[1] |
Schwartz C S, Kain J S, Weiss S J, et al.Next-dayconvection-allowing WRF model guidance: A second look at 2-km versus 4-km grid spacing[J].Monthly Weather Review, 2009, 137: 3 351-3 372, doi: 10.1175/2009MWR2924.1.
|
[2] |
Weusthoff T, Ament F, Arpagaus M, et al.Assessing the benefits of convection-permitting models by neighborhood verification: Examples from MAP D-PHASE[J]. Monthly Weather Review, 2010, 138: 3 418-3 433, doi:10.1175/2010MWR3380.1.
|
[3] |
Satoh M, Matsuno T, Tomita H, et al.Nonhydrostatic Icosahedral Atmospheric Model (NICAM) for global cloud resolving simulations[J].Journal of Computational Physics, 2008, 227(7): 3 486-3 514.
|
[4] |
Miyamoto Y, Kajikawa Y, Yoshida R, et al.Deep moist atmospheric convection in a subkilometer global simulation[J].Geophysical Research Letters, 2013, 40(18): 4 922-4 926.
|
[5] |
Grabowski W W, Smolarkiewicz P K.A cloud resolving convection parameterization for modeling the tropical convecting atmosphere[J].Physica D, 1999, 133(1): 171-178.
|
[6] |
Randall D, Khairoutdinov M, Arakawa A, et al.Breaking the cloud parameterization deadlock[J].Bulletin of the American Meteorological Society, 2003, 84: 1 547-1 564, doi:10.1175/BAMS-84-11-1547.
|
[7] |
Pritchard M S, Moncrieff M W, Somerville R C.Orogenic propagating precipitation systems over the United States in a global climate model with embedded explicit convection[J].Journal of the Atmospheric Sciences, 2011, 68(8): 1 821-1 840.
|
[8] |
Kooperman G J, Pritchard M S, Somerville R C.Robustness and sensitivities of central US summer convection in the super-parameterized CAM: Multi-model intercomparison with a new regional EOF index[J].Geophysical Research Letters, 2013, 40(12): 3 287-3 291.
|
[9] |
Schmidt F.Variable fine mesh in spectral global model[J].Beitraege zur Physik der Atmosphaere, 1977, 50: 211-217.
|
[10] |
Skamarock W C, Klemp J B, Duda M G, et al.A multiscale nonhydrostatic atmospheric model using centroidal voronoi tesselations and C-grid staggering[J].Monthly Weather Review, 2012, 140: 3 090-3 105,doi:10.1175/MWR-D-11-00215.1.
|
[11] |
Tang Y, Lean H W, Bornemann J.The benefits of the met office variable resolution NWP model for forecasting convection[J].Meteorological Applications, 2013, 20(4): 417-426.
|
[12] |
Gentry M S, Lackmann G M.Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution[J].Monthly Weather Review, 2010, 138(3): 688-704.
|
[13] |
Langhans W, Schmidli J, Fuhrer O,et al.Long-term simulations of thermally driven flows and orographic convectionat convection-parameterizing and cloud-resolving resolutions[J].Journal of Applied Meteorology and Climatology, 2013, 52(6): 1 490-1 510.
|
[14] |
Bryan G H, Wyngaard J C, Fritsch J M.Resolution requirements for the simulation of deep moist convection[J].Monthly Weather Review, 2003, 131(10): 2 394-2 416.
|
[15] |
Cullen M, Brown A.Large eddy simulation of the atmosphere on various scales[J]. Philosophical Transactions of the Royal Society (Series A), 2009, 367(1 899): 2 947-2 956.
|
[16] |
Khairoutdinov M F, Krueger S K, Moeng C H, et al.Large-eddy simulation of maritime deep tropical convection[J]. Journal of Advances in Modeling Earth Systems, 2009, 1(4):13, doi:10.3894/JAMES.2009.1.15.
|
[17] |
Ma Leiming.Research progress on major structures of tropical cyclone boundary layer[J].Progress in Geophysics, 2013, 28(3):1 259-1 268.
