地球科学进展 ›› 2024, Vol. 39 ›› Issue (7): 671 -684. doi: 10.11867/j.issn.1001-8166.2024.055

综述与评述 上一篇    下一篇

云降水和人工影响天气暖云催化数值模式研发与应用进展
沈淑婧( ), 史月琴( ), 刘卫国, 花少烽, 孙晶   
  1. 中国气象局人工影响天气中心,中国气象局云降水物理与人工影响天气重点开放实验室,北京 100081
  • 收稿日期:2024-05-17 修回日期:2024-06-18 出版日期:2024-07-10
  • 通讯作者: 史月琴 E-mail:shensj@cma.gov.cn;shiyq@cma.gov.cn
  • 基金资助:
    国家重点研发计划项目(2023YFC3007605);国家自然科学基金项目(U234220034);中国气象局云降水物理与人工影响天气重点开放实验室创新基金项目(2023CPML-C03)

Development and Application of the Warm Cloud Seeding Models in Weather Modification

Shujing SHEN( ), Yueqin SHI( ), Weiguo LIU, Shaofeng HUA, Jing SUN   

  1. China Meteorological Administration Weather Modification Centre, China Meteorological Administration Cloud-Precipitation Physics and Weather Modification Key Laboratory (CPML), Beijing 100081, China
  • Received:2024-05-17 Revised:2024-06-18 Online:2024-07-10 Published:2024-07-29
  • Contact: Yueqin SHI E-mail:shensj@cma.gov.cn;shiyq@cma.gov.cn
  • About author:SHEN Shujing, Assistant professor. Research areas include physics of clouds and precipitation, and numerical simulation. E-mail: shensj@cma.gov.cn
  • Supported by:
    the National Key Research and Development Program(2023YFC3007605);The National Natural Science Foundation of China(U234220034);Innovation Fund Project of China Meteorological Administration Cloud-Precipitation Physics and Weather Modification Key Laboratory(2023CPML-C03)

暖性云系是主要的降水云系之一,也是开展人工影响天气作业的重要对象,使用催化数值模式进行机理研究、催化预估和效果评估,将为人工影响天气作业提供关键依据和科学指导。针对半个多世纪以来的暖云催化数值模式发展,在系统介绍和对比基于总体积水、分档、拉格朗日超级粒子及混合微物理方案的吸湿性催化模式研发进展的基础上,全面阐述了系列模式围绕播撒型盐粉及燃烧型焰剂在人工增雨、消雾、消减雨、实际催化效果评估以及暖云催化机理研究方面的应用,剖析了当前研究中存在的问题和不足,并对未来研发和应用重点方向进行展望。将对深入发展暖云催化数值模式并基于其开展云降水机理研究和我国人工影响天气业务应用具有重要的指导意义。

Warm clouds are predominant cloud types that form precipitation as well as the important objects for weather modification operations. Mechanistic research, seeding estimation, and effect evaluation based on cloud seeding models provide a key basis and scientific guidance for weather modification operations. In numerical models for warm cloud seeding over the past half-century, this study systematically and respectively introduces and compares the development progress of various hygroscopic seeding models based on Bulk, Bin, Particle-based Lagrangian and Hybrid microphysics schemes. A comprehensive examination was provided for the application of a series of models, focusing on salt powders and flares in artificial precipitation enhancement, defogging, precipitation reduction, actual seeding effect evaluation, and mechanism research. It further summarizes the current scientific consensus and existing problems and finally looks forward to the key directions of future scientific research. This will have important guiding significance for the in-depth development of warm cloud seeding numerical models, the study of precipitation enhancement mechanisms, and the application of weather modification operations.

中图分类号: 

图1 主要微物理方案的云和降水粒子谱分布示意图
(a)Bulk方案;(b)Bin方案;(c)拉格朗日超级粒子方案;(d)混合方案(示意图中为Bin—拉格朗日混合方案);CCN:云凝结核
Fig. 1 Cloud and precipitation particle distributions in the main types of microphysics schemes
(a) Bulk; (b) Bin; (c) Particle‐based Lagrangian; (d) Hybrid (the schematic diagram shows the Bin-Lagrangian hybrid scheme); CCN:Cloud Condensation Nuclei
图2 基于不同类微物理方案的暖云催化数值模式研发进展
Fig. 2 Development progress of numerical models for hygroscopic seeding of warm cloud based on different types of microphysics schemes
图3 吸湿性催化影响暖云示意图(据参考文献[ 102 ]修改)
(a)橙色表示通过飞机、火箭或地面烟炉播撒的吸湿性催化剂,橙色椭圆范围内为影响区;(b)~(d)播撒大核(LCCN)、巨核(GCCN)和超级巨核(UGCCN)的增雨机理,橙色粒子为吸湿性催化剂、人工云滴或雨滴
Fig. 3 Schematic diagram of the influence of hygroscopic seeding on warm cloudmodified after reference 102 ])
(a) Hygroscopic seeding of a convective cloud. Orange indicates the seeded area and seeding material to be added by plane, burner, or rocket. (b)~(d) The mechanism of increasing rainfall by seeding Large Cloud Condensation Nuclei (LCCN), Giant Cloud Condensation Nuclei (GCCN), and Ultra-Giant Cloud Condensation Nuclei (UGCCN). Orange particles represent artificial CCN, cloud droplets, or raindrops
71 COOPER W A, BRUINTJES R T, MATHER G K. Calculations pertaining to hygroscopic seeding with flares[J]. Journal of Applied Meteorology, 1997, 36(11): 1 449-1 469.
