1 |
AMANTE C, EAKINS B. ETOPO1 arc-minute global relief model: procedures, data sources and analysis[Z]. National Geophysical Data Center, NOAA, U.S.A., 2009. DOI:10.7289/v5c8276m.
|
2 |
XIAO Wenjiao, SONG Dongfang, ZHANG Jien, et al. Anatomy of the structure and evolution of subduction zones and research prospects[J]. Earth Science, 2022, 47(9): 3 073-3 106.
|
|
肖文交, 宋东方, 张继恩, 等. 俯冲带结构演变解剖与研究展望[J]. 地球科学, 2022, 47(9): 3 073-3 106.
|
3 |
KERR A C. Oceanic plateaus[M]// Treatise on geochemistry. Amsterdam: Elsevier, 2014: 631-667.
|
4 |
CAMPBELL I H. Testing the plume theory[J]. Chemical Geology, 2007, 241(3/4): 153-176.
|
5 |
YAN Quanshu, SHI Xuefa. Geological effects of aseismic ridges or seamount chains subduction on the supra-subduction zone[J]. Acta Oceanologica Sinica, 2014, 36(5): 107-123.
|
|
鄢全树, 石学法. 无震脊或海山链俯冲对超俯冲带处的地质效应[J]. 海洋学报, 2014, 36(5): 107-123.
|
6 |
ALTIS S. Origin and tectonic evolution of the Caroline Ridge and the Sorol Trough, western tropical Pacific, from admittance and a tectonic modeling analysis[J]. Tectonophysics, 1999, 313(3): 271-292.
|
7 |
CLOOS M. Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts[J]. Geological Society of America Bulletin, 1993, 105(6): 715-737.
|
8 |
TATSUMI Y. The subduction factory: how it operates in the evolving Earth[J]. GSA Today, 2005, 15(7): 4-10.
|
9 |
VOGT P R. Subduction and aseismic ridges[J]. Nature, 1973, 241: 189-191.
|
10 |
ABRATIS M, WÖRNER G. Ridge collision, slab-window formation, and the flux of Pacific asthenosphere into the Caribbean realm[J]. Geology, 2001, 29(2): 127-130.
|
11 |
WANG Qiang, TANG Gongjian, HAO Lulu, et al. Ridge subduction, magmatism and metallogenesis[J]. Science China Earth Sciences, 2020, 63(10): 1 499-1 518.
|
|
王强, 唐功建, 郝露露, 等.洋中脊或海岭俯冲与岩浆作用及金属成矿[J]. 中国科学: 地球科学, 2020, 50(10): 1 401-1 423.
|
12 |
WORTHINGTON L L, van AVENDONK H J A, GULICK S P S, et al. Crustal structure of the Yakutat terrane and the evolution of subduction and collision in southern Alaska[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B1). DOI: 10.1029/2011JB008493 .
|
13 |
BANGS N L B, GULICK S P S, SHIPLEY T H. Seamount subduction erosion in the Nankai Trough and its potential impact on the seismogenic zone[J]. Geology, 2006, 34(8): 701-704.
|
14 |
ZHAO Renjie, YAN Quanshu, ZHANG Haitao, et al. The chemical composition of global subducting sediments and its geological significance[J]. Advances in Earth Science, 2020, 35(8): 789-803.
|
|
赵仁杰, 鄢全树, 张海桃, 等. 全球俯冲沉积物组分及其地质意义[J]. 地球科学进展, 2020, 35(8): 789-803.
|
15 |
LAURSEN J, SCHOLL D W, von HUENE R. Neotectonic deformation of the central Chile margin: deepwater forearc basin formation in response to hot spot ridge and seamount subduction[J]. Tectonics, 2002, 21(5): 2-1-2-27.
|
16 |
YAN Quanshu, SHI Xuefa, ZHANG Haitao. Advance and perspective of study on seafloor volcanic rocks in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(5): 920-930, 884.
|
|
鄢全树, 石学法, 张海桃. 中国海底火山岩研究进展及展望[J]. 矿物岩石地球化学通报, 2015, 34(5): 920-930, 884.
|
17 |
YAN Q S, YUAN L, SHI X F. Geochemical constraints on ridge-plume interaction in the West Philippine Basin[J]. Communications Earth & Environment, 2024, 5. DOI:10.1038/s43247-024-01473-w .
|
18 |
MORGAN J W. Deep mantle convection plumes and plate motions[J]. AAPG Bulletin, 1972, 56(2): 203-213.
