地球科学进展 ›› 2024, Vol. 39 ›› Issue (7): 685 -701. doi: 10.11867/j.issn.1001-8166.2024.054

综述与评述 上一篇    下一篇

碳球粒沉积记录揭示的人类工业活动:研究历史、现状与展望
杨涵菲 1 , 2( ), 陈秋怡 1, 董旭辉 1 , 2( ), 陈旭 3   
  1. 1.广州大学 地理科学与遥感学院,广东 广州 510006
    2.广州大学 气候与环境变化研究中心,广东 广州 510006
    3.中国地质大学(武汉) 地理与信息工程学院,湖北 武汉 430078
  • 收稿日期:2024-04-16 修回日期:2024-06-15 出版日期:2024-07-10
  • 通讯作者: 董旭辉 E-mail:yanghanfei@gzhu.edu.cn;xhdong@gzhu.edu.cn
  • 基金资助:
    国家自然科学基金项目(42171149);广州大学校内科研项目(YJ2023031)

Spheroidal Carbonaceous Particle Deposition Records Revealing Human Industrial Activities: Research History, Advances, and Prospects

Hanfei YANG 1 , 2( ), Qiuyi CHEN 1, Xuhui DONG 1 , 2( ), Xu CHEN 3   

  1. 1.School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China
    2.Centre for Climate and Environmental Changes, Guangzhou University, Guangzhou 510006, China
    3.School of Geography and Information Engineering, China University of Geosciences, Wuhan 430078, China
  • Received:2024-04-16 Revised:2024-06-15 Online:2024-07-10 Published:2024-07-29
  • Contact: Xuhui DONG E-mail:yanghanfei@gzhu.edu.cn;xhdong@gzhu.edu.cn
  • About author:YANG Hanfei, Postdoctor, research areas include evolution of lake ecosystems and global changes, quaternary climate and geological environment, geochemistry. E-mail: yanghanfei@gzhu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(42171149);Internal Research Projects at Guangzhou University(YJ2023031)

在“人类世”危机背景下,研究人类活动对地球生态环境的影响至关重要。球状碳质颗粒(以下简称碳颗粒)作为地质记录中人类活动的新型标志物,源自化石燃料工业高温下的不充分燃烧,随着全球工业化进程的推进,碳球粒研究和应用的重要性日益凸显。首先,系统梳理了碳球粒的研究历史和特性,指出碳球粒因稳定的化学性质、独特的形态特征和易于获取的优势而成为黑碳中独特的研究组分;其次,总结了碳球粒在反映区域环境污染、辅助沉积物定年和追溯大气污染物来源等方面的重要应用,提出碳球粒研究的不足:如鉴定过程中存在人为误差、南半球及湖泊外的研究记录相对匮乏、生态系统中的潜在危害尚不明确以及沉积物定年中的应用受多种因素影响等。未来,需利用网络数据库建立碳球粒的鉴定和参照标准,探索其在全球范围内记录人类活动的生态环境意义,并确定稳定可靠、可供对比的区域碳球粒年代标尺,以进一步完善并深化当前研究。

In the context of the Anthropocene crisis, studying the impact of human activities on the Earth's ecological environment is crucial. Spheroidal Carbonaceous Particles (SCPs), novel markers of human activity in geological records, originate from the incomplete combustion of fossil fuels at high industrial temperatures. With advancements in global industrialization, SCPs research and applications have become increasingly important. This study systematically reviews the research history and characteristics of SCPs, highlighting their stable chemical properties, unique morphological features, and easy accessibility, which make them a unique component of black carbon research. It then summarizes the significant applications of SCPs in reflecting regional environmental pollution, aiding in sediment dating and tracing atmospheric pollution sources. This study also identified the shortcomings of SCPs research, such as human error in identification, the relative scarcity of research records in the Southern Hemisphere and outside lakes, unclear potential hazards in ecosystems, and the influence of various factors on their application in sediment dating. In the future, it will be necessary to establish identification and reference standards for SCPs using online databases; explore their ecological and environmental significance in recording human activities on a global scale; and determine stable, reliable, and comparable regional SCP chronologies to further refine and deepen the current research.

