地球科学进展 ›› 2024, Vol. 39 ›› Issue (8): 862 -876. doi: 10.11867/j.issn.1001-8166.2024.059

层序地层学 上一篇    

砂体成因驱动下的岩性圈闭形成模式:以珠江口盆地惠州凹陷中新世强制海退砂为例
丁琳 1( ), 黄书勤 2, 卓海腾 2, 李智高 1, 李潇 1, 刘溢世 2, 杨佳颖 1   
  1. 1.中海石油(中国)有限公司深圳分公司, 广东 深圳 518054
    2.中山大学 海洋科学学院, 广东 珠海 519082
  • 收稿日期:2024-04-03 修回日期:2024-06-27 出版日期:2024-08-10
  • 基金资助:
    中国海洋石油集团有限公司“十四五”重大科技项目(KJGG2022-0303)

Models of Stratigraphic Trap Formation Drived by Sandstone Genesis: A Case Study of the Miocene Forced Regressive Sandstone in Huizhou Sag, Pearl River Mouth Basin

Lin DING 1( ), Shuqin HUANG 2, Haiteng ZHUO 2, Zhigao LI 1, Xiao LI 1, Yishi LIU 2, Jiaying YANG 1   

  1. 1.Shenzhen Branch of CNOOC (China) Co. , Ltd. , Shenzhen Guangdong 518054, China
    2.School of Marine Sciences, Sun Yat-sen University, Zhuhai Guangdong 519082, China
  • Received:2024-04-03 Revised:2024-06-27 Online:2024-08-10 Published:2024-09-10
  • About author:DING Lin, Senior engineer, research areas include sequence stratigraphy and oil & gas exploration. E-mail: dinglin@cnooc.com.cn
  • Supported by:
    the China National Offshore Oil Corporation “14th Five-Year Plan” Major Science and Technology Project(KJGG2022-0303)

近些年来强制海退砂体作为三角洲—滨岸环境中重要的岩性圈闭储层而备受关注。选取南海北部珠江口盆地惠州地区,基于井震资料和层序地层学标准化原理在下韩江组至珠江组四段上部(T35~T50)地层内建立了高精度地层层序格架,划分出11期强制海退沉积并建立了惠州地区强制海退沉积的识别标志: 高位体系域与强制海退体系域之间存在泥质分隔带; 强制海退砂体在沉积倾向上存在不规则的厚度变化; 强制海退沉积内部存在高角度前积,并且具有顶超型特征; 存在底突变砂体,同时强制海退沉积的沉积相分析结果显示其属于浪控三角洲中的海滩脊沉积相。由于强制海退沉积具有较好的储层物性,同时容易与高位体系域、低位体系域和海侵体系域之间形成富泥带,有利于岩性圈闭的发育。结合11期强制海退沉积在平面上由北东向南西方向发散的马尾状特征以及已有油气发现的强制海退体系域砂体2(FSST2)和强制海退体系域砂体3(FSST3)沿走向上的厚度变化,认为在多期强制海退沉积的形成过程中存在着北东向南西方向流动的古沿岸流作用。此外强制海退体系域砂体2(FSST2)和强制海退体系域砂体3(FSST3)岩心上的沉积构造分析结果显示,北东区域相对于南西区域存在着较强的潮汐水动力的影响,这可能是因为2期强制海退体系域与古东沙隆起较为接近形成了中间较为狭窄的地形,进而在潮汐作用下形成了往复潮流,相对狭窄的北东区域受到往复潮流的影响较大,而相对开阔的南西区域仍以波浪作用为主,受到往复潮流的影响较小。在强制海退砂体内部主要形成楔状体内部突变尖灭型岩性圈闭和向海方向上倾的渐变尖灭型岩性圈闭2种模式,有利的储层物性以及富泥带的存在导致的砂体尖灭性使其成为了理想的岩性圈闭勘探目标。

In this study, we focused on the Huizhou region within the Pearl River Mouth Basin. Through meticulous analysis of well seismic data and adherence to sequence stratigraphy standardization principles, a refined stratigraphic sequence framework was established within the T35-T50 interval. This framework facilitated the recognition of 11 distinct phases that forced the regressive deposits, thereby enabling the identification of key characteristics specific to the Huizhou area. These characteristics include the presence of a muddy separation zone between the HST and the falling-stage systems tract, irregular thickness variations in forced regressive sandstone, occurrence of high-angle forests within forced regressive deposits, and presence of sharp-based sandstone. Furthermore, the sedimentary facies analysis of forced regressive deposits revealed that they belong to beach ridge sedimentary facies, indicative of wave-controlled delta environments. Owing to the favorable reservoir properties of forced regressive deposits, mud-rich zones generally exist between the HST, low stand systems tract, and transgressive system tract, which are beneficial for the development of stratigraphic traps. Moreover, this study observed distinctive characteristics in the forced regressive deposits, including a horsetail pattern of sedimentation diverging from northeast to southwest, suggesting the presence of a paleo-longshore current flowing in the same direction. This current is in accordance with the Guangdong coastal current, underscoring the regional hydrodynamic influences shaping the sedimentation patterns. Noteworthy findings from the sedimentary structure analyses of the FSST2 and FSST3 cores highlight varying tidal hydrodynamic influences across the study area. The northeastern region, in proximity to the paleo-Dongsha uplift, exhibited stronger tidal effects than the southwestern region, which remained predominantly influenced by wave action. This study identified two primary types of stratigraphic traps within forced regressive sandstone: abrupt and gradual peak-out traps formed in wedge-shaped sand bodies. Because of the presence of a mud-rich zone, these traps, which are characterized by favorable reservoir properties and peak-out features, present promising prospects as exploration targets for stratigraphic trap reservoirs.