|
19 |
WEIS D, HARPP K S, HARRISON L N, et al. Earth’s mantle composition revealed by mantle plumes[J]. Nature Reviews Earth & Environment, 2023, 4: 604-625.
|
20 |
ZHANG X B, BROWN E L, ZHANG J C, et al. Magmatism of Shatsky Rise controlled by plume-ridge interaction[J]. Nature Geoscience, 2023, 16: 1 061-1 069.
|
21 |
ZHENG Yongfei. Plate tectonics in the twenty-first century[J]. Science China Earth Sciences, 2023, 66(1): 1-40.
|
|
郑永飞. 21世纪板块构造[J]. 中国科学: 地球科学, 2023, 53(1): 1-40.
|
22 |
NIU Y, HEKINIAN R. Ridge suction drives plume-ridge interactions[M]// Oceanic hotspots. Berlin, Heidelberg: Springer, 2004: 285-307.
|
23 |
FOULGER G R. Plates vs. plumes[M]. Oxfor, UK: Wiley, 2010.
|
24 |
DONNELLY T W. Late Cretaceous basalts from the Caribbean, a possible flood basalt province of vast size[J]. EOS Transactions of the American Geophysical Union, 1973, 54(1): 1 004.
|
25 |
KROENKE L W. Origin of continents through development and coalescence of oceanic flood basalt plateaus[J]. EOS Transactions of the American Geophysical Union, 1974, 55: 443.
|
26 |
SHI Xuefa, YAN Quanshu. Magmatism of typical marginal basins(or back-arc basins) in the West Pacific[J]. Advances in Earth Science, 2013, 28(7): 737-750.
|
|
石学法, 鄢全树. 西太平洋典型边缘海盆的岩浆活动[J]. 地球科学进展, 2013, 28(7): 737-750.
|
27 |
LU Lu, YAN Lilong, LI Qiuhuan, et al. Oceanic plateau and its significances on the Earth system: a review[J]. Acta Petrologica Sinica, 2016, 32(6): 1 851-1 876.
|
|
陆鹿, 严立龙, 李秋环, 等. 洋底高原及其对地球系统意义研究综述[J]. 岩石学报, 2016, 32(6): 1 851-1 876.
|
28 |
WHITE R V, TARNEY J, KERR A C, et al. Modification of an oceanic plateau, Aruba, Dutch Caribbean: implications for the generation of continental crust[J]. Lithos, 1999, 46(1): 43-68.
|
29 |
KERR A C, WHITE R V, SAUNDERS A D. LIP reading: recognizing oceanic plateaux in the geological record[J]. Journal of Petrology, 2000, 41(7): 1 041-1 056.
|
30 |
KOPPERS A, WATTS A. Intraplate seamounts as a window into deep Earth processes[J]. Oceanography, 2010, 23(1): 42-57.
|
31 |
MIURA S, SUYEHIRO K, SHINOHARA M, et al. Seismological structure and implications of collision between the Ontong Java Plateau and Solomon Island Arc from ocean bottom seismometer-airgun data[J]. Tectonophysics, 2004, 389(3/4): 191-220.
|
32 |
GLADCZENKO T P, COFFIN M F, ELDHOLM O. Crustal structure of the Ontong Java Plateau: modeling of new gravity and existing seismic data[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B10): 22 711-22 729.
|
33 |
FARNETANI C G, RICHARDS M A, GHIORSO M S. Petrological models of magma evolution and deep crustal structure beneath hotspots and flood basalt provinces[J]. Earth and Planetary Science Letters, 1996, 143(1/2/3/4): 81-94.
|
34 |
KERR A C. Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian-Turonian boundary?[J]. Journal of the Geological Society, 1998, 155(4): 619-626.
|
35 |
LIU Z, DAI L M, LI S Z, et al. When plateau meets subduction zone: a review of numerical models[J]. Earth-Science Reviews, 2021, 215. DOI:10.1016/j.earscirev.2021.103556 .
|
36 |
PRINGLE M S. Radiometric ages of basaltic basement recovered at sites 800, 801, and 802, leg 129, Western Pacific Ocean[R]// LARSON R L, LANCELOT Y. Proceedings of the Ocean Drilling Program, scientific results. College Station, 1992.
|
37 |
KERR A C, MAHONEY J J. Oceanic plateaus: problematic plumes, potential paradigms[J]. Chemical Geology, 2007, 241(3/4): 332-353.
