbon and oxygen isotopic characteristics and paleoenvironmental significance of Majiagou Formation carbonate rocks, Ordos Basin[D]. Beijing: China University of Geosciences, 2021.
王换玲. 鄂尔多斯盆地马家沟组碳酸盐岩碳氧同位素特征及古环境意义[D]. 北京:中国地质大学, 2021.
36 HUANG Sijing. Relationship between cathodoluminescence of carbonate minerals and their Fe and Mn content[J]. Mineralogy and Petrology, 1992,12(4): 74-79.
黄思静. 碳酸盐矿物的阴极发光性与其Fe, Mn含量的关系[J]. 矿物岩石, 1992, 12(4) : 74-79.
37 FRANK J R, CARPENTER A B, OGLESBY T W. Cathodoluminescence and composition of calcite cement in the Taum Sauk Limestone (Upper Cambrian), Southeast Missouri[J]. Journal of Sedimentary Research, 1982, 52(2): 631-638.
38 NEDKVITNE T, KARLSEN D A, BJØRLYKKE K, et al. Relationship between reservoir diagenetic evolution and petroleum emplacement in the Ula Field, North Sea[J]. Marine and Petroleum Geology, 1993, 10(3): 255-270.
39 State Economic and Trade Commission of the People’s Republic of China. The division of diagenetic stages in carbonate rocks: [S]. Beijing: Petroleum Industry Press, 2003.
国家经济贸易委员会. 碳酸盐岩成岩阶段划分: [S]. 北京: 石油工业出版社, 2003.
40 FU Meiyan, LIU Fei, DENG Hucheng, et al. Hydrocarbon charging period of Cretaceous reservoirs in AHDEB Oilfield: evidence from fluid inclusion[J]. Earth Science—Journal of China University of Geosciences, 2015, 40(7): 1 187-1 196.
伏美燕, 刘榧, 邓虎成, 等. AHDEB油田白垩系油藏油气充注期次的流体包裹体证据[J]. 地球科学(中国地质大学学报), 2015, 40(7): 1 187-1 196.
41 DENG H C, FU M Y, HUANG T T, et al. Ahdeb oil field, Mesopotamian Basin, Iraq: reservoir architecture and oil charge history[J]. AAPG Bulletin, 2018, 102(12): 2 447-2 480.
42 ZHOU Mo. Diagenetic response caused by hydrocarbon charging of Chang-8 member in Yanchang Formation,Ordos Basin[D]. Beijing: China University of Petroleum, 2016.
周末. 鄂南延长组油气充注的碎屑岩成岩响应[D]. 北京:中国石油大学, 2016.
43 MARCHAND A M E, SMALLEY P C, HASZELDINE R S, et al. Note on the importance of hydrocarbon fill for reservoir quality prediction in sandstones[J]. AAPG Bulletin, 2002, 86(9): 1 561-1 571.
44 DUAN Guanghui, FU Meiyan, WU Dong, et al. A semi-quantitative evaluation method for diagenesis of bioclastic limestone reservoirs: CN115657149A [P]. 2023-01-31.
段广慧, 伏美燕, 吴冬, 等. 一种生物碎屑灰岩储层成岩作用半定量评价方法:CN115657149A[P]. 2023-01-31.
45 YU Yichang, SHEN Boheng, LI Zhiwei, et al. Controlling effects of paleogeomorpholoay on sedimentary and diagenetic characteristics of bioclastic limestone[J]. Geological Review, 2023, 69(): 5-8.
余义常, 沈博珩, 李知为, 等. 古地貌对生物碎屑灰岩沉积成岩的控制作用[J]. 地质论评, 2023, 69(): 5-8.
46 ZHANG Lianjin, LIN Pan, LAN Xuemei, et al. Characteristics of high-frequency sequence and its controlling effect on reservoir in the Chihsia formation of Shuangyushi structure, Sichuan Basin[J]. Journal of Stratigraphy, 2022, 46(4): 370-383.
张连进, 林攀, 兰雪梅, 等. 四川盆地双鱼石构造带栖霞组高频层序特征及控储作用[J]. 地层学杂志, 2022, 46(4): 370-383.
47 LI Shushun. General about development and study of sequence stratigraphy[J]. Advances in Earth Science, 1992, 7(2): 24-30.
李书舜. 层序地层学的发展与应用[J]. 地球科学进展, 1992, 7(2): 24-30.
[1] 琚宜文, 卜红玲, 王国昌. 页岩气储层主要特征及其对储层改造的影响[J]. 地球科学进展, 2014, 29(4): 492-506.
[2] 曲长伟,张 霞,林春明,陈顺勇,李艳丽,潘峰,姚玉来. 杭州湾地区晚第四纪浅层生物气藏盖层物性封闭特征[J]. 地球科学进展, 2013, 28(2): 209-220.
[3] 赖锦,王贵文,王书南,郑懿琼,吴恒,张永辰. 碎屑岩储层成岩相研究现状及进展[J]. 地球科学进展, 2013, 28(1): 39-50.
[4] 林春明, 张霞, 周健, 徐深谋, 俞昊, 陈召佑. 鄂尔多斯盆地大牛地气田下石盒子组储层成岩作用特征[J]. 地球科学进展, 2011, 26(2): 212-223.
[5] 王新民,郭彦如,马龙,张虎权. 银—额盆地侏罗、白垩系油气超系统特征及其勘探方向[J]. 地球科学进展, 2001, 16(4): 490-495.
[6] 张立敏. 物性勘探[J]. 地球科学进展, 1992, 7(6): 75-.
阅读次数
全文


摘要