72 TZIVION S, REISIN T, LEVIN Z. Numerical simulation of hygroscopic seeding in a convective cloud[J]. Journal of Applied Meteorology, 1994, 33(2): 252-267.
73 SILVERMAN B A, SUKARNJANASET W. On the seeding of tropical convective clouds for rain augmentation[C]// Preprints, 13th Conference on Planned and Inadvertent Weather Modification, Atlan-ta, GA, American Meteorological Society, 1996: 52-59.
74 YU Weida, HE Guanfang, ZHOU Yong, et al. Three-dimensional convective cloud seeding model and its field application [J]. Quarterly Journal of Applied Meteorology, 2001, 12(21): 122-132.
于达维,何观芳,周勇,等 .三维对流云催化模式及其外场试用 [J]. 应用气象学报, 2001, 12(21): 122-132.
75 KUNKEL B A, SILVERMAN B A. A comparison of the warm fog clearing capabilities of some hygroscopic materials[J]. Journal of Applied Meteorology, 1970, 9(4): 634-638.
76 MORRISON H, THOMPSON G, TATARSKII V. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: comparison of one- and two-moment schemes[J]. Monthly Weather Review, 2009, 137(3): 991-1 007.
77 XU Huaying, HUANG Peiqiang, HUANG Meiyuan, et al. A study on the growth of cloud droplets by condensation in cumulus clouds [J]. Chinese Journal of Atmospheric Sciences, 1983, 7(3):249-259.
徐华英,黄培强,黄美元,等.积云中云滴群凝结增长的数值模拟[J].大气科学, 1983, 7(3): 249-259.
78 REISIN T, LEVIN Z, TZIVION S. Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics. part I: description of the model[J]. Journal of the Atmospheric Sciences, 1996, 53(3): 497-519.
79 REISIN T, TZIVION S, LEVIN Z. Seeding convective clouds with ice nuclei or hygroscopic particles: a numerical study using a model with detailed microphysics[J]. Journal of Applied Meteorology, 1996, 35(9): 1 416-1 434.
80 PINSKY M B, KHAIN A P. Effects of in-cloud nucleation and turbulence on droplet spectrum formation in cumulus clouds[J]. Quarterly Journal of the Royal Meteorological Society, 2002, 128(580): 501-533.
81 SALAZAR V, HERNANDEZ-CARRILLO N, BRUINTJES R T. Calculation of the effect of seeding material from hygroscopic flares on the collision-coalescence process and the development of rainfall in clouds[C]// 15th conference on planned and inadvertent weather modification, 2001.
82 YANG Suying, MA Jianzhong, HU Zhijin, et al. Influence of multi-chemical-component aerosols on the microphysics of warm clouds in North China[J]. Science China Earth Sciences, 2010,40(11): 1 468-1 478.
杨素英,马建中,胡志晋,等. 华北地区多化学组分气溶胶对暖云微物理特征的影响[J]. 中国科学:地球科学,2010,40 (11): 1 468-1 478.
83 JIANG H, FEINGOLD G, COTTON W R. Simulations of aerosol-cloud-dynamical feedbacks resulting from entrainment of aerosol into the marine boundary layer during the Atlantic Stratocumulus Transition Experiment[J].Journal of Geophysical Research Atmospheres, 2002, 107(D24). DOI:10.1029/2001JD001502 .
84 KHAIN A P, LEUNG L R, LYNN B, et al. Effects of aerosols on the dynamics and microphysics of squall lines simulated by spectral Bin and bulk parameterization schemes[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D22). DOI:10.1029/2009id011902 .