中图分类号: 

1 IPCC. AR6 synthesis report: climate change 2023[M]// LEE H, ROMERO J. Intergovernmental panel on climate change. Switzerland, 2023.
2 ZHOU Weijian, ZHAO Xue, CHEN Ning. New progress in the Anthropocene science in China[J]. Advances in Earth Science, 2024, 39(1): 1-11.
周卫健, 赵雪, 陈宁.中国人类世科学研究新进展[J]. 地球科学进展, 2024, 39(1): 1-11.
3 IEA. World energy outlook 2022: CC BY 4.0[R]. Paris: International Energy Agency, 2022.
4 ROSE N L. Spheroidal carbonaceous fly ash particles in the anthropocene[M]// Encyclopedia of the Anthropocene. Amsterdam: Elsevier, 2018: 189-195.
5 LEFÈVRE R, GAUDICHET A, BILLON-GALLAND M A. Silicate microspherules intercepted in the plume of Etna volcano[J]. Nature, 1986, 322: 817-820.
6 HODGE P W, WRIGHT F W. Studies of particles for extraterrestrial origin: 2. a comparison of microscopic spherules of meteoritic and volcanic origin[J]. Journal of Geophysical Research, 1964, 69(12): 2 449-2 454.
7 HANDY R, DAVIDSON D. On the curious resemblance between fly ash and meteoritic dust[J]. Proceedings of the Iowa Academy of Science, 1953, 60(1): 373-379.
8 ADACHI K, CHUNG S H, BUSECK P R. Shapes of soot aerosol particles and implications for their effects on climate[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D15). DOI: 10.1029/2009JD012868 .
9 ROSE N L. Spheroidal carbonaceous fly ash particles provide a globally synchronous stratigraphic marker for the Anthropocene[J]. Environmental Science & Technology, 2015, 49(7): 4 155-4 162.
10 SWINDLES G T, WATSON E, TURNER T E, et al. Spheroidal carbonaceous particles are a defining stratigraphic marker for the Anthropocene[J]. Scientific Reports, 2015, 5(1): 10264. DOI:10.1038/srep10264 .
11 WATERS C N, TURNER S D. Defining the onset of the Anthropocene[J]. Science, 2022, 378(6 621): 706-708.
12 RUPPEL M, LUND M T, GRYTHE H, et al. Comparison of spheroidal carbonaceous particle data with modelled atmospheric black carbon concentration and deposition and air mass sources in northern Europe, 1850-2010[J]. Advances in Meteorology, 2013. DOI:10.1155/2013/393926 .
13 CHARLES D F, BINFORD M W, FURLONG E T, et al. Paleoecological investigation of recent lake acidification in the Adirondack Mountains, N.Y.[J]. Journal of Paleolimnology, 1990, 3(3): 195-241.
14 PUNNING J M, KOFF T, VARVAS M, et al. Impact of natural and man-made processes on the development of Lake Linajärv, NE Estonia[J]. Proceedings of the Estonian Academy of Sciences, Ecology, 1994, 4(4): 156-174.
15 TOLONEN K, HAPALAHTI R, SUKSI J. Comparison of varve dated soot ball chronology and lead 210 dating in Finland[J]. Geological Survey of Finland, 1990, 14: 65-75.
16 RENBERG I, WIK M. Dating recent lake sediments by soot particle counting[J]. SIL Proceedings, 1922-2010, 1984, 22(2): 712-718.
17 RENBERG I, WIK M. Soot particle counting in recent lake sediments an indirect dating method[J]. Ecological Bulletins, 1985(37): 53-57.
18 HILGERS E, THIES H, KALBFUS W. A lead-210 dated sediment record on heavy metals, polycyclic aromatic hydrocarbons and soot spherules for a dystrophic mountain lake[J]. SIL Proceedings, 1922-2010, 1993, 25(2): 1 091-1 094.
19 GRIFFIN J J, GOLDBERG E D. The fluxes of elemental carbon in coastal marine sediments[J]. Limnology and Oceanography, 1975, 20(3): 456-463.
