地球科学进展 ›› 2024, Vol. 39 ›› Issue (7): 702 -716. doi: 10.11867/j.issn.1001-8166.2024.051

综述与评述 上一篇    下一篇

海底高原与俯冲带相互作用的地质效应的研究进展
闫施帅 1 , 2( ), 鄢全树 1 , 2 , 3( ), 石学法 1 , 2 , 3, 袁龙 1   
  1. 1.自然资源部第一海洋研究所 海洋地质与成矿作用重点实验室,山东 青岛 266061
    2.河海大学 海洋学院,江苏 南京 210098
    3.山东省深海矿产资源开发重点实验室(筹),山东 青岛 266061
  • 收稿日期:2024-01-30 修回日期:2024-06-07 出版日期:2024-07-10
  • 通讯作者: 鄢全树 E-mail:shishuaiyan@yeah.net;yanquanshu@163.com
  • 基金资助:
    崂山实验室科技创新项目(LSKJ202204103);山东省泰山学者建设工程项目(tstp20230643)

Research Advances on the Geological Effects of the Interaction of Oceanic Plateau with Subduction Zone

Shishuai YAN 1 , 2( ), Quanshu YAN 1 , 2 , 3( ), Xuefa SHI 1 , 2 , 3, Long YUAN 1   

  1. 1.Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
    2.College of Oceanography, Hohai University, Nanjing 210098, China
    3.Key Laboratory of Deep Sea Mineral Resources Development, Shandong (Preparatory), Qingdao 266061, China
  • Received:2024-01-30 Revised:2024-06-07 Online:2024-07-10 Published:2024-07-29
  • Contact: Quanshu YAN E-mail:shishuaiyan@yeah.net;yanquanshu@163.com
  • About author:YAN Shishuai, Ph. D student, research area includes geochemistry of submarine rocks. E-mail: shishuaiyan@yeah.net
  • Supported by:
    the Laoshan Laboratory Science and Technology Innovation Program(LSKJ202204103);The Taishan Scholarship from Shandong Province(tstp20230643)

全球俯冲汇聚系统中,俯冲输入组分包括正常大洋板块以及具浮力的海底高原等正地形,二者对俯冲带会产生迥异的地质效应,因此,深入开展海底高原与俯冲带相互作用研究对理解俯冲带地球动力学过程和陆壳侧向增生等地质过程具有重要意义。系统总结了一些目前正处于关键俯冲带处的典型海底高原的地质与地球物理特征,结合俯冲带特征及数值模拟成果,深入探讨海底高原与俯冲带相互作用的地质效应。在俯冲带运动学和几何学方面,位于俯冲前缘的具浮力的海底高原等正地形通常会抵制俯冲,并可能造成俯冲带后撤和俯冲极性反转并形成新的俯冲带,甚至可能会终止俯冲并增生于成熟岛弧/陆壳边缘。然而,近年来的研究显示,部分海底高原的俯冲行为并没有终止,而是俯冲角度变缓呈现平板俯冲的样式,从而造成俯冲带地区上覆板块的构造缩短与增厚以及岩浆活动逐渐向板内迁移。在岩石地球化学方面,具富集地球化学特征的海底高原的俯冲消减不仅影响着壳幔圈层相互作用过程、岛弧—弧后熔岩的地球化学组分以及俯冲带地区热液矿床的形成,而且这些地质体的深俯冲也将对地幔不均一性的形成作出重要贡献。最后,指出未来会在海底高原深部精细结构及演化,岛弧及弧后盆地对“海底高原—海沟”新俯冲构造格局的地质响应,以及控制海底高原发生俯冲/增生的因素及其之间的定量关系等方面有较大的发展潜力。

In global subduction systems, the subduction inputs include normal oceanic slabs and buoyant oceanic plateaus. Both exert different geological effects on subduction zones. Thus, studying the interactions among the oceanic plateau and subduction zone will be significant for understanding subduction zone geodynamics and the lateral accretion processes of the continental crust. This study summarizes the geological and geophysical characteristics of typical oceanic plateaus that are currently close to subduction zones. These, combined with the geological and geophysical features of adjacent subduction zones and recent numerical simulation data, are used to discuss the geological effects of the interaction between oceanic plateaus and subduction zones. In terms of kinematics and geometry, buoyant oceanic plateaus generally resist subduction, leading to subduction retreatment and the reversal of subduction polarity, thereby forming new subduction zones. The subduction process in some subduction zones is terminated by the arrival of oceanic plateaus, and the plateaus finally accrete to the mature arc/crustal margins and become part of the continental crust. However, recent studies have shown that part of the oceanic plateaus do not lead to the termination of the subduction process, but rather contribute to the occurrence of flat subduction, thereby resulting in tectonic shortening and the thickening of the overlying plate in the subduction zone area and the gradual migration of magmatic activity toward the intraplate setting. Geochemically, these oceanic plateaus with enriched compositions not only affect subduction zone lava geochemistry and the formation of hydrothermal deposits, but may also contribute to the formation of mantle heterogeneity. Finally, this study proposes some key scientific issues on the interaction of oceanic plateaus with subduction zones, including the detailed crust/mantle structure of subduction zones, the geological and geochemical response of the island arc and backarc basin to the new subduction tectonic framework of “oceanic plateau-trench,” and quantitative correlations between the factors controlling whether plateaus are accreted or subducted remain unclear.