中图分类号: 

图1 南海北部珠江口盆地惠州凹陷位置
(a)珠江口盆地构造区划图及现今南海北部水动力条件;(b)惠州凹陷位置
Fig. 1 Location of Huizhou sag in Pearl River Mouth Basinnorthern South China Sea
(a) Tectonic elements of Pearl River Mouth Basin and hydrodynamic condition of northern South China Sea shelf today; (b) Location of Huizhou Sag
图2 珠江口盆地惠州凹陷地层柱状图、目的层层序划分方案及滨线轨迹特征
Fig. 2 Stratigraphic summary of the Huizhou sag of Pearl River Mouth Basinsequence framework of interval of interest and shoreline trajectory
图3 惠州地区区域层序地层格架及条带砂体[位置见图1b)]
Fig. 3 Stratigraphic correlation based on log data in depositional-dip-oriented in Huizhou arealocation in Fig. 1b)]
图4 惠州地区沉积倾向连井对比剖面[位置见图1b)]
Fig. 4 Stratigraphic correlation based on log data in depositional-dip-oriented in Huizhou arealocation in Fig. 1b)]
图5 惠州地区强制海退沉积的识别标志
(a)高位体系域与强制海退体系域(FSST)之间存在泥质分隔带;(b)强制海退砂岩的厚度在沉积倾向上表现出不规则的变化;(c)强制海退楔状体存在顶超型特征;(d)强制海退砂岩底部可见波浪侵蚀面
Fig. 5 Recognition characteristics of forced regressive deposits in Huizhou area
(a) A muddy separation zone exists between the highstand systems tract and the Falling-Stage Systems Tract (FSST); (b) The thickness of forced regressive sandstone shows irregular variation in sedimentary tendency; (c) Toplap on top of forced regressive wedges; (d) Wave erosion surface can be observed below forced regressive sandstone
图6 惠州地区11期强制海退沉积的分频RGB融合属性图
Fig. 6 Color-blendingRGBof spectral decomposition attribute map of eleven stages forced regressive deposits recognized in Huizhou area
图7 惠州地区强制海退体系域砂体2FSST2)和强制海退体系域砂体3FSST3)的地震地貌、测井和岩心特征
(a)FSST2在平面上呈现出由北东向南西向发散的特点,测井上则呈现出典型的反旋回韵律,岩心上则可见波浪侵蚀面、冲洗交错层理和丘状/洼状交错层理等浪成沉积构造,同时还可以观察到脉状层理、韵律层理和双黏土层等潮汐影响的沉积构造;(b)FSST3与FSST2一样,在平面上同样沿北东向南西方向发散,但其具备更大的宽度,测井与岩心方面特征则与FSST2基本类似
Fig. 7 Seismic geomorphologylogging and core characteristics of FSST2Falling-Stage Systems Tract 2and FSST3Falling-Stage Systems Tract 3in Huizhou area
(a) FSST2 diverged from NE to SW on the plane, presented typical coarsening-upward successions on logging, and wave-induced sedimentary structures such as wave erosion surface, low-angel lamination and hummocky and swaley cross-stratification can be observed on the core. Meanwhile, the tide-influenced sedimentary structures such as flaser bedding, rhythmic lamination and mud drapes can also be observed. (b) Like FSST2, FSST3 diverged in the same direction from NE to SW on the plane, but it has a larger width, and its logging and core characteristics are basically similar to FSST2
图8 惠州地区强制海退体系域砂体2FSST2)和强制海退体系域砂体3FSST3)在走向上的砂岩厚度变化(位置见图7
Fig. 8 Variation of sandstone thickness of FSST2Falling-Stage Systems Tract 2and FSST3Falling-Stage Systems Tract 3in strike in the Huizhou arealocation in Fig. 7
图9 强制海退沉积内部的高频海平面变化(据参考文献[ 14 ]修改)
Fig. 9 High-frequency sea level changes in forced regressive depositsmodified after reference 14 ])
1 SHI Hesheng, HE Min, ZHANG Lili, et al. Hydrocarbon geology, accumulation pattern and the next exploration strategy in the eastern Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2014, 26(3): 11-22.