20 GRIFFIN J J, GOLDBERG E D. Morphologies and origin of elemental carbon in the environment[J]. Science, 1979, 206(4 418): 563-565.
21 ROSE N L. A method for the selective removal of inorganic ash particles from lake sediments[J]. Journal of Paleolimnology, 1990, 4(1): 61-67.
22 GUILIZZONI P, LAMI A, MARCHETTO A. Plant pigment ratios from lakes sediments as indicators of recent acidification in alpine lakes[J]. Limnology and Oceanography, 1992, 37(7): 1 565-1 569.
23 WIK M, RENBERG I, DARLEY J. Sedimentary records of carbonaceous particles from fossil fuel combustion[J]. Hydrobiologia, 1986, 143(1): 387-394.
24 KOTHARI B K, WAHLEN M. Concentration and surface morphology of charcoal particles in sediments of Green Lake, N.Y.: implications regarding the use of energy in the past[J]. Northeastern Environmental Science, 1984, 3: 24-29.
25 DOUBLEDAY B, COLLEEN N. A paleolimnological survey of combustion particles from lakes and ponds in the eastern Arctic, Nunavut, Canada[D]. Nunavut: Queen’s University, 1999.
26 PUNNING J M, BOYLE J F, ALLIKSAAR T, et al. Human impact on the history of Lake Nômmejärv, NE Estonia: a geochemical and palaeobotanical study[J]. The Holocene, 1997, 7(1): 91-99.
27 KORHOLA A, VIRKANEN J, TIKKANEN M, et al. Fire-induced pH rise in a naturally acid hill-top lake, southern Finland: a palaeoecological survey[J]. The Journal of Ecology, 1996, 84(2): 257-265.
28 KORHOLA A, BLOM T. Marked early 20th century pollution and the subsequent recovery of Töölö Bay, central Helsinki, as indicated by subfossil diatom assemblage changes[J]. Hydrobiologia, 1996, 341(2): 169-179.
29 LAN Y L, BRESLIN V T. Sedimentary records of spheroidal carbonaceous particles from fossil-fuel combustion in western Lake Ontario[J]. Journal of Great Lakes Research, 1999, 25(3): 443-454.
30 ODGAARD B V. The sedimentary record of spheroidal carbonaceous fly-ash particles in shallow Danish Lakes[J]. Journal of Paleolimnology, 1993, 8(3): 171-187.
31 RENBERG I, HULTBERG H. A paleolimnological assessment of acidification and liming effects on diatom assemblages in a Swedish Lake[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1992, 49(1): 65-72.
32 ROSE N L, HARLOCK S. The spatial distribution of characterised fly-ash particles and trace metals in lake sediments and catchment mosses in the United Kingdom[J]. Water, Air, and Soil Pollution, 1998, 106(3): 287-308.
33 ROSE N L, HARLOCK S. Within-basin profile variability and cross-correlation of lake sediment cores using the spheroidal carbonaceous particle record[J]. Journal of Paleolimnology, 1999, 21(1): 85-96.
34 ROSE N L, HARLOCK S, APPLEBY P G, et al. Dating of recent lake sediments in the United Kingdom and Ireland using Spheroidal Carbonaceous Particle (SCP) concentration profiles[J]. The Holocene, 1995, 5(3): 328-335.
35 VIRKANEN J, KORHOLA A, TIKKANEN M, et al. Recent environmental changes in a naturally acidic rocky lake in southern Finland, as reflected in its sediment geochemistry and biostratigraphy[J]. Journal of Paleolimnology, 1997, 17(2): 191-213.
36 WIK M, RENBERG I. Environmental records of carbonaceous fly-ash particles from fossil-fuel combustion[J]. Journal of Paleolimnology, 1996, 15(3): 193-206.
37 INOUE J, TAKENAKA N, OKUDAIRA T, et al. The record of sedimentary Spheroidal Carbonaceous Particles (SCPs) in Beppu Bay, southern Japan, compared to historical trends of industrial activity and atmospheric pollution: further evidence for SCPs as a marker for Anthropocene industrialization[J]. The Anthropocene Review, 2023, 10(2): 541-555.