|
38 |
ZHANG Jinchang, LUO Yiming, LI Haiyong, et al. Structure and formation of oceanic plateaus in West Pacific Ocean[J]. Science & Technology Review, 2023, 41(2): 65-79.
|
|
张锦昌, 罗怡鸣, 李海勇, 等. 西太平洋洋底高原内部结构与形成演化[J]. 科技导报, 2023, 41(2): 65-79.
|
39 |
KORENAGA J. Why did not the Ontong Java Plateau form subaerially?[J]. Earth and Planetary Science Letters, 2005, 234(3/4): 385-399.
|
40 |
MANN P, TAIRA A. Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone[J]. Tectonophysics, 2004, 389(3/4): 137-190.
|
41 |
PHINNEY E J, MANN P, COFFIN M F, et al. Sequence stratigraphy, structural style, and age of deformation of the Malaita accretionary prism (Solomon arc-Ontong Java Plateau convergent zone)[J]. Tectonophysics, 2004, 389(3/4): 221-246.
|
42 |
DONG H, DAI L M, LIU L J, et al. Joint geodynamic-geophysical inversion suggests passive subduction and accretion of the Ontong Java Plateau[J]. Geophysical Research Letters, 2022, 49(23). DOI:10.1002/essoar.10512188.1 .
|
43 |
HOERNLE K, HAUFF F, van den BOGAARD P, et al. Age and geochemistry of volcanic rocks from the Hikurangi and Manihiki oceanic plateaus[J]. Geochimica et Cosmochimica Acta, 2010, 74(24): 7 196-7 219.
|
44 |
DAVY B, HOERNLE K, WERNER R. Hikurangi Plateau: crustal structure, rifted formation, and Gondwana subduction history[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(7). DOI:10.1029/2007GC001855 .
|
45 |
HAUFF F, HOERNLE K, TILTON G, et al. Large volume recycling of oceanic lithosphere over short time scales: geochemical constraints from the Caribbean Large Igneous Province[J]. Earth and Planetary Science Letters, 2000, 174(3/4): 247-263.
|
46 |
ZHANG G L, ZHANG J, WANG S, et al. Geochemical and chronological constraints on the mantle plume origin of the Caroline Plateau[J]. Chemical Geology, 2020, 540. DOI:10.1016/j.chemgeo.2020.119566 .
|
47 |
ZHANG Z Y, DONG D D, SUN W D, et al. The Caroline Ridge fault system and implications for the bending-related faulting of incoming oceanic plateaus[J]. Gondwana Research, 2021, 92: 133-148.
|
48 |
ZHENG Yongfei, CHEN Yixiang, CHEN Renxu, et al. Tectonic evolution of convergent plate margins and its geological effects[J]. Science China Earth Sciences, 2022, 65(7): 1 213-1 242.
|
|
郑永飞, 陈伊翔, 陈仁旭, 等. 汇聚板块边缘构造演化及其地质效应[J]. 中国科学: 地球科学, 2022, 52(7): 1 213-1 242.
|
49 |
MAHONEY J J, SINTON J M, KURZ M D, et al. Isotope and trace element characteristics of a super-fast spreading ridge: East Pacific rise, 13~23°S[J]. Earth and Planetary Science Letters, 1994, 121(1/2): 173-193.
|
50 |
COFFIN M F, ELDHOLM O. Large igneous provinces: crustal structure, dimensions, and external consequences[J]. Reviews of Geophysics, 1994, 32(1): 1-36.
|
51 |
WOOD R, DAVY B. The Hikurangi Plateau[J]. Marine Geology, 1994, 118(1/2): 153-173.
|
52 |
REYNERS M, EBERHART-PHILLIPS D, STUART G, et al. Imaging subduction from the trench to 300 km depth beneath the central North Island, New Zealand, with Vp and Vp/Vs [J]. Geophysical Journal International, 2006, 165(2): 565-583.
|
53 |
MAUFFRET A, LEROY S. Seismic stratigraphy and structure of the Caribbean igneous province[J]. Tectonophysics, 1997, 283(1/2/3/4): 61-104.
|
54 |
ZHANG J, ZHANG G L. Geochemical and chronological evidence for collision of proto-Yap arc/Caroline plateau and rejuvenated plate subduction at Yap trench[J]. Lithos, 2020, 370/371. DOI: 10.1016/j.chemgeo.2020.119566 .