85 SAMANTA S, PRABHA T V, MURUGAVEL P, et al. Morphological and microphysical characteristics associated with the lifecycle of a stationary cloud cluster during the Indian Summer Monsoon: a comparative study with numerical simulations and radar observation[J]. Atmospheric Research, 2023, 281. DOI:10.1016/j.atmosres.2022.106464 .
86 SHPUND J, KHAIN A, LYNN B, et al. Simulating a mesoscale convective system using WRF with a new spectral Bin microphysics: 1: hail vs graupel[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(24): 14 072-14 101.
87 GRABOWSKI W W, MORRISON H, SHIMA S I, et al. Modeling of cloud microphysics: can we do better?[J]. Bulletin of the American Meteorological Society, 2019, 100(4): 655-672.
88 KUBA N, FUJIYOSHI Y. Development of a cloud microphysical model and parameterizations to describe the effect of CCN on warm cloud[J]. Atmospheric Chemistry and Physics, 2006, 6(10): 2 793-2 810.
89 THOMPSON G, FIELD P R, RASMUSSEN R M, et al. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. part II: implementation of a new snow parameterization[J]. Monthly Weather Review, 2008, 136(12): 5 095-5 115.
90 THOMPSON G, EIDHAMMER T. A study of aerosol impacts on clouds and precipitation development in a large winter cyclone[J]. Journal of the Atmospheric Sciences, 2014, 71(10): 3 636-3 658.
91 CURIÉ M. Dynamics of a cold air outflow from the base of the thunderstorm:a simple model [J]. Journal de Recherches Atmospheriques, 1980, 14: 493-498.
92 KONWAR M, MALAP N, HAZRA A, et al. Measurement of flare size distribution and simulation of seeding effect with a spectral Bin parcel model[J]. Pure and Applied Geophysics, 2023, 180(8): 3 019-3 034.
93 GU Zhenchao, WANG Yaoqi, WEN Jingsong, et al. Preliminary theoretical study on the influences of seeding sites and particles on seeding efficiency in convective warm cloud artificial operations[M]. Beijing: China Meteorological Press, 2006:264-288.
顾震潮,王尧奇,温景嵩,等.对流性暖云人工降水作业中撒药部位与撒药颗粒对撒布效率影响的初步理论研究[M]. 北京:气象出版社,2006: 264-288.
94 WOODLEY W, ROSENFELD D. Comparison of radar-derived properties of texas clouds receiving one of three treatments: AgI ejectable flares or hygroscopic flares or no seeding[J]. The Journal of Weather Modification, 1999, 31: 29-41.
95 ROSENFELD D, KHAIN A, LYNN B, et al. Simulation of hurricane response to suppression of warm rain by sub-micron aerosols[J]. Atmospheric Chemistry and Physics, 2007, 7(13): 3 411-3 424.
96 BELYAEVA M V, DROFA A S, IVANOV V N. Efficiency of Precipitation enhancement from convective clouds at salt powder modification[C]// WMO scientific conference on weather modification. 2013. DOI:10.1029/2012JD01785 .
97 ROSENFELD D, AXISA D, WOODLEY W L, et al. A quest for effective hygroscopic cloud seeding[J]. Journal of Applied Meteorology and Climatology, 2010, 49(7): 1 548-1 562.
98 HE Guanfang, HU Zhijin. Numerical study on mechanism of artificial modification of cumulonimbus clouds[J]. China Industrial Economics, 1991(1): 32-39.
何观芳, 胡志晋. 人工影响积雨云机制的数值研究[J]. 应用气象学报, 1991(1): 32-39.
99 ZENG Guangping, ZHENG Shuzhen, ZHANG Chang’an, et al. A numerical simulation on natural precipitation process and cloud seeding in cumulonimbus clouds with warm cloud base[J]. Chinese Journal of Atmospheric Sciences, 2000, 24(2): 284-288.
曾光平, 郑淑真, 张长安, 等. 暖底积云自然降水过程和人工催化个例数值模拟[J]. 大气科学, 2000, 24(2): 284-288.
100 LIU Pei, YIN Yan, CHEN Qian, et al. Numerical simulation of hygroscopic seeding effects on warm convective clouds and rainfall reduction[J]. Journal of Applied Meteorological Science, 2019, 30(2): 211-222.
刘佩, 银燕, 陈倩, 等. 吸湿性播撒对暖性对流云减雨影响的数值模拟[J]. 应用气象学报, 2019, 30(2): 211-222.
101 LOU Xiaofeng, FU Yu, SUN Jing. A numerical seeding simulation of convective precipitation in Zhejiang, China[J]. Journal of Applied Meteorological Science, 2019, 30(6): 665-676.
楼小凤, 傅瑜, 孙晶. 一次浙江对流云催化数值模拟试验[J]. 应用气象学报, 2019, 30(6): 665-676.