|
|
[马雷鸣. 热带气旋边界层关键结构研究进展[J]. 地球物理学进展, 2013, 28(3): 1 259-1 268.]
|
[18] |
Davies T, Cullen M J P, Malcolm A J, et al. A new dynamical core for the MetOffice’s global and regional modelling of the atmosphere[J]. Quarterly Journal of the Royal Meteorological Society, 2005, 131: 1 759-1 782,doi:10.1256/qj.04.101.
|
[19] |
Seity Y, Brousseau P, Malardel S, et al.The AROME-France convective-scale operational model[J]. Monthly Weather Review, 2011, 139(3): 976-991.
|
[20] |
Arakawa A, Jung J H, Wu C M.Toward unification of the multiscale modeling of the atmosphere[J]. Atmospheric Chemistry and Physics, 2011, 11(8): 3 731-3 742.
|
[21] |
Wyngaard J C.Toward numerical modeling in the “Terra incognita”[J]. Journal of the Atmospheric Sciences, 2004, 61(14): 1 816-1 826.
|
[22] |
Arakawa A.The cumulus parameterization problem: Past, present, and future[J]. Journal of Climate, 2004, 17(13): 2 493-2 525.
|
[23] |
Anthes R A.A cumulus parameterization scheme utilizing a one-dimensional cloud model[J]. Monthly Weather Review, 1977, 105(3):270-286.
|
[24] |
Ooyama K.A dynamical model for the study of tropicalcyclone development[J]. Geofisica International (Mexico), 1964, 4:187-198.
|
[25] |
Charney J G, Eliassen A.On the growth on the hurrican depression[J].Journal of the Atmospheric Sciences, 1964, 21(1): 68-75.
|
[26] |
Kuo H L.On formation and intensification of tropical cyclonesthrough latent heat release by cumulus convection[J].Journal of the Atmospheric Sciences, 1965, 22(1): 40-63.
|
[27] |
Manabe S, Smagorinsky J, Strickler R F.Simulated climatology of a general circulation model with a hydrological cycle[J].Monthly Weather Review, 1965, 93(12): 769-798.
|
[28] |
Betts A K, Miller M J.A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic airmass data sets[J]. Quarterly Journal of the Royal Meteorological Society, 1986, 112(473): 693-709.
|
[29] |
Arakawa A, Schubert W H.Interaction of a cumulus cloud ensemble with the large-scale environment, Part I[J].Journal of the Atmospheric Sciences, 1974, 31(3):674-701.
|
[30] |
Zhang G J, McFarlane N A.Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Center general circulation model[J].Atmosphere-Ocean, 1995, 33(3):407-446.
|
[31] |
Kain J S, Fritsch J M.A one-dimensional entraining/ detraining plume model and its application in convective parameterization[J].Journal of the Atmospheric Sciences,1990,47(23):2 784-2 802.
|
[32] |
Kain J S, Fritsch J M.Convective parameterization for mesoscale models: The Kain-Fritsch scheme[M]∥The Representation of Cumulus Convection in Numerical Models. Boston: American Meteorological Society, 1993: 165-170.
|
[33] |
Ma L M,Tan Z M.Improving the behavior of the cumulus parameterization for tropical cyclone prediction: Convection trigger[J]. Atmospheric Research, 2009, 92(2): 190-211.
|
[34] |
DeRooy W C, Bechtold P, Frohlich K, et al. Entrainment and detrainment in cumulus convection: An overview[J]. Quarterly Journal of the Royal Meteorological Society, 2013, 139(670): 1-19.
|
[35] |
Emanuel K A.A scheme for representing cumulus convection in large-scale models[J]. Journal of the Atmospheric Sciences 1991, 48(21): 2 313-2 329.
|
[36] |
Sakradzija M, Seifert A, Heus T.Fluctuations in a quasi-stationary shallow cumulus cloud ensemble[J]. Nonlinear Processes Geophys, 2015, 22(1): 65-85.