38 ROSE N L, JUGGINS S, WATT J. The characterisation of carbonaceous fly-ash particles from major European fossil-fuel types and applications to environmental samples[J]. Atmospheric Environment, 1999, 33(17): 2 699-2 713.
39 LANDERS D H, SIMONICH S M, JAFFE D A, et al. The Fate, Transport, and Ecological Impacts of Airborne Contaminants in Western National Parks (USA): EPA/600/R-07/138[R]. Corvallis, Oregon: U.S. Environmental Protection Agency, Office of Research and Development, NHEERL, Western Ecology Division, 2008.
40 WU Yanhong, WANG Sumin, XIA Weilan, et al. Dating of Spherical Carbon Particles (SCP) in modern lake sediments[J]. Chinese Science Bulletin, 2005, 50(7): 703-707.
吴艳宏, 王苏民, 夏威岚, 等. 近代湖泊沉积物球状碳颗粒(SCP)定年[J]. 科学通报, 2005, 50(7): 703-707.
41 LENG Xue, WU Shuang, WANG Xinmei, et al. 137Cs buildup, dating, and tuning for the recent lake sediment in Huangmaooan lake, Jiangxi, south China[J]. Oceanologia et Limnologia Sinica, 2017, 48(5): 944-951.
冷雪, 吴霜, 王昕梅, 等. 赣北黄茅潭近代湖泊137Cs蓄积特点、SCP计数和事件性沉积及其对210Pb计年的矫正[J]. 海洋与湖沼, 2017, 48(5): 944-951.
42 ZENG L, NING D, MAO X, et al. A 60-year sedimentary record of heavy metal pollution in Sanliqi Lake in Daye City[J]. Journal of Earth Environment, 2014, 5(4): 252-260.
43 CAO Y M, ZHANG E L, LANGDON P, et al. Spatially different nutrient histories recorded by multiple cores and implications for management in Taihu Lake, Eastern China[J]. Chinese Geographical Science, 2013, 23(5): 537-549.
44 CHEN X, QIAO Q L, McGOWAN S, et al. Determination of geochronology and sedimentation rates of shallow lakes in the middle Yangtze reaches using 210Pb, 137Cs and spheroidal carbonaceous particles[J]. CATENA, 2019, 174: 546-556.
45 CHEN X, LI C G, McGOWAN S, et al. Diatom response to heavy metal pollution and nutrient enrichment in an urban lake: evidence from paleolimnology[J]. Annales de Limnologie-International Journal of Limnology, 2014, 50(2): 121-130.
46 DONG M T, LUO Z J, JIANG Q F, et al. The rapid increases in microplastics in urban lake sediments[J]. Scientific Reports, 2020, 10. DOI: 10.1038/s41598-020-57933-8 .
47 WANG Z H, DONG Y H, CHEN J, et al.. Dating recent sediments from the subaqueous Yangtze Delta and adjacent continental shelf, China[J]. Journal of Palaeogeography, 2014, 3(2): 207-218.
48 WU Y H, LÜCKE A, WANG S M. Assessment of nutrient sources and paleoproductivity during the past century in Longgan Lake, middle reaches of the Yangtze River, China[J]. Journal of Paleolimnology, 2008, 39(4): 451-462.
49 WU Y H, LIU E F, YAO S C, et al. Recent heavy metal accumulation in Dongjiu and Xijiu Lakes, East China[J]. Journal of Paleolimnology, 2010, 43(2): 385-392.
50 BOYLE J F, ROSE N L, BENNION H, et al. Environmental impacts in the Jianghan Plain: evidence from lake sediments[J]. Water, Air, and Soil Pollution, 1999, 112: 21-40.
51 ROSE N L, BOYLE J F, DU Y, et al. Sedimentary evidence for changes in the pollution status of Taihu in the Jiangsu region of eastern China[J]. Journal of Paleolimnology, 2004, 32(1): 41-51.
52 HIRAKAWA E, MURAKAMI-KITASE A, OKUDAIRA T, et al. The spatial and temporal distributions of spheroidal carbonaceous particles from sediment core samples from industrial cities in Japan and China[J]. Environmental Earth Sciences, 2011, 64(3): 833-840.