中图分类号: 

图1 全球洋底主要海底高原及海山链(形成年龄为白垩纪至今)分布图(据参考文献[ 1 - 3 ]修改)
数字代表海底高原: 莫德(73 Ma); 厄加勒斯; 马达加斯加(88 Ma); 康拉德; 凯尔盖朗(118 Ma); 布罗肯(118 Ma); 本哈姆(36 Ma); 奄美(115 Ma); 小笠原; 沙茨基(145 Ma); ? 赫兹(100 Ma); ? 马尼希基(123 Ma); ? 冰岛; ? 塞拉利昂(73 Ma); ? 里奥—格兰德; ? 东北乔治亚。未标注年龄数据缺乏相关的研究数据和资料
Fig. 1 Global distribution of major oceanic plateaus and seamount chainssince the Cretaceous)(modified after references1-3])
The numbers represent oceanic plateau: Maud (73 Ma); Agulhas; Madagascar (88 Ma); Conrad; Kerguelen (118 Ma); Broken (118 Ma); Benham (36 Ma); Amami (115 Ma); Ogasawara; Shatsky (145 Ma); ? Hess (100 Ma); ? Manihiki (123 Ma); ? Iceland; ? Sierra Leone (73 Ma); ? Rio Grande; ? NE Georgia. Some parts of the oceanic plateaus lack age data because there are currently no relevant research data and materials
图2 海底高原结构示意图(据参考文献[ 34 ]修改)
Fig. 2 The internal structure of oceanic plateaumodified after reference 34 ])
表1 正处于俯冲带前缘的典型海底高原的地质与地球物理特征
Table 1 Geological and geophysical characteristics of typical oceanic plateaus that is currently closing to a subduction zone
图3 靠近俯冲带海底高原基底熔岩的微量元素蛛网图
翁通—爪哇海底高原数据来自参考文献[ 3 64 ];希库朗伊海底高原数据来自参考文献[ 43 ];加勒比—哥伦比亚海底高原数据来自参考文献[ 3 45 ]和http://www.earthchem.org/petdb;卡罗琳海底高原数据来自参考文献[ 46 ];原始地幔、富集洋中脊玄武岩(E-MORB)、正常洋中脊玄武岩(N-MORB)和洋岛玄武岩(Ocean Island Basalt, OIB)数据来自参考文献[ 65
Fig. 3 Primitive mantle-normalized trace element patterns from the oceanic plateaus of near subduction zone
Data for the Ontong Java plateau are from references [3,64]; Data for the Hikurangi plateau are from reference [ 43 ]; Data for the Caribbean-Colombian plateau are from references [3,45] and http://www.earthchem.org/petdb; Data for the Caroline plateau are from reference [ 46 ]. Data for primitive mantle, E-MORB, N-MORB and OIB are from reference [ 65
图4 靠近俯冲带海底高原的初始 εNdt )与初始 87Sr/86Sri )图解(a)与 207Pb/204Pb206Pb/204Pb图解(b
翁通—爪哇海底高原数据来自http://georoc.mpch-mainz.gwdg.de/georoc/Entry.html;希库朗伊海底高原数据来自参考文献[ 43 ];加勒比—哥伦比亚海底高原数据来自参考文献[ 3 45 66 ];卡罗琳海底高原数据来自参考文献[ 46 ]。印度洋型MORB和北半球参考线(NHRL)数据来自参考文献[ 67 ];东太平洋海隆(EPR)MORB数据来自参考文献[ 49 ];地幔端元(DMM、EMI、EMII、HIMU)数据来自参考文献[ 68
Fig. 4 εNdtvs. 87Sr/86Sri ) (aand 207Pb/204Pb vs.206Pb/204Pbbdiagrams of the oceanic plateau near subduction zones
Data for the Ontong Java plateau are from http://georoc.mpch-mainz.gwdg.de/georoc/Entry.html, data for the Hikurangi plateau are from reference [ 43 ], data for the Caribbean-Colombian plateau are from references [3,45,66], and data for the Caroline plateau are from reference [ 46 ]. Data for the Indian Ocean MORB and the NHRL (North Hemisphere Reference Line) are from reference [ 67 ], data for the East Pacific Rise (EPR) MORB are from reference [ 49 ], data for mantle end-members (DMM, EMI, EMII, HIMU) are from reference [ 68
图5 大尺度海底高原增生及俯冲极性反转期间的构造演化(年轻海底高原与薄的大陆边缘模型)(据参考文献[ 35 74 ]修改)
(a)~(d)用速度矢量显示成分场和相应的黏度场;图中右下方白色方框内的彩色曲线代表P-T-t路径的图表的标记;颜色代表岩石类型:1:空气;2:水;3和4:沉积物;5:大陆上地壳;6:大陆下地壳;7:上洋壳;8:下洋壳;9:海底高原;10:岩石圈地幔;11:软流圈地幔;12:初始俯冲带;13和14:部分熔融的沉积物;15和16:部分熔融的大陆地壳;17和18:部分熔融的大洋地壳;19:部分熔融的海底高原;20:部分熔融的橄榄岩。详细内容可参阅参考文献[ 74
Fig. 5 Tectonic evolution for subduction polarity reversal during large-scale oceanic plateau accretiona model with a young oceanic plateau and thinned continental margin) (modified after references3574])