102 FLOSSMANN A I, MANTON M, ABSHAEV A, et al. Review of advances in precipitation enhancement research[J]. Bulletin of the American Meteorological Society, 2019, 100(8): 1 465-1 480.
103 LOU Xiaofeng, SHI Yu, LI Jiming. Development and application of the cloud and seeding models in weather modifcation[J]. Advances in Meteorological Science and Technology, 2016, 6(3): 75-82.
楼小凤, 师宇, 李集明. 云降水和人工影响天气催化数值模式的发展及应用[J]. 气象科技进展, 2016, 6(3): 75-82.
104 EADIE W J. Computer simulation of fog seeding experiments[Z]. NASA Rept.SP-212, Progress of NASA research on warm fog properties and modifcation concepts, 1969: 75-85.
105 HUANG P Q. Numerical simulation of the fog dissipation by salt-seeding[J]. Journal of the Air Force Institute of Meteorology, 1988, 9(1): 33-40.
106 GUO E M, ZHANG Y. Numerical simulation of the fog evaporation by the warm effect[J]. Journal of the Air Force Institute of Meteorology, 1991, 12(3): 11-16.
107 REUGE N, FEDE P, BERTHOUMIEU J F, et al. Modeling of the denebulization of warm fogs by hygroscopic seeding: effect of various operating conditions and of the turbulence intensity[J]. Journal of Applied Meteorology and Climatology, 2017, 56(2): 249-261.
108 ROSENFELD D, NIREL R. Seeding effectiveness. The interaction of desert dust and the southern margins of rain cloud systems in Israel[J]. Journal of Applied Meteorology, 1996, 35(9): 1 502-1 510.
109 ROSENFELD D, WOODLEY W L. Satellite-inferred impact of aerosols on19 the microstructure of Thai convective clouds[C]// Processing of seventh scientific conf on weather modification. Chiang Mai, Thailand: World Meteorological Organization, 1999: 17-20.
110 LIU Xiaochen. Numerical modeling of aerosols effects on warm cloud [D]. Beijing: Chinese Academy of Meteorological Sciences, 2006.
刘校辰.气溶胶对暖云影响的数值模拟[D]. 北京: 中国气象科学研究院, 2006.
1 ZHOU Xiuji. Study on microphysical mechanism of warm cloud precipitation[M]. Beijing: Science Press, 1964.
周秀骥. 暖云降水微物理机制的研究[M]. 北京: 科学出版社, 1964.
2 HAO Wang. Expert meeting on artificial impact on warm clouds [J]. Meteorological Technology, 1982(2): 46-49.
郝望. 人工影响暖云专家会议 [J]. 气象科技, 1982(2): 46-49.
3 SU Zhengjun, ZHENG Guoguang, FENG Daxiong. The review of hygroscopic seeding[J]. Plateau Meteorology, 2009, 28(1): 227-232.
苏正军, 郑国光, 酆大雄. 吸湿性物质催化云雨的研究进展[J]. 高原气象, 2009, 28(1): 227-232.
4 GAYATRI K, PRABHAKARAN T, MALAP N, et al. Physical evaluation of hygroscopic cloud seeding in convective clouds using in situ observations and numerical simulations during CAIPEEX[J]. Atmospheric Research, 2023, 284. DOI:10.1016/j.atmosres.2022.106558 .
5 MATHER G K, TERBLANCHE D E, STEFFENS F E, et al. Results of the South African cloud-seeding experiments using hygroscopic flares[J]. Journal of Applied Meteorology, 1997, 36(11): 1 433-1 447.
6 HE H, GUO X L, LIU X E, et al. Mesoscale numerical simulation study of warm fog dissipation by salt particles seeding[J]. Advances in Atmospheric Sciences, 2016, 33(5): 579-592.
7 SEGAL Y, KHAIN A, PINSKY M, et al. Effects of hygroscopic seeding on raindrop formation as seen from simulations using a 2000-Bin spectral cloud parcel model[J]. Atmospheric Research, 2004, 71(1/2): 3-34.
8 HU Zhuijin, CAI Lidong. A parameterized numerical simulation of warm rain and salt-seeding in cumulus clouds [J]. Chinese Journal of Atmospheric Sciences, 1979, 3(4): 334-342.
胡志晋, 蔡利栋. 积云暖雨过程及其盐粉催化的参数化数值模拟 [J]. 大气科学, 1979,3(4): 334-342.
9 HU Zhijin, YAN Caifan, WANG Yubin. Numerical simulation of rain and seeding processes in warm layer clouds [J]. Acta Meteorologica Sinica, 1983, 41(1): 79-88.