53 HAN Y M, AN Z S, LEI D W, et al. The Sihailongwan Maar Lake, northeastern China as a candidate global boundary stratotype section and point for the Anthropocene series[J]. The Anthropocene Review, 2023, 10(1): 177-200.
54 PANIZZO V N, MACKAY A W, ROSE N L, et al. Recent palaeolimnological change recorded in Lake Xiaolongwan, Northeast China: climatic versus anthropogenic forcing[J]. Quaternary International, 2013, 290/291: 322-334.
55 ZHANG E L, LIU E F, SHEN J, et al. One century sedimentary record of lead and zinc pollution in Yangzong Lake, a highland lake in southwestern China[J]. Journal of Environmental Sciences, 2012, 24(7): 1 189-1 196.
56 XIAN H B, DONG X H, LI Y, et al. Reservoirs as high-efficacy sentinels of regional atmospheric pollution and precipitation: magnetic and chemical evidence from a typical subtropical reservoir in South China[J]. Environmental Science and Pollution Research, 2023, 30(40): 92 507-92 524.
57 ROSE N L, FLOWER R J, APPLEBY P G. Spheroidal Carbonaceous Particles (SCPs) as indicators of atmospherically deposited pollutants in North African wetlands of conservation importance[J]. Atmospheric Environment, 2003, 37(12): 1 655-1 663.
58 MARTINS C C, BÍCEGO M C, ROSE N L, et al. Historical record of Polycyclic Aromatic Hydrocarbons (PAHs) and Spheroidal Carbonaceous Particles (SCPs) in marine sediment cores from Admiralty Bay, King George Island, Antarctica[J]. Environmental Pollution, 2010, 158(1): 192-200.
59 YOSHIKAWA S, YAMAGUCHI S, HATA A. Paleolimnological investigation of recent acidity changes in Sawanoike Pond, Kyoto, Japan[J]. Journal of Paleolimnology, 2000, 23(3): 285-304.
60 NAGAFUCHI O, ROSE N L, HOSHIKA A, et al. The temporal record and sources of atmospherically deposited fly-ash particles in Lake Akagi-konuma, a Japanese Mountain Lake[J]. Journal of Paleolimnology, 2009, 42(3): 359-371.
61 OSADA K, URA S, KAGAWA M, et al. Wet and dry deposition of mineral dust particles in Japan: factors related to temporal variation and spatial distribution[J]. Atmospheric Chemistry and Physics, 2014, 14(2): 1 107-1 121.
62 ROSE N L, ROSE C L, BOYLE J F, et al. Lake-sediment evidence for local and remote sources of atmospherically deposited pollutants on svalbard[J]. Journal of Paleolimnology, 2004, 31(4): 499-513.
63 ROSE N L, JONES V J, NOON P E, et al. Long-range transport of pollutants to the Falkland Islands and Antarctica: evidence from lake sediment fly ash particle records[J]. Environmental Science & Technology, 2012, 46(18): 9 881-9 889.
64 CHIRINOS L, ROSE N L, URRUTIA R, et al. Environmental evidence of fossil fuel pollution in Laguna Chica de San Pedro Lake sediments (Central Chile)[J]. Environmental Pollution, 2006, 141(2): 247-256.
65 SCHNEIDER L, ROSE N L, LINTERN A, et al. Assessing environmental contamination from metal emission and relevant regulations in major areas of coal mining and electricity generation in Australia[J]. Science of the Total Environment, 2020, 728. DOI:10.1016/j.scitotenv.2020.137398 .
66 ENGELS S, FONG L S R Z, CHEN Q, et al. Historical atmospheric pollution trends in Southeast Asia inferred from lake sediment records[J]. Environmental Pollution, 2018, 235: 907-917.
67 LARSEN J. Recent changes in diatom-inferred pH, heavy metals, and spheroidal carbonaceous particles in lake sediments near an oil refinery at Mongstad, western Norway[J]. Journal of Paleolimnology, 2000, 23(4): 343-363.