|
55 |
YAN S S, YAN Q S, SHI X F, et al. The dynamics of the Sorol Trough magmatic system: insights from bulk-rock chemistry and mineral geochemistry of basaltic rocks[J]. Geological Journal, 2022, 57(10): 4 074-4 089.
|
56 |
ZHANG Z Y, DONG D D, SUN W D, et al. Subduction erosion, crustal structure, and an evolutionary model of the northern Yap subduction zone: new observations from the latest geophysical survey[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(1): 166-182.
|
57 |
FUJIWARA T, TAMURA C, NISHIZAWA A, et al. Morphology and tectonics of the Yap trench[J]. Marine Geophysical Researches, 2000, 21(1): 69-86.
|
58 |
YUAN Long, YAN Quanshu, SHI Xuefa. A study on the magmatic processes of lavas from cores of the drilling site DSDP-292 in the West Philippine Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2023, 42(4): 769-785, 684.
|
|
袁龙, 鄢全树, 石学法. 西菲律宾海盆DSDP-292站位熔岩的岩浆过程研究[J]. 矿物岩石地球化学通报, 2023, 42(4): 769-785, 684.
|
59 |
SDROLIAS M, ROEST W R, MÜLLER R D. An expression of Philippine Sea plate rotation: the Parece Vela and Shikoku Basins[J]. Tectonophysics, 2004, 394(1/2): 69-86.
|
60 |
YAN Q S, SHI X F, YUAN L, et al. Tectono-magmatic evolution of the Philippine Sea Plate: a review[J]. Geosystems and Geoenvironment, 2022, 1(2). DOI:10.1016/j.geogeo.2021.100018 .
|
61 |
YAN Quanshu, YUAN Long, SHI Xuefa. Magmatism and tectonic evolution of the Parece Vela Basin and the drilling proposal[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 103-109.
|
|
鄢全树, 袁龙, 石学法. 帕里西维拉海盆岩浆—构造过程及钻探建议[J]. 海洋地质与第四纪地质, 2022, 42(5): 103-109.
|
62 |
GAINA C, MÜLLER D. Cenozoic tectonic and depth/age evolution of the Indonesian gateway and associated back-arc basins[J]. Earth-Science Reviews, 2007, 83(3/4): 177-203.
|
63 |
KERR A C, WHITE R V, THOMPSON P M E, et al. No oceanic plateau—No Caribbean plate? the seminal role of an oceanic plateau in Caribbean plate evolution[M]// The circum-gulf of Mexico and the Caribbean: hydrocarbon habitats, basin formation and plate tectonics. Tulsa, Okla: American Association of Petroleum Geologists, 2003.
|
64 |
REEKIE C D J, JENNER F E, SMYTHE D J, et al. Sulfide resorption during crustal ascent and degassing of oceanic plateau basalts[J]. Nature Communications, 2019, 10. DOI:10.1038/s41467-018-08001-3 .
|
65 |
SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
|
66 |
HASTIE A R, KERR A C, MITCHELL S F, et al. Geochemistry and petrogenesis of Cretaceous oceanic plateau lavas in eastern Jamaica[J]. Lithos, 2008, 101(3/4): 323-343.
|
67 |
HART S R. A large-scale isotope anomaly in the southern Hemisphere mantle[J]. Nature, 1984, 309: 753-757.
|
68 |
ZINDLER A. Chemical geodynamics[J]. Annual Review of Earth and Planetary Sciences, 1986, 14: 493-571.
|
69 |
YAN Quanshu, YUAN Long, YAN Shishuai, et al. Geological evolution and research prospect in southeast boundary of Philippine Sea Plate[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 50-63.
|
|
鄢全树, 袁龙, 闫施帅, 等. 菲律宾海板块东南边界地质过程与研究展望[J]. 海洋地质与第四纪地质, 2023, 43(5): 50-63.
|
70 |
CAMPBELL I H. Large igneous provinces and the mantle plume hypothesis[J]. Elements, 2005, 1(5): 265-269.
|
71 |
CORDERY M J, DAVIES G F, CAMPBELL I H. Genesis of flood basalts from eclogite-bearing mantle plumes[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B9): 20 179-20 197.
|
72 |
ZHANG Zhaochong, ZHU Jiang, CHENG Zhiguo, et al. Classification, genesis of large igneous province associated with its effect on Earth system[J]. Acta Geologica Sinica, 2022, 96(12): 4 057-4 090.