施和生, 何敏, 张丽丽, 等. 珠江口盆地(东部)油气地质特征、成藏规律及下一步勘探策略[J]. 中国海上油气, 2014, 26(3): 11-22.
2 DU Jiayuan, SHI Hesheng, DING Lin, et al. Division of hydrocarbon accumulation stages in Huizhou depression and their exploration significance [J]. China Offshore Oil and Gas, 2009,21(4): 221-226.
杜家元,施和生,丁琳,等. 惠州凹陷油气成藏期次划分及其勘探意义[J]. 中国海上油气,2009,21(4): 221-226.
3 HAQ B U, HARDENBOL J, VAIL P R. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235(4 793): 1 156-1 167.
4 QIN Guoquan. Application of micropaleontology to the sequence stratigraphic studies of late cenozoic in the Zhujiang River Mouth Basin[J]. Marine Geology & Quaternary Geology, 1996(4):1-18.
秦国权.微体古生物在珠江口盆地新生代晚期层序地层学研究中的应用[J].海洋地质与第四纪地质,1996(4):1-18
5 QIN Guoquan. Late cenozoic sequence stratigraphy and sea-level changes in Pearl River Mouth Basin, South China Sea[J]. China Offshore Oil and Gas (Geology), 2002,16(1):2-11, 19.
秦国权.珠江口盆地新生代晚期层序地层划分和海平面变化[J].中国海上油气(地质), 2002,16(1):2-11,19.
6 POSAMENTIER H W, VAIL P R. Eustatic controls on clastic deposition ii—sequence and systems tract models[M]// Sea-level changes. SEPM (Society for Sedimentary Geology), 1988: 125-154.
7 HUNT D, TUCKER M E. Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level’fall[J]. Sedimentary Geology, 1992, 81(1/2): 1-9.
8 POSAMENTIER H W, ALLEN G P, JAMES D P, et al. Forced regressions in a sequence stratigraphic framework: concepts, examples, and exploration significance[J]. AAPG Bulletin, 1992, 76(11): 1 687-1 709.
9 CATUNEANU O, ABREU V, BHATTACHARYA J P, et al. Towards the standardization of sequence stratigraphy[J]. Earth-Science Reviews, 2009, 92(1/2): 1-33.
10 CATUNEANU O. Principles of sequence stratigraphy[M]. 2nd. San Diego: Elsevier, 2022.
11 STIRLING E J, FUGELLI E M G, THOMPSON M. The edges of the wedges: a systematic approach to trap definition and risking for stratigraphic, combination and sub-unconformity traps[J]. Geological Society, London, Petroleum Geology Conference Series, 2018, 8(1): 273-286.
12 AINSWORTH R B, MCARTHUR J B, LANG S C, et al. Quantitative sequence stratigraphy[J]. AAPG Bulletin, 2018, 102(10): 1 913-1 939.
13 BERTON F, VESELY F F, GUEDES C F C, et al. Subsurface geomorphology of wave-dominated nearshore deposits: contrasting styles of reservoir heterogeneity in response to shoreline trajectory[J]. Marine and Petroleum Geology, 2021, 124. DOI:10.1016/j.marpetgeo.2020.104821 .
14 HUNT D, TUCKER M E. Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level fall—reply[J]. Sedimentary Geology, 1995, 95(1/2): 147-160.
15 PLINT A G, NUMMEDAL D. The falling stage systems tract: recognition and importance in sequence stratigraphic analysis[J]. Geological Society, London, Special Publications, 2000, 172(1): 1-17.