|
[37] |
Weisman L, Skamarock W C, Klemp J B.The resolution dependence of explicitly modeled convective systems[J].Monthly Weather Review, 1997, 125(4): 527-548.
|
[38] |
Pedersen C A, Winther J G.Intercomparison and validation of snow albedo parameterization schemes in climate models[J]. Climate Dynamics, 2005, 25(4): 351-362.
|
[39] |
Berg P, Wagner S,Kunstmann H, et al.High resolution regional climate model simulations for Germany: Part I-Validation[J]. Climate Dynamics, 2013, 40(1/2): 401-414.
|
[40] |
Fosser G, Khodayar S, Berg P.Benefit of convection permitting climate model simulations in the representation of convective precipitation[J]. Climate Dynamics, 2014, 44(1): 45-60.
|
[41] |
Moeng C H, Sullivan P, Khairoutdinov M, et al.A mixed scheme for subgrid-scale fluxes in cloud-resolving models[J]. Journal of the Atmospheric Sciences, 2010, 67(11): 3 692-3 705.
|
[42] |
Donner L J, Wyman B L, Hemler R S, et al.The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3[J]. Journal of Climate, 2011, 24(13): 3 484-3 519.
|
[43] |
Bechtold P N, Semane P, Lopez J P, et al.Representing equilibrium and nonequilibrium convection in large-scale models[J]. Journal of the Atmospheric Sciences, 2014, 71(2): 734-753.
|
[44] |
Moeng C H.A closure for updraft-downdraft representation of subgrid-scale fluxes in cloud-resolving models[J]. Monthly Weather Review, 2014, 142(2): 703-715.
|
[45] |
Roh W, Satoh M.Evaluation of precipitating hydrometeor parameterizations in a single-moment bulk microphysics scheme for deep convective systems over the tropical central Pacific[J]. Journal of the Atmospheric Sciences, 2014, 71(7): 2 654-2 673.
|
[46] |
Pruppacher H R, Klett J D, Wang P K.Microphysics of Clouds and Precipitation[M]. Netherlands: Taylor and Francis, 1998.
|
[47] |
Cohen C, McCaul Jr E W. The sensitivity of simulated convective storms to variations in prescribed single-moment microphysics parameters that describe particle distributions, sizes, and numbers[J]. Monthly Weather Review, 2006, 134(9): 2 547-2 565.
|
[48] |
Morrison H, Milbrandt J.Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations[J]. Monthly Weather Review, 2010, 139: 1 103-1 130,doi:10.1175/2010MWR3433.1.
|
[49] |
Van Weverberg K, Goudenhoofdt E, Blahak U, et al.Comparison of one-moment and two-moment bulk microphysics for high-resolution climate simulations of intense precipitation[J]. Atmospheric Research, 2014, 147:145-161.
|
[50] |
Seifert A, Beheng K.A two-moment cloud microphysics parameterization for mixed-phase clouds: Part 1. Model description[J]. Meteorology and Atmospheric Physics, 2006, 92(1): 45-66.
|
[51] |
Rosenfeld D,Sherwood S,Wood R,et al.Climate effects of aerosol-cloud interactions[J].Science,2014,343(6 169):379-380.
|
[52] |
Tao W K, Chen J P, Li Z, et al.Impact of aerosols on convective clouds and precipitation[J]. Reviews of Geophysics, 2012, 50(2):1-62.
|
[53] |
Morrison H, Tessendorf S A, Ikeda K, et al.Sensitivity of a simulated midlatitude squall line to parameterization of raindrop breakup[J]. Monthly Weather Review, 2012, 140(8): 2 437-2 460.
|
[54] |
Koren I, Remer L, Altaratz O, et al.Aerosol-induced changes of convective cloud anvils produce strong climate warming[J]. Atmospheric Chemistry and Physics, 2010, 10(10): 5 001-5 010.