(a)~(d) Show composition fields and the corresponding viscosity field with velocity vectors. The colored curve within the white square at the bottom right of the diagram represents the P-T-t path. Colors indicate the rock types as follows: 1: air; 2: water; 3 and 4: sediments; 5: upper continental crust; 6: lower continental crust; 7: upper oceanic crust; 8: lower oceanic crust; 9: oceanic plateau; 10: lithospheric mantle; 11: asthenosphere mantle; 12: initial subduction zone; 13 and 14: partially molten sediment; 15 and 16: partially molten continental crust; 17 and 18: partially molten oceanic crust; 19: partially molten oceanic plateau; 20: partially molten peridotite. See reference [ 74 ] for details
图6 三维数值模拟主视图(约45 Ma)(据参考文献[ 75 ]修改)
在浮力较强的海底高原阻碍俯冲作用下,其下方的板块形成了一个缺口。上地幔是透明的,板块等值面上垂盖着颜色条表示的应变率不变量。在俯冲板块底部和下地幔顶部之间的375 km深度处,速度矢量箭头在横跨上地幔的水平面上用黑色标出,黑色数字表示不同模式下海底高原的密度(详细内容可参阅参考文献[ 75 ])
Fig. 6 Front view of numerical models at 45 Mamodified after reference 75 ])
Under the strong buoyancy of the oceanic plateau, the subduction process is hindered, resulting in a gap forming in the plate beneath it. The upper mantle is transparent, and slab isosurfaces are draped on a plot of the strain rate invariant represented by the colour bar. Velocity vector arrows are plotted in black in a horizontal plane across the upper mantle at a depth of 375 km which is half-way between the base of the subducting plate and the top of the lower mantle. Black numbers represent the densities of the oceanic plateaus in different models (see reference [ 75 ])
图7 海底高原与岛弧(a)和大陆边缘(b~c)碰撞模式(据参考文献[ 3 86 - 87 ]修改)
Fig. 7 Idealized cross-sections of the collision of an oceanic plateau with an island arcaand an active continental marginb~c) (modified after references386-87])
1 AMANTE C, EAKINS B. ETOPO1 arc-minute global relief model: procedures, data sources and analysis[Z]. National Geophysical Data Center, NOAA, U.S.A., 2009. DOI:10.7289/v5c8276m.
2 XIAO Wenjiao, SONG Dongfang, ZHANG Jien, et al. Anatomy of the structure and evolution of subduction zones and research prospects[J]. Earth Science, 2022, 47(9): 3 073-3 106.
肖文交, 宋东方, 张继恩, 等. 俯冲带结构演变解剖与研究展望[J]. 地球科学, 2022, 47(9): 3 073-3 106.
3 KERR A C. Oceanic plateaus[M]// Treatise on geochemistry. Amsterdam: Elsevier, 2014: 631-667.
4 CAMPBELL I H. Testing the plume theory[J]. Chemical Geology, 2007, 241(3/4): 153-176.
5 YAN Quanshu, SHI Xuefa. Geological effects of aseismic ridges or seamount chains subduction on the supra-subduction zone[J]. Acta Oceanologica Sinica, 2014, 36(5): 107-123.
鄢全树, 石学法. 无震脊或海山链俯冲对超俯冲带处的地质效应[J]. 海洋学报, 2014, 36(5): 107-123.
6 ALTIS S. Origin and tectonic evolution of the Caroline Ridge and the Sorol Trough, western tropical Pacific, from admittance and a tectonic modeling analysis[J]. Tectonophysics, 1999, 313(3): 271-292.
7 CLOOS M. Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts[J]. Geological Society of America Bulletin, 1993, 105(6): 715-737.
8 TATSUMI Y. The subduction factory: how it operates in the evolving Earth[J]. GSA Today, 2005, 15(7): 4-10.
9 VOGT P R. Subduction and aseismic ridges[J]. Nature, 1973, 241: 189-191.
10 ABRATIS M, WÖRNER G. Ridge collision, slab-window formation, and the flux of Pacific asthenosphere into the Caribbean realm[J]. Geology, 2001, 29(2): 127-130.
11 WANG Qiang, TANG Gongjian, HAO Lulu, et al. Ridge subduction, magmatism and metallogenesis[J]. Science China Earth Sciences, 2020, 63(10): 1 499-1 518.