16 HUNT D, GAWTHORPE R L. Sedimentary responses to forced regressions[M]. London,UK: Geological Society, 2000.
17 POSAMENTIER H W, MORRIS W R. Aspects of the stratal architecture of forced regressive deposits[J]. Geological Society, London, Special Publications, 2000, 172(1): 19-46.
18 DING Lin, DU Jiayuan, LUO Ming, et al. Analysis of depositional genesis of K22 shelf sand ridges in the Neogene Zhujiang Formation in Huizhou Sag, Pearl River Mouth Basin[J]. Journal of Palaeogeography, 2016, 18(5): 785-798.
丁琳, 杜家元, 罗明, 等. 珠江口盆地惠州凹陷新近系珠江组K22陆架砂脊沉积成因分析[J]. 古地理学报, 2016, 18(5): 785-798.
19 ZHANG X T, DING L, DU J Y, et al. Sedimentary characteristics and controlling factors of shelf sand ridges in the Pearl River Mouth Basin, northeast of South China Sea[J]. Journal of Natural Gas Geoscience, 2017, 2(2): 141-155.
20 WANG Yongfeng, WANG Yingmin, LI Dong, et al. The characteristics of the reservoir in Pearl River Mouth Basin[J]. Oil Geophysical Prospecting, 2011, 46(6): 952-960.
王永凤,王英民,李冬,等. 珠江口盆地储层特征[J]. 石油地球物理勘探,2011,46(6): 952-960.
21 DING Lin, ZHANG Changmin, DU Jiayuan, et al. Depositional evolution and genesis of K set of shelf sand ridges in the Zhujiang Formation of Huizhou Sag, Pear River Mouth Basin[J]. Oil & Gas Geology, 2014, 35(3): 379-385.
丁琳, 张昌民, 杜家元, 等. 珠江口盆地惠州凹陷珠江组K系列陆架砂脊沉积演化与成因[J]. 石油与天然气地质, 2014, 35(3): 379-385.
22 CHANG Jianbo. Forced-regressive sand bodies and the related lithologic reservoirs of Zhujiang Formation in Huizhou Sag, Pearl River Mouth Basin[J]. Marine Origin Petroleum Geology, 2020, 25(2): 121-131.
昌建波. 珠江口盆地珠江组强制海退砂体与岩性油气藏——以惠州凹陷南部为例[J]. 海相油气地质,2020,25(2): 121-131.
23 GONG Zaisheng, LI Sitian. Analysis of continental margin basin and hydrocarbon accumulation in northern South China Sea [M]. Beijing:Science Press, 1997.
龚再升,李思田.南海北部大陆边缘盆地分析与油气聚集[M].北京:科学出版社,1997.
24 TIAN Wei. Study on the growth connection of boundary faults and related folds in Zhuyi Depression of Pearl River Mouth Basin[D].Wuhan: China University of Geosciences, 2015.
田巍. 珠江口盆地珠一坳陷边界断裂生长联接及其相关褶皱研究[D]. 武汉: 中国地质大学, 2015.
25 HU Yang, LIU Huimin, HAO Xuefeng. Characteristics and controlling factors of glutenite reservoir in steep slope zone of faulted Lacustrine basin: a case study of Paleogene in Dongying depression[J]. Geological Reivew, 2019, 65(): 151-152.
胡阳,刘惠民,郝雪峰. 断陷湖盆陡坡带砂砾岩油藏特征及控制因素——以东营凹陷古近系为例[J]. 地质论评,2019, 65():151-152.
26 DAI Yiding, YU Qiuhua, LI Hongbo, al et, Threshold conditions and reservoir-controlling characteristics of source kitchen in Zhu I depression, Pearl River Mouth Basin [J]. Acta Petrolei Sinica, 2015,36():145-155.
代一丁,余秋华,李洪博,等.珠江口盆地珠一坳陷烃源灶控藏临界条件与控藏特征[J].石油学报,2015,36():145-155.
27 GONG Xiaofeng, HE Jiaxiong, MO Tao, et al. The petroleum system and hydrocarbon migration and accumulation mode of Huilu Oil Region in Zhu 1 depression of Pearl River Mouth Basin[J]. Natural Gas Geoscience, 2015, 26(12): 2 292-2 303.
龚晓峰, 何家雄, 莫涛, 等. 珠江口盆地珠一坳陷惠陆油区含油气系统与油气运聚成藏模式[J]. 天然气地球科学, 2015, 26(12): 2 292-2 303.