|
[55] |
Zhu Rong, Xu Dahai.Multi-scale trubulent planetary boundary layer parameterization in mesoscale numerical simulation[J]. Journal of Applied Meteorological Sciences, 2004, 15(5):543-555.
|
|
[朱蓉, 徐大海. 中尺度数值模拟中的边界层多尺度湍流参数化方案[J]. 应用气象学报, 2004, 15(5):543-555.]
|
[56] |
Jiang Weimei,Mou Lifeng.Simulation research for PBL using non-local closure over complex underlying surface domain[J].Chinese Journal of Atmospheric Sciences, 1999, 23(1):25-33.
|
|
[蒋维楣, 牟礼凤. 复杂下垫面模拟域大气边界层非局地闭合模拟研究[J].大气科学, 1999, 23(1):25-33.]
|
[57] |
Deardorff J W.Theoretical expression for the countergradient vertical heat flux[J].Journal of Geophysical Research, 1972, 77(30):5 900-5 904.
|
[58] |
Mailhôt J, Benoit R.A finite-element model of the atmospheric boundary layer suitable for use with numerical weatherprediction models[J].Journal of the Atmospheric Sciences, 1982, 39(10):2 249-2 266.
|
[59] |
Troen I, Mahrt L.A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation[J].Boundary-Layer Meteorology, 1986, 37(1/2):129-148.
|
[60] |
Hong S Y, Pan H L.Nonlocal boundary layer vertical diffusion in a medium-range forecast model[J].Monthly Weather Review, 1996, 124(10):2 322-2 339.
|
[61] |
Shin H H, Dudhia J.Evaluation of PBL parameterizations in WRF at sub-kilometer grid spacings: Turbulence statistics in the dry convective boundary layer[J]. Monthly Weather Review,2016, 144(3): 1 161-1 177.
|
[62] |
Ma Leiming.Research progress on China typhoon numerical prediction models and associated major techniques[J]. Progress in Geophysics,2014,29(3):1 013-1 022.
|
|
[马雷鸣. 国内台风数值预报模式及其关键技术研究进展[J]. 地球物理学进展, 2014, 29(3): 1 013-1 022.]
|
[63] |
Seidel D J, Ao C O, Li K.Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis[J]. Journal of Geophysical Research, 2010, 115(D16),doi:10.1029/2009JD013680.
|
[64] |
Smith R K.The surface boundary layer of a hurricane[J]. Tellus,1968, 20:473-483.
|
[65] |
Blackadar A K.High-resolution models of the planetary boundary layer[C]∥Pfafflin J R, Ziegler E N, eds.Advances in Environmental Science and Engineering. Gordon and Breach Science, 1979, 1: 50-85.
|
[66] |
Bryan G H, Rotunno R.The influence of near-surface, high-entropy air in hurricane eyes on maximum hurricane intensity[J]. Journal of the Atmospheric Sciences, 2009, 66(1): 148-158.
|
[67] |
Zhang J A, Marks F D, Montgomery M T, et al.An estimation of turbulent characteristics in the low-level region of intense Hurricanes Allen (1980) and Hugo (1989)[J]. Monthly Weather Review, 2011, 139(5): 1 447-1 462.
|
[68] |
García-Díez M, Fernandez J, Casanueva A,et al.Exploring WRF configuration sensitivity over the Euro-Cordex domain[C]∥Proceedings of CORDEX-WRF Workshop, Tenerife, September, 2012.
|
[69] |
Kepert J D.Slab- and height-resolving models of the tropical cyclone boundary layer. Part I: Comparing the simulations[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 136(562):1 686-1 699.
|
[70] |
Storm B, Dudhia J, Basu S, et al.Evaluation of the weather research and forecasting model on forecasting low-level jets: Implications for wind energy[J]. Wind Energy, 2009, 12(1):81-90.
|
[71] |
Shin H H, Hong S Y.Inter-comparison of planetary boundary layer parametrizations in the WRF model for a single day from CASES-99[J]. Boundary-Layer Meteorology,2011, 139(2):261-281.