|
|
张招崇, 朱江, 程志国, 等. 大火成岩省的类型、成因及其地球系统意义[J]. 地质学报, 2022, 96(12): 4 057-4 090.
|
73 |
VOGT K, GERYA T V. From oceanic plateaus to allochthonous terranes: numerical modelling[J]. Gondwana Research, 2014, 25(2): 494-508.
|
74 |
TAO J L, DAI L M, LOU D, et al. Accretion of oceanic plateaus at continental margins: numerical modeling[J]. Gondwana Research, 2020, 81: 390-402.
|
75 |
MASON W G, MORESI L, BETTS P G, et al. Three-dimensional numerical models of the influence of a buoyant oceanic plateau on subduction zones[J]. Tectonophysics, 2010, 483(1/2): 71-79.
|
76 |
LIU L J, GURNIS M, SETON M, et al. The role of oceanic plateau subduction in the Laramide orogeny[J]. Nature Geoscience, 2010, 3: 353-357.
|
77 |
NIU Yaoling, SHEN Fangyu, CHEN Yanhong, et al. The geologically testable hypothesis on subduction initiation and actions[J]. Earth Science Frontiers, 2018, 25(6): 51-66.
|
|
牛耀龄, 沈芳宇, 陈艳虹, 等. 俯冲带形成机制的可检验假说和检验方案[J]. 地学前缘, 2018, 25(6): 51-66.
|
78 |
HOFMANN A W. Mantle geochemistry: the message from oceanic volcanism[J]. Nature, 1997, 385: 219-229.
|
79 |
ABBOTT D, MOONEY W. The structural and geochemical evolution of the continental crust: support for the oceanic plateau model of continental growth[J]. Reviews of Geophysics, 1995, 33(): 231-242.
|
80 |
XU Y, YAN Q S, SHI X F, et al. Discovery of Late Mesozoic volcanic seamounts at the ocean-continent transition zone in the northeastern margin of South China Sea and its tectonic implication[J]. Gondwana Research, 2023, 120: 111-126.
|
81 |
ZHANG K J, YAN L L, JI C. Switch of NE Asia from extension to contraction at the mid-Cretaceous: a tale of the Okhotsk Oceanic plateau from initiation by the Perm Anomaly to extrusion in the Mongol-Okhotsk Ocean?[J]. Earth-Science Reviews, 2019, 198. DOI: 10.1016/j.earscirev.2019.102941 .
|
82 |
GREENE A R, SCOATES J S, WEIS D. Wrangellia flood basalts in Alaska: a record of plume-lithosphere interaction in a Late Triassic accreted oceanic plateau[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(12). DOI:10.1029/2008GC002092 .
|
83 |
ZHANG K J, XIA B, ZHANG Y X, et al. Central Tibetan Meso-Tethyan oceanic plateau[J]. Lithos, 2014, 210/211: 278-288.
|
84 |
YAN L L, ZHANG K J. Infant intra-oceanic arc magmatism due to initial subduction induced by oceanic plateau accretion: a case study of the Bangong Meso-Tethys, central Tibet, Western China[J]. Gondwana Research, 2020, 79: 110-124.
|
85 |
TETREAULT J L, BUITER S J H. Geodynamic models of terrane accretion: testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B8). DOI: 10.1029/2012JB009316 .
|
86 |
TETREAULT J L, BUITER S J H. Future accreted terranes: a compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments[J]. Solid Earth, 2014, 5(2): 1 243-1 275.
|
87 |
SALEEBY J. Segmentation of the Laramide Slab—evidence from the southern Sierra Nevada region[J]. Geological Society of America Bulletin, 2003, 115: 655-668.
|
88 |
YAN Zhiyong, CHEN Lin, XIONG Xiong, et al. Observations and modeling of flat subduction and its geological effects[J]. Science China Earth Sciences, 2020, 63: 1 069-1 091.
|
|
颜智勇, 陈林, 熊熊, 等. 平板俯冲及其地质效应的研究进展: 观测与模拟[J]. 中国科学: 地球科学, 2020, 50: 1 044-1 068.
|
89 |
ARRIAL P A, BILLEN M I. Influence of geometry and eclogitization on oceanic plateau subduction[J]. Earth and Planetary Science Letters, 2013, 363: 34-43.
|
90 |
AXEN G J, van WIJK J W, CURRIE C A. Basal continental mantle lithosphere displaced by flat-slab subduction[J]. Nature Geoscience, 2018, 11: 961-964.