王强, 唐功建, 郝露露, 等.洋中脊或海岭俯冲与岩浆作用及金属成矿[J]. 中国科学: 地球科学, 2020, 50(10): 1 401-1 423.
12 WORTHINGTON L L, van AVENDONK H J A, GULICK S P S, et al. Crustal structure of the Yakutat terrane and the evolution of subduction and collision in southern Alaska[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B1). DOI: 10.1029/2011JB008493 .
13 BANGS N L B, GULICK S P S, SHIPLEY T H. Seamount subduction erosion in the Nankai Trough and its potential impact on the seismogenic zone[J]. Geology, 2006, 34(8): 701-704.
14 ZHAO Renjie, YAN Quanshu, ZHANG Haitao, et al. The chemical composition of global subducting sediments and its geological significance[J]. Advances in Earth Science, 2020, 35(8): 789-803.
赵仁杰, 鄢全树, 张海桃, 等. 全球俯冲沉积物组分及其地质意义[J]. 地球科学进展, 2020, 35(8): 789-803.
15 LAURSEN J, SCHOLL D W, von HUENE R. Neotectonic deformation of the central Chile margin: deepwater forearc basin formation in response to hot spot ridge and seamount subduction[J]. Tectonics, 2002, 21(5): 2-1-2-27.
16 YAN Quanshu, SHI Xuefa, ZHANG Haitao. Advance and perspective of study on seafloor volcanic rocks in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(5): 920-930, 884.
鄢全树, 石学法, 张海桃. 中国海底火山岩研究进展及展望[J]. 矿物岩石地球化学通报, 2015, 34(5): 920-930, 884.
17 YAN Q S, YUAN L, SHI X F. Geochemical constraints on ridge-plume interaction in the West Philippine Basin[J]. Communications Earth & Environment, 2024, 5. DOI:10.1038/s43247-024-01473-w .
18 MORGAN J W. Deep mantle convection plumes and plate motions[J]. AAPG Bulletin, 1972, 56(2): 203-213.
19 WEIS D, HARPP K S, HARRISON L N, et al. Earth’s mantle composition revealed by mantle plumes[J]. Nature Reviews Earth & Environment, 2023, 4: 604-625.
20 ZHANG X B, BROWN E L, ZHANG J C, et al. Magmatism of Shatsky Rise controlled by plume-ridge interaction[J]. Nature Geoscience, 2023, 16: 1 061-1 069.
21 ZHENG Yongfei. Plate tectonics in the twenty-first century[J]. Science China Earth Sciences, 2023, 66(1): 1-40.
郑永飞. 21世纪板块构造[J]. 中国科学: 地球科学, 2023, 53(1): 1-40.
22 NIU Y, HEKINIAN R. Ridge suction drives plume-ridge interactions[M]// Oceanic hotspots. Berlin, Heidelberg: Springer, 2004: 285-307.
23 FOULGER G R. Plates vs. plumes[M]. Oxfor, UK: Wiley, 2010.
24 DONNELLY T W. Late Cretaceous basalts from the Caribbean, a possible flood basalt province of vast size[J]. EOS Transactions of the American Geophysical Union, 1973, 54(1): 1 004.
25 KROENKE L W. Origin of continents through development and coalescence of oceanic flood basalt plateaus[J]. EOS Transactions of the American Geophysical Union, 1974, 55: 443.
26 SHI Xuefa, YAN Quanshu. Magmatism of typical marginal basins(or back-arc basins) in the West Pacific[J]. Advances in Earth Science, 2013, 28(7): 737-750.
石学法, 鄢全树. 西太平洋典型边缘海盆的岩浆活动[J]. 地球科学进展, 2013, 28(7): 737-750.
27 LU Lu, YAN Lilong, LI Qiuhuan, et al. Oceanic plateau and its significances on the Earth system: a review[J]. Acta Petrologica Sinica, 2016, 32(6): 1 851-1 876.
陆鹿, 严立龙, 李秋环, 等. 洋底高原及其对地球系统意义研究综述[J]. 岩石学报, 2016, 32(6): 1 851-1 876.
28 WHITE R V, TARNEY J, KERR A C, et al. Modification of an oceanic plateau, Aruba, Dutch Caribbean: implications for the generation of continental crust[J]. Lithos, 1999, 46(1): 43-68.
29 KERR A C, WHITE R V, SAUNDERS A D. LIP reading: recognizing oceanic plateaux in the geological record[J]. Journal of Petrology, 2000, 41(7): 1 041-1 056.
30 KOPPERS A, WATTS A. Intraplate seamounts as a window into deep Earth processes[J]. Oceanography, 2010, 23(1): 42-57.
31 MIURA S, SUYEHIRO K, SHINOHARA M, et al. Seismological structure and implications of collision between the Ontong Java Plateau and Solomon Island Arc from ocean bottom seismometer-airgun data[J]. Tectonophysics, 2004, 389(3/4): 191-220.
32 GLADCZENKO T P, COFFIN M F, ELDHOLM O. Crustal structure of the Ontong Java Plateau: modeling of new gravity and existing seismic data[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B10): 22 711-22 729.