28 DUAN Wei, TIAN Jinqiang, LI Sanzhong, et al. Crude oil in the uplifts of the Huizhou depression, Pearl River Mouth Basin, South China Sea: source and formation mechanisms[J]. Earth Science Frontiers, 2022, 29(5): 176-187.
段威, 田金强, 李三忠, 等. 南海珠江口盆地惠州凹陷东南缘远源凸起带油气成因及来源[J]. 地学前缘, 2022, 29(5): 176-187.
29 PANG Xiong, CHEN Changmin, SHAO Lei, et al. Baiyun movement, a great tectonic event on the oligocene-miocene boundary in the northern South China Sea and its implications[J]. Geological Review, 2007, 53(2): 145-151.
庞雄, 陈长民, 邵磊, 等. 白云运动: 南海北部渐新统—中新统重大地质事件及其意义[J]. 地质论评, 2007, 53(2): 145-151.
30 LI Pinglu. Cenozoic tectonic movement in the Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 1993(6):11-17.
李平鲁.珠江口盆地新生代构造运动[J].中国海上油气,1993(6):11-17.
31 SUN Z, ZHONG Z H, KEEP M, et al. 3D analogue modeling of the South China Sea: a discussion on breakup pattern[J]. Journal of Asian Earth Sciences, 2009, 34(4): 544-556.
32 LI Xiaoping, SHI Hesheng, DU Jiayuan, et al. Capability of Dongsha Massif as Provenance during Zhuhai-Zhujiang Formations[J]. Acta Sedimentologica Sinica, 2014,32(4): 654-662.
李小平,施和生,杜家元,等.珠海组—珠江组时期东沙隆起物源提供能力探讨[J].沉积学报, 2014, 32(4): 654-662.
33 HE M, ZHUO H T, CHEN W T, et al. Sequence stratigraphy and depositional architecture of the Pearl River Delta system, northern South China Sea: an interactive response to sea level, tectonics and paleoceanography[J]. Marine and Petroleum Geology, 2017, 84: 76-101.
34 LIU Z F, COLIN C, LI X J, et al. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: source and transport[J]. Marine Geology, 2010, 277(1/2/3/4): 48-60.
35 CENTURIONI L R, NIILER P P, LEE D K. Observations of inflow of philippine sea surface water into the South China Sea through the Luzon Strait[J]. Journal of Physical Oceanography, 2004, 34(1): 113-121.
36 HU J Y, KAWAMURA H, HONG H S, et al. A review on the currents in the South China Sea: seasonal circulation, South China Sea warm current and Kuroshio intrusion[J]. Journal of Oceanography, 2000, 56(6): 607-624.
37 HAN Shuzong, DONG Yangyang, ZHANG Shuiping, et al. Study of the temporal and spatial variations of wave in South China Sea[J]. Transactions of Oceanology and Limnology, 2020(2): 1-9.
韩树宗, 董杨杨, 张水平, 等. 南海波浪时空变化特征研究[J]. 海洋湖沼通报, 2020(2): 1-9.
38 LI Yongqing, LI Bin, SHI Hongyuan, et al. Analysis of wave characteristics in the northeastern part of the South China Sea[J]. Transactions of Oceanology and Limnology, 2019(2): 18-23.
李永青, 李彬, 石洪源, 等. 南海北部波浪特征分析[J]. 海洋湖沼通报, 2019(2): 18-23.
39 WANG Wenjie. Propagation of tidal waves and development of sea-bottom sand ridges and sand ripples in northern South China Sea[J]. Journal of Tropical Oceanography, 2000, 19(1): 1-7.
王文介. 南海北部的潮波传播与海底沙脊和沙波发育[J]. 热带海洋, 2000, 19(1): 1-7.
40 LI Yonghang, MU Zelin, NI Yugen, et al. Geophysical characteristics and migration mechanism of active submarine sand waves off the coast of Dongfang, Hainan[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 27-35.
李勇航, 牟泽霖, 倪玉根, 等. 海南东方近岸海底活动沙波的地球物理特征及其迁移机制[J]. 海洋地质与第四纪地质, 2021, 41(4): 27-35.
41 TONG Changliang, WANG Huaqiang, QIN Maogang, et al. Surface sediment characteristics and sedimentary environment division of tidal sand ridge at the east entrance of Qiongzhou Strait[J]. Journal of Applied Oceanography, 2022, 41 (4): 625-636.