胡志晋, 严采蘩, 王玉彬.层状暖云降雨及其催化的数值模拟 [J]. 气象学报, 1983, 41(1): 79-88.
10 YIN Y, LEVIN Z, REISIN T G, et al. The effects of giant cloud condensation nuclei on the development of precipitation in convective clouds—a numerical study[J]. Atmospheric Research, 2000, 53(1/2/3): 91-116.
11 YIN Y, LEVIN Z, REISIN T, et al. Seeding convective clouds with hygroscopic flares: numerical simulations using a cloud model with detailed microphysics[J]. Journal of Applied Meteorology, 2000, 39(9): 1 460-1 472.
12 YANG Jun, CHEN Baojun, YIN Yan, et al. Physics of clouds and precipitation[M]. Beijing: China Meteorological Press, 2011.
杨军, 陈宝君, 银燕, 等. 云降水物理学[M]. 北京: 气象出版社, 2011.
13 LIU Weiguo, TAO Yue, ZHOU Yuquan, et al. Simulation of stratiform cloud seeding, its rainfall enhancement effect and mechanism study based on a real trajectory of aircraft[J]. Acta Meteorologica Sinica, 2021, 79(2): 340-358.
刘卫国, 陶玥, 周毓荃, 等. 基于飞机真实轨迹的一次层状云催化的增雨效果及其作用机制的模拟研究[J]. 气象学报, 2021, 79(2): 340-358.
14 TRIPOLI G J, COTTON W R. The Colorado State University threedimensional cloud mesoscale model-Part I: general theoretical framework and sensitivity experiments [J]. Journal de Recherches Atmospheriques, 1982, 16(3): 185-220.
15 HU Zhijin, YAN Caifan. Numerical simulation of microphysical processes in stratiform clouds (I) microphysical model [J]. Journal of Academy of Meteorological Sciences, China, 1986, 1(1): 37-52.
胡志晋, 严采繁. 层状云微物理过程的数值模拟(一)微物理模式 [J]. 中国气象科学研究院院刊, 1986, 1(1): 37-52.
16 HU Zhijin, HE Guanfang. Numerical simulation of microprocesses in cumulonimbus clouds (I) microphysical model [J]. Acta Meteorologica Sinica, 1987, 45(4): 467-484.
胡志晋, 何观芳. 积雨云微物理过程的数值模拟(一)微物理模式 [J]. 气象学报, 1987, 45(4): 467-484.
17 LOU Xiaofeng, SHI Yueqin, SUN Jing, et al. Cloud-resolving model for weather modification in China[J]. Chinese Science Bulletin, 2012, 57(7): 1 055-1 061.
楼小凤, 史月琴, 孙晶, 等. 中国人工影响天气准隐式云分辨模式的研制和应用[J]. 科学通报, 2012, 57(7): 1 055-1 061.
18 XIAO Hui, XU Huaying, HUANG Meiyuan. Numerical simulation study on the formation of cloud droplets in cumulus clouds: (I) the effect of salt spectra and concentration [J]. Chinese Journal of Atmospheric Sciences, 1988, 12(2): 121-130.
肖辉, 徐华英, 黄美元. 积云中云滴群形成的数值模拟研究: (一)盐核谱和浓度的作用[J]. 大气科学, 1988, 12(2): 121-130.
19 HONG Yanchao. Numerical simulation of stratocumulus (I) parameterization of models and microphysical processes [J]. Acta Meteorologica Sinica, 1996, 54(5): 544-557.
洪延超. 积层混合云数值模拟研究(I)——模式及微物理过程参数化[J]. 气象学报, 1996, 54(5): 544-557.
20 GUO Xueliang, HUANG Meiyuan, XU Huaying, et al. The raindrop category model study on raindrop distribution of stratifomm clouds [J]. Chinese Journal of Atmospheric Sciences, 1998, 23(4): 411-421.
郭学良, 黄美元, 徐华英, 等. 层状云的雨滴谱分档数值模拟研究[J]. 大气科学, 1998, 23(4): 411-421.
21 GUO Xueliang, HUANG Meiyuan, HONG Yanchao, et al. A study of three-dimensional hail-category hailstorm model part I: model description and the mechanism of hail recirculation growth [J]. Chinese Journal of Atmospheric Sciences, 2001, 25 (5): 707-719.
郭学良, 黄美元, 洪延超, 等. 三维冰雹分档强对流云数值模拟研究[J]. 大气科学, 2001, 25 (5): 707-719.
22 CHEN D H, SHEN X S. Recent progress on GRAPES research and application [J]. Journal of Applied Meteorological Science, 2006, 17: 773-777.