68 ROBERTS L R, KERSTING D K, ZINKE J, et al. First recorded presence of anthropogenic fly-ash particles in coral skeletons[J]. The Science of the Total Environment, 2024, 921. DOI: 10.1016/j.scitotenv.2024.170665 .
69 ROSE N L, APPLEBY P G. Regional applications of lake sediment dating by spheroidal carbonaceous particle analysis I: United Kingdom[J]. Journal of Paleolimnology, 2005, 34(3): 349-361.
70 YANG H D, ROSE N L, BATTARBEE R W. Dating of recent catchment peats using Spheroidal Carbonaceous Particle (SCP) concentration profiles with particular reference to Lochnagar, Scotland[J]. The Holocene, 2001, 11(5): 593-597.
71 MURAKAMI-KITASE A, OKUDAIRA T, INOUE J. Relationship between surface morphology and chemical composition of spheroidal carbonaceous particles within sediment core samples recovered from Osaka Bay, Japan[J]. Environmental Earth Sciences, 2010, 59(8): 1 723-1 729.
72 THOMAS E R, TETZNER D R, ROBERTS S L, et al. First evidence of industrial fly-ash in an Antarctic ice core[J]. Scientific Reports, 2023, 13. DOI:10.1038/s41598-023-33849-x .
73 ROSE N L, HARLOCK S, APPLEBY P G. The spatial and temporal distributions of Spheroidal Carbonaceous fly-ash Particles (SCP) in the sediment records of European Mountain Lakes[J]. Water, Air, and Soil Pollution, 1999, 113(1): 1-32.
74 FIAŁKIEWICZ-KOZIEŁ B, ŁOKAS E, SMIEJA-KRÓL B, et al. The Śnieżka peatland as a candidate Global boundary Stratotype Section and Point for the Anthropocene series[J]. The Anthropocene Review, 2023, 10(1): 288-315.
75 BINDLER R, RENBERG I, APPLEBY P G, et al. Mercury accumulation rates and spatial patterns in lake sediments from West Greenland: a coast to ice margin transect[J]. Environmental Science & Technology, 2001, 35(9): 1 736-1 741.
76 HICKS S, ISAKSSON E. Assessing source areas of pollutants from studies of fly ash, charcoal, and pollen from Svalbard snow and ice[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D2). DOI: 10.1029/2005JD006167 .
77 ROSE N L, APPLEBY P G, BOYLE J F, et al. The spatial and temporal distribution of fossil-fuel dervied pollutants in the sediment record of Lake Baikal, east Siberia[J]. Journal of Paleolimnology, 1998, 20(2): 151-162.
78 ROSE N L. A method for the extraction of carbonaceous particles from lake sediment[J]. Journal of Paleolimnology, 1990, 3(1): 45-53.
79 ROSE N L. A note on further refinements to a procedure for the extraction of carbonaceous fly-ash particles from sediments[J]. Journal of Paleolimnology, 1994, 11(2): 201-204.
80 DAVIES T D, ABRAHAMS P W, TRANTER M, et al. Black acidic snow in the remote Scottish Highlands[J]. Nature, 1984, 312(5 989): 58-61.
81 del MONTE M, VITTORI O. Air pollution and stone decay: the case of Venice[J]. Endeavour, 1985, 9(3): 117-122.
82 FLOWER R J. Change, stress, sustainability and aquatic ecosystem resilience in North African wetland lakes during the 20th century: an introduction to integrated biodiversity studies within the CASSARINA Project[J]. Aquatic Ecology, 2001, 35(3): 261-280.
83 APPLEBY P G, BIRKS H H, FLOWER R J, et al. Radiometrically determined dates and sedimentation rates for recent sediments in nine North African wetland lakes (the CASSARINA Project)[J]. Aquatic Ecology, 2001, 35(3): 347-367.
84 ISAKSSON E, HERMANSON M, HICKS S, et al. Ice cores from Svalbard-useful archives of past climate and pollution history[J]. Physics and Chemistry Earth, Parts A/B/C, 2003, 28(28/29/30/31/32): 1 217-1228.