仝长亮, 王华强, 覃茂刚, 等. 琼州海峡东口潮流沙脊表层沉积物特征及沉积环境划分[J]. 应用海洋学学报, 2022, 41 (4): 625-636.
42 HU Yi, JIA Ruzhen, XU Jiang, et al. Research advance and prospect of tidal sands in Taiwan Strait[J]. Journal of Applied Oceanography, 2022,41(3): 500-515.
胡毅,贾如真,许江,等.台湾海峡的潮流沉积沙体研究与展望[J].应用海洋学学报,2022,41(3):500-515.
43 HELLAND-HANSEN W, HAMPSON G J. Trajectory analysis: concepts and applications[J]. Basin Research, 2009, 21(5): 454-483.
44 LI Z Y, SCHIEBER J. Correlative conformity or subtle unconformity? The distal expression of a sequence boundary in the Upper Cretaceous Mancos Shale, Henry Mountains region, Utah, U.S.A[J]. Journal of Sedimentary Research, 2022, 92(7): 635-657.
45 JACKSON C A L, GRUNHAGEN H, HOWELL J A, et al. 3D seismic imaging of lower delta-plain beach ridges: lower Brent Group, northern North Sea[J]. Journal of the Geological Society, 2010, 167(6): 1 225-1 236.
46 PREOTEASA L, VESPREMEANU-STROE A, TĂTUI F, et al. The evolution of an asymmetric deltaic lobe (Sf. Gheorghe, Danube) in association with cyclic development of the river-mouth bar: long-term pattern and present adaptations to human-induced sediment depletion[J]. Geomorphology, 2016, 253: 59-73.
47 AINSWORTH R B, VAKARELOV B K, EIDE C H, et al. Linking the high-resolution architecture of modern and ancient wave-dominated deltas: processes, products, and forcing factors[J]. Journal of Sedimentary Research, 2019, 89(2): 168-185.
48 HAMPSON G J, REYNOLDS A D, KOSTIC B, et al. Introduction to the sedimentology of paralic reservoirs: recent advances[J]. Geological Society, London, Special Publications, 2017, 444(1): 1-6.
49 OTVOS E G. Beach ridges—definitions and significance[J]. Geomorphology, 2000, 32(1/2): 83-108.
50 OTVOS E G. Beach ridges[M]// FINKL C W, MAKOWSKI C. Encyclopedia of coastal science. Cham: Springer, 2019: 290-296.
51 BHATTACHARYA J P, GIOSAN L. Wave-influenced deltas: geomorphological implications for facies reconstruction[J]. Sedimentology, 2003, 50(1): 187-210.
52 GALLOWAY W E. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems[M]// BROUSSARD M L. Deltas: models for exploration. Houston: Houston Geological Society, 1975: 87-98.
53 DASHTGARD S E, GINGRAS M K, MACEACHERN J A. Tidally modulated shorefaces[J]. Journal of Sedimentary Research, 2009, 79(11): 793-807.
54 AINSWORTH R B, VAKARELOV B K, NANSON R A. Dynamic spatial and temporal prediction of changes in depositional processes on clastic shorelines: toward improved subsurface uncertainty reduction and management[J]. AAPG Bulletin, 2011, 95(2): 267-297.
55 ROSSI V M, PERILLO M M, STEEL R J, et al. Quantifying mixed-process variability in shallow-marine depositional systems: what are sedimentary structures really telling us?[J]. Journal of Sedimentary Research, 2017, 87(10): 1 060-1 074.
56 GÓMEZ G, de ALMEIDA H, CATUNEANU O. High-resolution sequence stratigraphy of complex gas reservoirs: patao and Dragon fields, offshore Venezuela[J]. Marine and Petroleum Geology, 2023,149. DOI: 10.1016/j.marpetgeo. 2022.106088 .
57 HUANG Shuqin, ZHUO Haiteng, FENG Jin, et al. Three-dimensional sedimentary characteristics and evolution of ancient beach ridges in the Early to Middle Miocene of the northern South China Sea shelf[J/OL]. Acta Sedimentologica Sinica. [2024-08-12]..
黄书勤,卓海腾,冯进,等.南海北部陆架区下—中中新统古海滩脊三维沉积结构及演化规律[J/OL].沉积学报.[2024-08-12]..
[1] 冯斌,赵峰华,王淑华. 地震分频解释技术在河道砂预测中的应用[J]. 地球科学进展, 2012, 27(5): 510-514.
阅读次数
全文


摘要