|
91 |
MARTINOD J, HUSSON L, ROPERCH P, et al. Horizontal subduction zones, convergence velocity and the building of the Andes[J]. Earth and Planetary Science Letters, 2010, 299(3/4): 299-309.
|
92 |
FROMM R, ZANDT G, BECK S L. Crustal thickness beneath the Andes and Sierras Pampeanas at 30°S inferred from Pn apparent phase velocities[J]. Geophysical Research Letters, 2004, 31(6). DOI:10.1029/2003GL019231 .
|
93 |
GARDNER T W, FISHER D M, MORELL K D, et al. Upper-plate deformation in response to flat slab subduction inboard of the aseismic Cocos Ridge, Osa Peninsula, Costa Rica[J]. Lithosphere, 2013, 5(3): 247-264.
|
94 |
GERYA T V, FOSSATI D, CANTIENI C, et al. Dynamic effects of aseismic ridge subduction: numerical modelling[J]. European Journal of Mineralogy, 2009, 21(3): 649-661.
|
95 |
LIU S B, CURRIE C A. Farallon plate dynamics prior to the Laramide orogeny: numerical models of flat subduction[J]. Tectonophysics, 2016, 666: 33-47.
|
96 |
HU J S, LIU L J, HERMOSILLO A, et al. Simulation of late Cenozoic South American flat-slab subduction using geodynamic models with data assimilation[J]. Earth and Planetary Science Letters, 2016, 438: 1-13.
|
97 |
STERN R J. Subduction zones[J]. Reviews of Geophysics, 2002, 40(4): 3-1-3-38.
|
98 |
YAN Q S, ZHANG P Y, METCALFE I, et al. Geochemistry of axial lavas from the mid- and southern Mariana Trough, and implications for back-arc magmatic processes[J]. Mineralogy and Petrology, 2019, 113(6): 803-820.
|
99 |
ROSENBAUM G, MO W. Tectonic and magmatic responses to the subduction of high bathymetric relief[J]. Gondwana Research, 2011, 19(3): 571-582.
|
100 |
TIMM C, DAVY B, HAASE K, et al. Subduction of the oceanic Hikurangi Plateau and its impact on the Kermadec arc[J]. Nature Communications, 2014, 5. DOI:10.1038/ncomms5923 .
|
101 |
de RONDE C E J, BAKER E T, MASSOTH G J, et al. Submarine hydrothermal activity along the mid-Kermadec Arc, New Zealand: large-scale effects on venting[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(7). DOI:10.1029/2006GC001495 .
|
102 |
BEIER C, BRANDL P A, LIMA S M, et al. Tectonic control on the genesis of magmas in the New Hebrides arc (Vanuatu)[J]. Lithos, 2018, 312/313: 290-307.
|
103 |
HOERNLE K, ABT D L, FISCHER K M, et al. Arc-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua[J]. Nature, 2008, 451: 1 094-1 097.
|
104 |
GAZEL E, HAYES J L, HOERNLE K, et al. Continental crust generated in oceanic arcs[J]. Nature Geoscience, 2015, 8: 321-327.
|
105 |
HASTIE A R, KERR A C, MCDONALD I, et al. Do Cenozoic analogues support a plate tectonic origin for Earth’s earliest continental crust?[J]. Geology, 2010, 38(6): 495-498.
|
106 |
LOISELET C, HUSSON L, BRAUN J. From longitudinal slab curvature to slab rheology[J]. Geology, 2009, 37(8): 747-750.
|
107 |
HALE A J, GOTTSCHALDT K D, ROSENBAUM G, et al. Dynamics of slab tear faults: insights from numerical modelling[J]. Tectonophysics, 2010, 483(1/2): 58-70.
|
108 |
XU Fei, ZHOU Zuyi. Oceanic plateaus: windows to the Earth’s interior[J]. Advances in Earth Science, 2003, 18(5): 745-752.
|
|
徐斐, 周祖翼. 洋底高原: 了解地球内部的窗口[J]. 地球科学进展, 2003, 18(5): 745-752.
|
109 |
CLIFT P, VANNUCCHI P. Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust[J]. Reviews of Geophysics, 2004, 42(2). DOI:10.1029/2003RG000127 .
|
110 |
LI S Z, SUO Y H, LI X Y, et al. Microplate tectonics: new insights from micro-blocks in the global oceans, continental margins and deep mantle[J]. Earth-Science Reviews, 2018, 185: 1 029-1 064.
|