23 ZHANG R H, SHEN X S. On the development of the GRAPES—a new generation of the national operational NWP system in China[J]. Chinese Science Bulletin, 2008, 53(22): 3 429-3 432.
24 SHI Yueqin, ZHAO Junjie, SUN Jing, et al. Study on cloud structure and rainfall enhancement condition of a low-trough cold-front cloud over North China[J]. Journal of Arid Meteorology, 2022, 40(6): 1 003-1 013.
史月琴, 赵俊杰, 孙晶, 等. 华北地区一次低槽冷锋云系结构和增雨条件研究[J]. 干旱气象, 2022, 40(6): 1 003-1 013.
25 SUN Zhaoxuan, ZHANG Qiang, SUN Rui, et al. Characteristics of the extreme high temperature and drought and their main impacts in southwestern China of 2022 [J]. Journal of Arid Meteorology, 2022, 40(5): 764-770.
孙昭萱, 张强, 孙蕊, 等. 2022 年西南地区极端高温干旱特征及其主要影响 [J]. 干旱气象, 2022, 40(5): 764-770.
26 LIANG Yun, CHEN Genfa. Study on the temporal and spatial variation characteristics of drought in Southwest China[J]. Jianghuai Water Resources Science and Technology, 2022(4): 5-7, 43.
梁云, 陈根发. 西南地区干旱时空变化特征研究[J]. 江淮水利科技, 2022(4): 5-7, 43.
27 KESSLER E. On the distribution and continuity of water substance in atmospheric circulations[M]// On the distribution and continuity of water substance in atmospheric circulations. Boston, MA: American Meteorological Society, 1969.
28 BERRY E X. Cloud droplet growth by collection[J]. Journal of the Atmospheric Sciences, 1967, 24(6): 688-701.
29 SHIMA S, KUSANO K, KAWANO A, et al. The super-droplet method for the numerical simulation of clouds and precipitation: a particle-based and probabilistic microphysics model coupled with a non-hydrostatic model[J]. Quarterly Journal of the Royal Meteorological Society, 2009, 135(642): 1 307-1 320.
30 GRABOWSKI W W, THOURON O, PINTY J P, et al. A hybrid bulk-Bin approach to model warm-rain processes[J]. Journal of the Atmospheric Sciences, 2010, 67(2): 385-399.
31 MILBRANDT J A, YAU M K. A multimoment bulk microphysics parameterization. part I: analysis of the role of the spectral shape parameter[J]. Journal of the Atmospheric Sciences, 2005, 62(9): 3 051-3 064.
32 NAUMANN A K, SEIFERT A. Evolution of the shape of the raindrop size distribution in simulated shallow cumulus[J]. Journal of the Atmospheric Sciences, 2016, 73(6): 2 279-2 297.
33 MORRISON H, van LIER-WALQUI M, FRIDLIND A M, et al. Confronting the challenge of modeling cloud and precipitation microphysics[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(8). DOI: 10.1029/2019MS001689 .
34 BENJAMIN S G, WEYGANDT S S, BROWN J M, et al. A North American hourly assimilation and model forecast cycle: the rapid refresh[J]. Monthly Weather Review, 2016, 144(4): 1 669-1 694.
35 JIN H G, BAIK J J, LEE H, et al. A new warm-cloud collection and breakup parameterization scheme for weather and climate models[J]. Atmospheric Research, 2022, 272. DOI: 10.1016/j.atmosres.2022.106145 .
36 KHAIN A, OVTCHINNIKOV M, PINSKY M, et al. Notes on the state-of-the-art numerical modeling of cloud microphysics[J]. Atmospheric Research, 2000, 55(3/4): 159-224.
37 KHAIN A P, BEHENG K D, HEYMSFIELD A, et al. Representation of microphysical processes in cloud-resolving models: spectral (Bin) microphysics versus Bulk parameterization[J]. Reviews of Geophysics, 2015, 53(2): 247-322.
38 KHAIN A, POKROVSKY A, PINSKY M, et al. Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. part I: model description and possible applications[J]. Journal of the Atmospheric Sciences, 2004, 61(24): 2 963-2 982.
39 KHAIN A, LYNN B, DUDHIA J. Aerosol effects on intensity of landfalling hurricanes as seen from simulations with the WRF model with spectral Bin microphysics[J]. Journal of the Atmospheric Sciences, 2010, 67(2): 365-384.
40 CHEN Q, KOREN I, ALTARATZ O, et al. How do changes in warm-phase microphysics affect deep convective clouds?[J]. Atmospheric Chemistry and Physics, 2017, 17(15): 9 585-9 598.