33 FARNETANI C G, RICHARDS M A, GHIORSO M S. Petrological models of magma evolution and deep crustal structure beneath hotspots and flood basalt provinces[J]. Earth and Planetary Science Letters, 1996, 143(1/2/3/4): 81-94.
34 KERR A C. Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian-Turonian boundary?[J]. Journal of the Geological Society, 1998, 155(4): 619-626.
35 LIU Z, DAI L M, LI S Z, et al. When plateau meets subduction zone: a review of numerical models[J]. Earth-Science Reviews, 2021, 215. DOI:10.1016/j.earscirev.2021.103556 .
36 PRINGLE M S. Radiometric ages of basaltic basement recovered at sites 800, 801, and 802, leg 129, Western Pacific Ocean[R]// LARSON R L, LANCELOT Y. Proceedings of the Ocean Drilling Program, scientific results. College Station, 1992.
37 KERR A C, MAHONEY J J. Oceanic plateaus: problematic plumes, potential paradigms[J]. Chemical Geology, 2007, 241(3/4): 332-353.
38 ZHANG Jinchang, LUO Yiming, LI Haiyong, et al. Structure and formation of oceanic plateaus in West Pacific Ocean[J]. Science & Technology Review, 2023, 41(2): 65-79.
张锦昌, 罗怡鸣, 李海勇, 等. 西太平洋洋底高原内部结构与形成演化[J]. 科技导报, 2023, 41(2): 65-79.
39 KORENAGA J. Why did not the Ontong Java Plateau form subaerially?[J]. Earth and Planetary Science Letters, 2005, 234(3/4): 385-399.
40 MANN P, TAIRA A. Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone[J]. Tectonophysics, 2004, 389(3/4): 137-190.
41 PHINNEY E J, MANN P, COFFIN M F, et al. Sequence stratigraphy, structural style, and age of deformation of the Malaita accretionary prism (Solomon arc-Ontong Java Plateau convergent zone)[J]. Tectonophysics, 2004, 389(3/4): 221-246.
42 DONG H, DAI L M, LIU L J, et al. Joint geodynamic-geophysical inversion suggests passive subduction and accretion of the Ontong Java Plateau[J]. Geophysical Research Letters, 2022, 49(23). DOI:10.1002/essoar.10512188.1 .
43 HOERNLE K, HAUFF F, van den BOGAARD P, et al. Age and geochemistry of volcanic rocks from the Hikurangi and Manihiki oceanic plateaus[J]. Geochimica et Cosmochimica Acta, 2010, 74(24): 7 196-7 219.
44 DAVY B, HOERNLE K, WERNER R. Hikurangi Plateau: crustal structure, rifted formation, and Gondwana subduction history[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(7). DOI:10.1029/2007GC001855 .
45 HAUFF F, HOERNLE K, TILTON G, et al. Large volume recycling of oceanic lithosphere over short time scales: geochemical constraints from the Caribbean Large Igneous Province[J]. Earth and Planetary Science Letters, 2000, 174(3/4): 247-263.
46 ZHANG G L, ZHANG J, WANG S, et al. Geochemical and chronological constraints on the mantle plume origin of the Caroline Plateau[J]. Chemical Geology, 2020, 540. DOI:10.1016/j.chemgeo.2020.119566 .
47 ZHANG Z Y, DONG D D, SUN W D, et al. The Caroline Ridge fault system and implications for the bending-related faulting of incoming oceanic plateaus[J]. Gondwana Research, 2021, 92: 133-148.
48 ZHENG Yongfei, CHEN Yixiang, CHEN Renxu, et al. Tectonic evolution of convergent plate margins and its geological effects[J]. Science China Earth Sciences, 2022, 65(7): 1 213-1 242.
郑永飞, 陈伊翔, 陈仁旭, 等. 汇聚板块边缘构造演化及其地质效应[J]. 中国科学: 地球科学, 2022, 52(7): 1 213-1 242.
49 MAHONEY J J, SINTON J M, KURZ M D, et al. Isotope and trace element characteristics of a super-fast spreading ridge: East Pacific rise, 13~23°S[J]. Earth and Planetary Science Letters, 1994, 121(1/2): 173-193.
50 COFFIN M F, ELDHOLM O. Large igneous provinces: crustal structure, dimensions, and external consequences[J]. Reviews of Geophysics, 1994, 32(1): 1-36.
51 WOOD R, DAVY B. The Hikurangi Plateau[J]. Marine Geology, 1994, 118(1/2): 153-173.
52 REYNERS M, EBERHART-PHILLIPS D, STUART G, et al. Imaging subduction from the trench to 300 km depth beneath the central North Island, New Zealand, with Vp and Vp/Vs [J]. Geophysical Journal International, 2006, 165(2): 565-583.
53 MAUFFRET A, LEROY S. Seismic stratigraphy and structure of the Caribbean igneous province[J]. Tectonophysics, 1997, 283(1/2/3/4): 61-104.