|
[72] |
Storm B, Basu S.The WRF model forecast-derived low-level wind shear climatology over the United States Great Plains[J]. Energies,2010, 3(2):258-276.
|
[73] |
Ma L M,Bao X W.Parametrization of planetary boundary-layer height with helicity and verification with tropical cyclone prediction[J].Boundary-Layer Meteorology,2016,160(3):569-593.
|
[74] |
Molinari J, Vollaro D.Rapid intensification of a sheared tropical storm[J].Monthly Weather Review, 2010, 138(10): 3 869-3 885.
|
[75] |
Siebesma A P, Soares P M, Teixeira J.A combined eddy-diffusivity mass-flux approach for the convective boundary layer[J]. Journal of the Atmospheric Sciences, 2007, 64(4): 1 230-1 248.
|
[76] |
Shin H H, Hong S Y.Analysis of resolved and parameterized vertical transports in convective boundary layers at gray-zone resolutions[J]. Journal of the Atmospheric Sciences, 2013, 70(10): 3 248-3 261.
|
[77] |
Ban N, Schmidli J, Schär C.Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations[J]. Journal of Geophysical Research:Atmosphere, 2014, 119:7 889-7 907, doi: 10.1002/2014JD021478.
|
[78] |
Duan Yihong, Chen Lianshou, Liang Jianyin, et al.Research progress in the unusual variations of typhoons before and after landfalling[J]. Acta Meteorologica Sinica, 2014, 72(5):969-986.
|
|
[端义宏, 陈联寿, 梁建茵, 等. 台风登陆前后异常变化的研究进展[J]. 气象学报, 2014, 72(5): 969-986.]
|
[79] |
Ma L, Duan Y, Zhu Y.The structure and rainfall features of tropical cyclone Rammasun (2002)[J]. Advances in Atmospheric Sciences, 2004, 21(6):951-963.
|
[80] |
Ma L, Qin Z, Duan Y, et al.Impacts of TRMM SRR assimilation on the numerical prediction of tropical cyclone[J]. Acta Oceanologica Sinica, 2006, 25(5):14-26.
|
[81] |
Ma L, Chan J, Davidson N E, et al.Initialization with diabaticheating from satellite-derived rainfall[J]. Atmospheric Research, 2007, 85: 148-158.
|
[82] |
Ma Leiming.A new approach to typhoon vortex initialization based on the dynamic retrieval of sea level pressure[J]. Acta Meteorologica Sinica,2011,69(6): 978-989.
|
|
[马雷鸣. 基于海平面气压动力反演的台风涡旋初始化方法[J].气象学报, 2011, 69(6): 978-989.]
|
[83] |
Gong Ziping, Ke Hengyu, Wu Xiongbin, et al.HF radar observation of Longwang typhoon in the Taiwan Straight[J]. Chinese Journal of Geophysics, 2007, 50(6): 1 695-1 702.
|
|
[龚子平, 柯亨玉, 吴雄斌, 等. “龙王”台风期间高频地波雷达数据分析[J]. 地球物理学报, 2007, 50(6): 1 695-1 702.]
|
[84] |
Li Lun, Wu Xiongbin, Long Chao, et al.Regularization inversion method for extrating ocean wave spectra from HFSWR sea echo[J]. Chinese Journal of Geophysics, 2013, 56(1): 219-229.
|
|
[李伦, 吴雄斌, 龙超, 等. 基于正则化方法的高频地波雷达海浪方向谱反演[J]. 地球物理学报, 2013, 56(1): 219-229.]
|
[85] |
Mu Mu, Wang Qiang, Duan Wansuo, et al.Application of conditional nonlinear optimal perturbation to targeted observation studies of the atmosphere and ocean[J]. Acta Meteorologica Sinica,2014, 72(5): 1 001-1 011.
|
|
[穆穆,王强,段晚锁,等.条件非线性最优扰动法在大气与海洋目标观测研究中的应用[J].气象学报,2014,72(5):1 001-1 011.]
|