41 ONISHI R, TAKAHASHI K. A warm-Bin-cold-Bulk hybrid cloud microphysical model[J]. Journal of the Atmospheric Sciences, 2012, 69(5): 1 474-1 497.
42 KORNFELD P. Some numerical experiments for warm fog clearing by seeding with hygroscopic nuclei[J]. Journal of Applied Meteorology, 1970, 9(3): 459-463.
43 SILVERMAN B A, KUNKEL B A. A numerical model of warm fog dissipation by hygroscopic particle seeding[J]. Journal of Applied Meteorology, 1970, 9(4): 627-633.
44 MYERS C G, ORVILLE H D. The simulation of salt seeding in a numerical cloud model [C]// Third national conference on weather modification, Rapid City, American Meteorological Society, 1972:171-174.
45 FARLEY R D, CHEN C S. A detailed microphysical simulation of hygroscopic seeding on the warm rain process[J]. Journal of Applied Meteorology, 1975, 14(5): 718-733.
46 TAKEUCHI D M. Variational study of the effects of seeding on microphysical processes in cumulus clouds[R]. Bureau of Reclamation Contract 501 ER 02218, Meteorology Research, Inc., 1975: 50.
47 KLAZURA G E, TODD C J. A model of hygroscopic seeding in cumulus clouds[J]. Journal of Applied Meteorology, 1978, 17(12): 1 758-1 768.
48 JOHNSON D B. Hygroscopic seeding of convective clouds[J]. Illinois State Water Survey, 1980. DOI:10.1175/1520-0477(1979)060<0422:HSPOSL>2.0.CO;2 .
49 XU Huaying, HAO Jingfu. Numerical simulation of cloud seeding with salt particles in cumulus clouds [J]. Chinese Journal of Atmospheric Sciences, 1983(4): 403-410.
徐华英,郝京甫.盐粉催化积云降水的数值模拟[J]. 大气科学, 1983(4): 403-410.
50 HU Zhijin, YAN Caifan. Numerical simulation of salt-seeding in warm cumulus with various life-times [J]. Chinese Journal of Atmospheric Sciences, 1985(1): 62-72.
胡志晋,严采蘩.盐粉催化不同生命史的浓积云的数值模拟[J].大气科学,1985(1): 62-72.
51 ZHAO Qingyun. Numerical simulation of warm fog dissipation by salt-seeding [J]. Journal of Tropical Meteorology, 1989, 5(3): 245-252.
赵清云. 播撒盐粉局部消除暖雾的数值模拟[J]. 热带气象, 1989, 5(3): 245-252.
52 FLOSSMANN A I, PRUPPACHER H R. A theoretical study of the wet removal of atmospheric pollutants. part III: the uptake, redistribution, and deposition of (NH42SO4 particles by a convective cloud using a two-dimensional cloud dynamics model[J]. Journal of the Atmospheric Sciences, 1988, 45(13): 1 857-1 871.
53 SNIDER J R, GUIBERT S, BRENGUIER J L, et al. Aerosol activation in marine stratocumulus clouds: 2. Köhler and parcel theory closure studies[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D15). DOI: 10.1029/2002JD002692 .
54 CARO D, WOBROCK W, FLOSSMANN A I. A numerical study on the impact of hygroscopic seeding on the development of cloud particle spectra[J]. Journal of Applied Meteorology, 2002, 41(3): 333-350.
55 LU M L, SEINFELD J H. Study of the aerosol indirect effect by large-eddy simulation of marine stratocumulus[J]. Journal of the Atmospheric Sciences, 2005, 62(11): 3 909-3 932.
56 DROFA A S. Numerical simulation of the action on a warm convective cloud by hygroscopic particles[J]. Izvestiya, Atmospheric and Oceanic Physics, 2007, 43(5): 574-585.
57 DROFA A S. Study of the possibility of stimulating precipitation from warm convective clouds by hygroscopic particles from numerical simulation[J]. Izvestiya, Atmospheric and Oceanic Physics, 2008, 44(4): 402-415.
58 DROFA A S. Investigation of the action of hygroscopic particles on a warm convective cloud from the results of numerical simulation[J]. Izvestiya, Atmospheric and Oceanic Physics, 2010, 46(3): 328-338.
59 KUBA N, MURAKAMI M. Effect of hygroscopic seeding on warm rain clouds-numerical study using a hybrid cloud microphysical model[J]. Atmospheric Chemistry and Physics, 2010, 10(7): 3 335-3 351.
60 LOU Xiaofeng, HE Guanfang, HU Zhijin, et al. Development of salt-seeding scheme in 3-D convective cloud model and seeding simulation[J]. Plateau Meteorology, 2013, 32(2): 491-500.