54 ZHANG J, ZHANG G L. Geochemical and chronological evidence for collision of proto-Yap arc/Caroline plateau and rejuvenated plate subduction at Yap trench[J]. Lithos, 2020, 370/371. DOI: 10.1016/j.chemgeo.2020.119566 .
55 YAN S S, YAN Q S, SHI X F, et al. The dynamics of the Sorol Trough magmatic system: insights from bulk-rock chemistry and mineral geochemistry of basaltic rocks[J]. Geological Journal, 2022, 57(10): 4 074-4 089.
56 ZHANG Z Y, DONG D D, SUN W D, et al. Subduction erosion, crustal structure, and an evolutionary model of the northern Yap subduction zone: new observations from the latest geophysical survey[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(1): 166-182.
57 FUJIWARA T, TAMURA C, NISHIZAWA A, et al. Morphology and tectonics of the Yap trench[J]. Marine Geophysical Researches, 2000, 21(1): 69-86.
58 YUAN Long, YAN Quanshu, SHI Xuefa. A study on the magmatic processes of lavas from cores of the drilling site DSDP-292 in the West Philippine Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2023, 42(4): 769-785, 684.
袁龙, 鄢全树, 石学法. 西菲律宾海盆DSDP-292站位熔岩的岩浆过程研究[J]. 矿物岩石地球化学通报, 2023, 42(4): 769-785, 684.
59 SDROLIAS M, ROEST W R, MÜLLER R D. An expression of Philippine Sea plate rotation: the Parece Vela and Shikoku Basins[J]. Tectonophysics, 2004, 394(1/2): 69-86.
60 YAN Q S, SHI X F, YUAN L, et al. Tectono-magmatic evolution of the Philippine Sea Plate: a review[J]. Geosystems and Geoenvironment, 2022, 1(2). DOI:10.1016/j.geogeo.2021.100018 .
61 YAN Quanshu, YUAN Long, SHI Xuefa. Magmatism and tectonic evolution of the Parece Vela Basin and the drilling proposal[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 103-109.
鄢全树, 袁龙, 石学法. 帕里西维拉海盆岩浆—构造过程及钻探建议[J]. 海洋地质与第四纪地质, 2022, 42(5): 103-109.
62 GAINA C, MÜLLER D. Cenozoic tectonic and depth/age evolution of the Indonesian gateway and associated back-arc basins[J]. Earth-Science Reviews, 2007, 83(3/4): 177-203.
63 KERR A C, WHITE R V, THOMPSON P M E, et al. No oceanic plateau—No Caribbean plate? the seminal role of an oceanic plateau in Caribbean plate evolution[M]// The circum-gulf of Mexico and the Caribbean: hydrocarbon habitats, basin formation and plate tectonics. Tulsa, Okla: American Association of Petroleum Geologists, 2003.
64 REEKIE C D J, JENNER F E, SMYTHE D J, et al. Sulfide resorption during crustal ascent and degassing of oceanic plateau basalts[J]. Nature Communications, 2019, 10. DOI:10.1038/s41467-018-08001-3 .
65 SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
66 HASTIE A R, KERR A C, MITCHELL S F, et al. Geochemistry and petrogenesis of Cretaceous oceanic plateau lavas in eastern Jamaica[J]. Lithos, 2008, 101(3/4): 323-343.
67 HART S R. A large-scale isotope anomaly in the southern Hemisphere mantle[J]. Nature, 1984, 309: 753-757.
68 ZINDLER A. Chemical geodynamics[J]. Annual Review of Earth and Planetary Sciences, 1986, 14: 493-571.
69 YAN Quanshu, YUAN Long, YAN Shishuai, et al. Geological evolution and research prospect in southeast boundary of Philippine Sea Plate[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 50-63.
鄢全树, 袁龙, 闫施帅, 等. 菲律宾海板块东南边界地质过程与研究展望[J]. 海洋地质与第四纪地质, 2023, 43(5): 50-63.
70 CAMPBELL I H. Large igneous provinces and the mantle plume hypothesis[J]. Elements, 2005, 1(5): 265-269.
71 CORDERY M J, DAVIES G F, CAMPBELL I H. Genesis of flood basalts from eclogite-bearing mantle plumes[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B9): 20 179-20 197.
72 ZHANG Zhaochong, ZHU Jiang, CHENG Zhiguo, et al. Classification, genesis of large igneous province associated with its effect on Earth system[J]. Acta Geologica Sinica, 2022, 96(12): 4 057-4 090.
张招崇, 朱江, 程志国, 等. 大火成岩省的类型、成因及其地球系统意义[J]. 地质学报, 2022, 96(12): 4 057-4 090.
73 VOGT K, GERYA T V. From oceanic plateaus to allochthonous terranes: numerical modelling[J]. Gondwana Research, 2014, 25(2): 494-508.
74 TAO J L, DAI L M, LOU D, et al. Accretion of oceanic plateaus at continental margins: numerical modeling[J]. Gondwana Research, 2020, 81: 390-402.