85 MURAKAMI A, YOSHIKAWA S. Record for long-range transport of fly-ash particles during past 100 years in the pond sediments in Oki Islands, Japan Sea[J]. The Quaternary Research (Daiyonki-Kenkyu), 2007, 46(3): 275-281.
86 MURAI S, SATO R, HASHIMOTO M, et al. Temporal changes in transboundary air pollutants in bottom sediments of lakes in East Asia[J]. Journal of Environmental Science and Engineering, 2013, 2: 629-639.
87 INOUE J, TOMOZAWA A, OKUDAIRA T. The use of size distributions of spheroidal carbonaceous particles in swimming pool deposits for evaluating atmospheric particle behaviour[J]. Water, Air, & Soil Pollution, 2013, 224(5). DOI: 10.1007/s11270-013-1580-7 .
88 INOUE J, MOMOSE A, OKUDAIRA T, et al. Chemical characteristics of Northeast Asian fly ash particles: implications for their long-range transportation[J]. Atmospheric Environment, 2014, 95: 375-382.
89 CRUTZEN P J, STOERMER E F. The “Anthropocene”[J]. Global Change Newsletter, 2000, 41: 17-18.
90 HAMMES K, SCHMIDT M W I, SMERNIK R J, et al. Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere[J]. Global Biogeochemical Cycles, 2007, 21(3). DOI: 10.1029/2006GB002914 .
91 MASIELLO C A. New directions in black carbon organic geochemistry[J]. Marine Chemistry, 2004, 92(1/2/3/4): 201-213.
92 ROSE N L, RUPPEL M. Environmental archives of contaminant particles[M]// Environmental contaminants. Dordrecht: Springer, 2015: 187-221.
93 HEDGES J I, EGLINTON G, HATCHER P G, et al. The molecularly-uncharacterized component of nonliving organic matter in natural environments[J]. Organic Geochemistry, 2000, 31(10): 945-958.
94 SEILER W, CRUTZEN P J. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning[J]. Climatic Change, 1980, 2(3): 207-247.
95 CHAKRABARTY R K, MOOSMÜLLER H, ARNOTT W P, et al. Low fractal dimension cluster-dilute soot aggregates from a premixed flame[J]. Physical Review Letters, 2009, 102(23). DOI: 10.1103/PhysRevLett.102.235504 .
96 ANDREAE M O, GELENCSÉR A. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols[J]. Atmospheric Chemistry and Physics, 2006, 6(10): 3 131-3 148.
97 ROSE N. Fly-ash particles[M]// LAST W M, SMOL J P. Tracking environmental change using lake sediments. Dordrecht: Springer Netherlands, 2002: 319-349.
98 ROSE N L. Quality control in the analysis of lake sediments for spheroidal carbonaceous particles[J]. Limnology and Oceanography: Methods, 2008, 6(4): 172-179.
99 WIK M, RENBERG I. Recent atmospheric deposition in sweden of carbonaceous particles from fossil-fuel combustion surveyed using lake sediments[J]. Ambio, 1991, 20(7): 289-292.
100 ROSE N L, JUGGINS S, WATT J. Fuel-type characterization of carbonaceous fly-ash particles using EDS-derived surface chemistries and its application to particles extracted from lake sediments[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1996, 452(1 947): 881-907.
101 CAPE J N, COYLE M, DUMITREAN P. The atmospheric lifetime of black carbon[J]. Atmospheric Environment, 2012, 59: 256-263.
102 JAENICKE R. Atmospheric aerosols and global climate[J]. Journal of Aerosol Science, 1980, 11(5/6): 577-588.
103 RENBERG I. Kartläggning av deposition av kolhaltiga partiklar från olje-och kolförbränning[J]. Proceedings Från Förbränningsteknisk Projektexposé, Projektresultat, 1986, 1: 316-325.
104 LARSEN J. Size distributions and concentrations of Spheroidal Carbonaceous fly-ash Particles (SCPs) in lake sediments as an aid to detecting locally deposited atmospheric pollution[J]. Water, Air, and Soil Pollution, 2003, 149(1): 163-175.