楼小凤, 何观芳, 胡志晋, 等. 三维对流云盐粉催化模式的发展和催化模拟试验[J]. 高原气象, 2013, 32(2): 491-500.
61 REUGE N, FEDE P, BERTHOUMIEU J F, et al. 1-D modeling of the denebulization of fogs by hygroscopic seeding[C]//Proceedings of ASME/JSME/KSME 2015 joint fluids engineering conference. Seoul, South Korea, 2015.
62 JENSEN J B, NUGENT A D. Condensational growth of drops formed on giant sea-salt aerosol particles[J]. Journal of the Atmospheric Sciences, 2017, 74(3): 679-697.
63 LOMPAR M, ĆURIĆ M, ROMANIC D, et al. Precipitation enhancement by cloud seeding using the shell structured TiO2/NaCl aerosol as revealed by new model for cloud seeding experiments[J]. Atmospheric Research, 2018, 212: 202-212.
64 TESSENDORF S A, CHEN S S, WEEKS C, et al. The influence of hygroscopic flare seeding on drop size distribution over southeast Queensland[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(6). DOI: 10.1029/2020JD033771 .
65 CHEN S S, XUE L L, YAU M K. Impact of aerosols and turbulence on cloud droplet growth: an in-cloud seeding case study using a parcel-DNS (direct numerical simulation) approach[J]. Atmospheric Chemistry and Physics, 2020, 20(17): 10 111-10 124.
66 CHEN S S, XUE L L, YAU M K. Hygroscopic seeding effects of giant aerosol particles simulated by the lagrangian-particle-based direct numerical simulation[J]. Geophysical Research Letters, 2021, 48(20). DOI: 10.1029/2021gl094621 .
67 LIN K I, CHUNG K S, WANG S H, et al. Evaluation of hygroscopic cloud seeding in warm-rain processes by a hybrid microphysics scheme using a Weather Research and Forecasting (WRF) model: a real case study[J]. Atmospheric Chemistry and Physics, 2023, 23(18): 10 423-10 438.
68 NELSON L D. A numerical study on the initiation of warm rain[J]. Journal of the Atmospheric Sciences, 1971, 28(5): 752-762.
69 DROFA A S, IVANOV V N, ROSENFELD D, et al. Studying an effect of salt powder seeding used for precipitation enhancement from convective clouds[J]. Atmospheric Chemistry and Physics, 2010, 10(16): 8 011-8 023.
70 WISNER C, ORVILLE H D, MYERS C. A numerical model of a hail-bearing cloud[J]. Journal of the Atmospheric Sciences, 1972, 29(6): 1 160-1 181.
[1] 高丽,陈静,郑嘉雯,陈权亮. 极端天气的数值模式集合预报研究进展[J]. 地球科学进展, 2019, 34(7): 706-716.
[2] 马雷鸣, 鲍旭炜. 数值天气预报模式物理过程参数化方案的研究进展[J]. 地球科学进展, 2017, 32(7): 679-687.
[3] 赵姝慧,秦鑫,李帅彬,董博. 新一代天气雷达常用产品在我国人工影响天气工作中的应用[J]. 地球科学进展, 2012, 27(6): 694-702.
[4] 文军,蓝永超,苏中波,田辉,史小康,张宇,王欣,刘蓉,张堂堂,康悦,吕少宁,张静辉. 黄河源区陆面过程观测和模拟研究进展[J]. 地球科学进展, 2011, 26(6): 575-586.
[5] 王咏薇,蒋维楣,刘红年. 大气数值模式中城市效应参数化方案研究进展[J]. 地球科学进展, 2008, 23(4): 371-381.
[6] 赵南,沈新勇,丁一汇. 大气运动的慢流形概论[J]. 地球科学进展, 2007, 22(4): 331-340.
[7] 任宏利,丑纪范. 数值模式的预报策略和方法研究进展[J]. 地球科学进展, 2007, 22(4): 376-385.
[8] 马舒庆,郑国光,汪改,吴蕾,张小平,潘毅,李强,蔡青. 一种人工影响天气微型无人驾驶飞机及初步试验[J]. 地球科学进展, 2006, 21(5): 545-550.
[9] 孙绩华,程建刚,肖子牛. 利用印度洋前期海温进行东亚地区月均降水的数值预报试验[J]. 地球科学进展, 2003, 18(6): 939-946.
[10] 闫菊,王海,鲍献文. 胶州湾三维潮流及潮致余环流的数值模拟[J]. 地球科学进展, 2001, 16(2): 172-177.
[11] 王昂生. 冰雹灾害及人工防雹研究[J]. 地球科学进展, 1990, 5(3): 63-67.
阅读次数
全文


摘要