75 MASON W G, MORESI L, BETTS P G, et al. Three-dimensional numerical models of the influence of a buoyant oceanic plateau on subduction zones[J]. Tectonophysics, 2010, 483(1/2): 71-79.
76 LIU L J, GURNIS M, SETON M, et al. The role of oceanic plateau subduction in the Laramide orogeny[J]. Nature Geoscience, 2010, 3: 353-357.
77 NIU Yaoling, SHEN Fangyu, CHEN Yanhong, et al. The geologically testable hypothesis on subduction initiation and actions[J]. Earth Science Frontiers, 2018, 25(6): 51-66.
牛耀龄, 沈芳宇, 陈艳虹, 等. 俯冲带形成机制的可检验假说和检验方案[J]. 地学前缘, 2018, 25(6): 51-66.
78 HOFMANN A W. Mantle geochemistry: the message from oceanic volcanism[J]. Nature, 1997, 385: 219-229.
79 ABBOTT D, MOONEY W. The structural and geochemical evolution of the continental crust: support for the oceanic plateau model of continental growth[J]. Reviews of Geophysics, 1995, 33(): 231-242.
80 XU Y, YAN Q S, SHI X F, et al. Discovery of Late Mesozoic volcanic seamounts at the ocean-continent transition zone in the northeastern margin of South China Sea and its tectonic implication[J]. Gondwana Research, 2023, 120: 111-126.
81 ZHANG K J, YAN L L, JI C. Switch of NE Asia from extension to contraction at the mid-Cretaceous: a tale of the Okhotsk Oceanic plateau from initiation by the Perm Anomaly to extrusion in the Mongol-Okhotsk Ocean?[J]. Earth-Science Reviews, 2019, 198. DOI: 10.1016/j.earscirev.2019.102941 .
82 GREENE A R, SCOATES J S, WEIS D. Wrangellia flood basalts in Alaska: a record of plume-lithosphere interaction in a Late Triassic accreted oceanic plateau[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(12). DOI:10.1029/2008GC002092 .
83 ZHANG K J, XIA B, ZHANG Y X, et al. Central Tibetan Meso-Tethyan oceanic plateau[J]. Lithos, 2014, 210/211: 278-288.
84 YAN L L, ZHANG K J. Infant intra-oceanic arc magmatism due to initial subduction induced by oceanic plateau accretion: a case study of the Bangong Meso-Tethys, central Tibet, Western China[J]. Gondwana Research, 2020, 79: 110-124.
85 TETREAULT J L, BUITER S J H. Geodynamic models of terrane accretion: testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B8). DOI: 10.1029/2012JB009316 .
86 TETREAULT J L, BUITER S J H. Future accreted terranes: a compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments[J]. Solid Earth, 2014, 5(2): 1 243-1 275.
87 SALEEBY J. Segmentation of the Laramide Slab—evidence from the southern Sierra Nevada region[J]. Geological Society of America Bulletin, 2003, 115: 655-668.
88 YAN Zhiyong, CHEN Lin, XIONG Xiong, et al. Observations and modeling of flat subduction and its geological effects[J]. Science China Earth Sciences, 2020, 63: 1 069-1 091.
颜智勇, 陈林, 熊熊, 等. 平板俯冲及其地质效应的研究进展: 观测与模拟[J]. 中国科学: 地球科学, 2020, 50: 1 044-1 068.
89 ARRIAL P A, BILLEN M I. Influence of geometry and eclogitization on oceanic plateau subduction[J]. Earth and Planetary Science Letters, 2013, 363: 34-43.
90 AXEN G J, van WIJK J W, CURRIE C A. Basal continental mantle lithosphere displaced by flat-slab subduction[J]. Nature Geoscience, 2018, 11: 961-964.
91 MARTINOD J, HUSSON L, ROPERCH P, et al. Horizontal subduction zones, convergence velocity and the building of the Andes[J]. Earth and Planetary Science Letters, 2010, 299(3/4): 299-309.
92 FROMM R, ZANDT G, BECK S L. Crustal thickness beneath the Andes and Sierras Pampeanas at 30°S inferred from Pn apparent phase velocities[J]. Geophysical Research Letters, 2004, 31(6). DOI:10.1029/2003GL019231 .
93 GARDNER T W, FISHER D M, MORELL K D, et al. Upper-plate deformation in response to flat slab subduction inboard of the aseismic Cocos Ridge, Osa Peninsula, Costa Rica[J]. Lithosphere, 2013, 5(3): 247-264.
94 GERYA T V, FOSSATI D, CANTIENI C, et al. Dynamic effects of aseismic ridge subduction: numerical modelling[J]. European Journal of Mineralogy, 2009, 21(3): 649-661.
95 LIU S B, CURRIE C A. Farallon plate dynamics prior to the Laramide orogeny: numerical models of flat subduction[J]. Tectonophysics, 2016, 666: 33-47.
96 HU J S, LIU L J, HERMOSILLO A, et al. Simulation of late Cenozoic South American flat-slab subduction using geodynamic models with data assimilation[J]. Earth and Planetary Science Letters, 2016, 438: 1-13.