105 VUKIĆ J, FOTT J, PETRUSEK A, et al. What can size distribution of spheroidal carbonaceous particles reveal about their source?[J]. Atmospheric Environment, 2006, 40(19): 3 527-3 535.
106 VACHULA R S, OJEDA A S, HENDERSON E D, et al. The DiSCPersal model: a simple model for the small-scale atmospheric transport of Spheroidal Carbonaceous Particles (SCPs)[J]. Chemosphere, 2023, 328. DOI:10.1016/j.chemosphere.2023.138547 .
107 INOUE J, MORITSUGU K, OKUDAIRA T, et al. Elemental compositions and sizes of carbonaceous fly ash particles from atmospheric deposition collected at Cape Hedo, Okinawa, Japan: implications for their long-range transportation and source region variation[J]. Atmospheric Pollution Research, 2020, 11(2): 393-400.
108 MORENO J, LEORRI E, FATELA F, et al. Dating recent tidal marsh sediments using windborne giant particles of green petcoke—an example from the southwest coast of Portugal[J]. Continental Shelf Research, 2023, 262. DOI:10.1016/j.csr.2023.105026 .
[1] 江凯禧, 苏明, 林春明, 刘佳威, 雷亚平, 王策, 陈慧, 马文斌. 海岸泥质风暴沉积物研究现状与展望[J]. 地球科学进展, 2024, 39(3): 279-291.
[2] 张福乐, 王锦龙, 黄德坤, 于涛, 杜金洲. 福岛核污染水中的人工放射性核素及其在海洋环境中的迁移转化行为[J]. 地球科学进展, 2024, 39(1): 23-33.
[3] 加依娜·叶尔扎提, 陈震, 张献河, 林小明, 吴维盛, 黄孝波, 闫亚鹏, 汤永杰, 刘洁. 三维数字岩芯技术在珠江三角洲第四纪软沉积物变形研究中的应用[J]. 地球科学进展, 2023, 38(8): 866-878.
[4] 袁媛, 庄光超, 毛士海, 刘佳睿, 刘喜停, 杨桂朋. 海洋环境中乙烷和丙烷的分布及生物转化[J]. 地球科学进展, 2022, 37(4): 370-381.
[5] 吴晓川,欧阳黎明,郭晓中,黄焱羚,黄振华,李伟. 海域沉积物蠕动地貌的研究现状与展望[J]. 地球科学进展, 2021, 36(7): 763-772.
[6] 范成新, 刘敏, 王圣瑞, 方红卫, 夏星辉, 曹文志, 丁士明, 侯立军, 王沛芳, 陈敬安, 游静, 王菊英, 盛彦清, 朱伟. 20年来我国沉积物环境与污染控制研究进展与展望[J]. 地球科学进展, 2021, 36(4): 346-374.
[7] 董治宝,吕萍,李超,胡光印. 火星风条痕特征及其形成机制[J]. 地球科学进展, 2020, 35(9): 902-911.
[8] 赵仁杰,鄢全树,张海桃,关义立,葛振敏,袁龙,闫施帅. 全球俯冲沉积物组分及其地质意义[J]. 地球科学进展, 2020, 35(8): 789-803.
[9] 傅焓埔, 刘群, 胡修棉. 水下沉积物重力流与海底扇相模式研究进展[J]. 地球科学进展, 2020, 35(2): 124-136.
[10] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[11] 刘柏妤, 张虎才, 常凤琴, 张扬, 张晓楠, 冯仡哲, 李华勇. 茈碧湖现代沉积特征及其环境指示意义[J]. 地球科学进展, 2020, 35(2): 198-208.
[12] 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
[13] 顾家伟. 长江河口区晚新生代以来沉积化学元素分布及物源指示意义[J]. 地球科学进展, 2018, 33(5): 506-516.
[14] 田壮才, 郭秀军, 余乐, 贾永刚, 张少同, 乔路正. 内孤立波悬浮海底沉积物研究进展[J]. 地球科学进展, 2018, 33(2): 166-178.
[15] 韦海伦, 蔡进功, 王国力, 王学军. 海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J]. 地球科学进展, 2018, 33(10): 1024-1033.
阅读次数
全文


摘要