97 STERN R J. Subduction zones[J]. Reviews of Geophysics, 2002, 40(4): 3-1-3-38.
98 YAN Q S, ZHANG P Y, METCALFE I, et al. Geochemistry of axial lavas from the mid- and southern Mariana Trough, and implications for back-arc magmatic processes[J]. Mineralogy and Petrology, 2019, 113(6): 803-820.
99 ROSENBAUM G, MO W. Tectonic and magmatic responses to the subduction of high bathymetric relief[J]. Gondwana Research, 2011, 19(3): 571-582.
100 TIMM C, DAVY B, HAASE K, et al. Subduction of the oceanic Hikurangi Plateau and its impact on the Kermadec arc[J]. Nature Communications, 2014, 5. DOI:10.1038/ncomms5923 .
101 de RONDE C E J, BAKER E T, MASSOTH G J, et al. Submarine hydrothermal activity along the mid-Kermadec Arc, New Zealand: large-scale effects on venting[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(7). DOI:10.1029/2006GC001495 .
102 BEIER C, BRANDL P A, LIMA S M, et al. Tectonic control on the genesis of magmas in the New Hebrides arc (Vanuatu)[J]. Lithos, 2018, 312/313: 290-307.
103 HOERNLE K, ABT D L, FISCHER K M, et al. Arc-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua[J]. Nature, 2008, 451: 1 094-1 097.
104 GAZEL E, HAYES J L, HOERNLE K, et al. Continental crust generated in oceanic arcs[J]. Nature Geoscience, 2015, 8: 321-327.
105 HASTIE A R, KERR A C, MCDONALD I, et al. Do Cenozoic analogues support a plate tectonic origin for Earth’s earliest continental crust?[J]. Geology, 2010, 38(6): 495-498.
106 LOISELET C, HUSSON L, BRAUN J. From longitudinal slab curvature to slab rheology[J]. Geology, 2009, 37(8): 747-750.
107 HALE A J, GOTTSCHALDT K D, ROSENBAUM G, et al. Dynamics of slab tear faults: insights from numerical modelling[J]. Tectonophysics, 2010, 483(1/2): 58-70.
108 XU Fei, ZHOU Zuyi. Oceanic plateaus: windows to the Earth’s interior[J]. Advances in Earth Science, 2003, 18(5): 745-752.
徐斐, 周祖翼. 洋底高原: 了解地球内部的窗口[J]. 地球科学进展, 2003, 18(5): 745-752.
109 CLIFT P, VANNUCCHI P. Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust[J]. Reviews of Geophysics, 2004, 42(2). DOI:10.1029/2003RG000127 .
110 LI S Z, SUO Y H, LI X Y, et al. Microplate tectonics: new insights from micro-blocks in the global oceans, continental margins and deep mantle[J]. Earth-Science Reviews, 2018, 185: 1 029-1 064.
[1] 魏新元, 栾锡武, 孟凡顺, 冉伟民, 鲁银涛, 刘泽璇, 王嘉, 胡庆, 张丹丹. 帝汶海槽构造与地震特征对深部板块的约束[J]. 地球科学进展, 2022, 37(3): 277-289.
[2] 张晓智, 周怀阳, 钱生平. 俯冲带岩浆弧安山岩的成因研究进展[J]. 地球科学进展, 2021, 36(3): 288-306.
[3] 林间, 徐敏, 周志远, 王月. 全球俯冲带大洋钻探进展与启示[J]. 地球科学进展, 2017, 32(12): 1253-1266.
[4] 杨婧, 王金荣, 张旗, 陈万峰, 潘振杰, 焦守涛, 王淑华. 弧后盆地玄武岩(BABB)数据挖掘:与MORB及IAB的对比[J]. 地球科学进展, 2016, 31(1): 66-77.
[5] 夏阳,张立飞. 中源地震脱水脆变机制的岩石学研究进展[J]. 地球科学进展, 2013, 28(9): 997-1006.
[6] 朱俊江. 哥斯达黎加地震起源计划——IODP 334航次介绍[J]. 地球科学进展, 2011, 26(12): 1300-1305.
[7] 王永锋;金振民;. 地震波各向异性:窥测地球深部构造的“探针”[J]. 地球科学进展, 2005, 20(9): 946-953.
[8] 王利;周祖翼. 发震带试验(SEIZE)[J]. 地球科学进展, 2005, 20(8): 823-832.
[9] 赖绍聪. 岩浆作用的物理过程研究进展[J]. 地球科学进展, 1999, 14(2): 153-158.
[10] 金性春. 大洋钻探与西太平洋构造[J]. 地球科学进展, 1995, 10(3): 234-239.
[11] 徐夕生; 周新民; 王德滋. 中酸性岩浆岩中岩石包体研究的新进展[J]. 地球科学进展, 1993, 8(4): 54-58.
[12] 张魁武,张旗,李达周. 阿拉斯加里镁铁—超镁铁杂岩的研究历史和现状[J]. 地球科学进展, 1990, 5(6): 48-51.
阅读次数
全文


摘要