地球科学进展 ›› 2024, Vol. 39 ›› Issue (7): 717 -725. doi: 10.11867/j.issn.1001-8166.2024.035

研究论文 上一篇    下一篇

基于观测数据估算渤海油气平台火炬燃烧效率及甲烷排放量
臧昆鹏 1 , 2 , 3( ), 申小龙 2, 魏康轩 2, 温军 2, 潘凤梅 2, 徐宏辉 4, 姜瑜君 4   
  1. 1.浙江工业大学 浙江碳中和创新研究院,浙江 杭州 310014
    2.浙江工业大学 环境学院,浙江 杭州 310014
    3.国家海洋环境监测中心,辽宁 大连 116023
    4.浙江省气象科学研究所,浙江 杭州 310008
  • 收稿日期:2023-07-23 修回日期:2023-12-25 出版日期:2024-07-10
  • 通讯作者: 臧昆鹏 E-mail:zangkunpeng@zjut.edu.cn
  • 基金资助:
    国家重点研发计划项目(2020YFA0607501);浙江省自然科学基金联合基金项目(LZJMZ23D050002);浙江省基础公益研究计划项目(LGF22D050004)

Estimation of Combustion Efficiency and Methane Emissions from Oil and Gas Platform Flarings Based on in Situ Observed Data from the Bohai Sea

Kunpeng ZANG 1 , 2 , 3( ), Xiaolong SHEN 2, Kangxuan WEI 2, Jun WEN 2, Fengmei PAN 2, Honghui XU 4, Yujun JIANG 4   

  1. 1.Zhejiang Innovative Institute of Carbon Neutrality, Zhejiang University of Technology, Hangzhou 310014, China
    2.College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
    3.National Marine Environmental Monitoring Center, Dalian Liaoning 116023, China
    4.Zhejiang Meteorological Science Institute, Hangzhou 310008, China
  • Received:2023-07-23 Revised:2023-12-25 Online:2024-07-10 Published:2024-07-29
  • Contact: Kunpeng ZANG E-mail:zangkunpeng@zjut.edu.cn
  • About author:ZANG Kunpeng, Associate professor, research area includes observation and estimation of greenhouse gases. E-mail: zangkunpeng@zjut.edu.cn
  • Supported by:
    the National Key Research and Development Program of China(2020YFA0607501);The Joint Funds of the Zhejiang Provincal Natural Science Foundation of China(LZJMZ23D050002);The Basic Public Welfare Research Program of Zhejiang Province(LGF22D050004)

基于2012年和2014年船基走航连续观测数据再分析,并结合“自下而上”和“自上而下”法,开展了渤海蓬莱油气田油气平台伴生气火炬燃烧效率和CH4排放量估算研究。结果显示,观测海域油气平台伴生气燃烧导致下风向大气CO2和CH4混合比分别抬升11×10-6~20×10-6和100×10-9~260×10-9,估算燃烧效率为(97.8±1.1)%,达到国际先进水平。“自下而上”和“自上而下”法估算全渤海火炬燃烧过程的CH4排放分别达3.6~6.1 Gg/a和1.80~2.68 Gg/a,是人为的CH4强点源。排放因子和观测数据时空代表性等是导致2种方法估算结果不同的主要原因。研究可为海洋油气开采中伴生气回收利用和CH4减排等提供一定的科技支撑。

Based on the reanalysis of ship-borne continuous data observed in 2012 and 2014 and “bottom-up” and “top-down” approaches, the combustion efficiency and CH4 emission rate of flaring equipped on oil and gas platforms in the Penglai Region of the Bohai Sea were studied. The results showed that peak atmospheric CO2 and CH4 mixing ratios of approximately (11~20)×10-6 and (100~260)×10-9 were observed in the downwind area of flaring. The calculated combustion efficiency of associated gas flaring was (97.8±1.1)%, which was better than that in most countries worldwide. The CH4 emission rates of flaring equipped on the oil and gas platforms were 3.6~6.1 Gg/a and 1.80~2.68 Gg/a, estimated using the “bottom-up” and “top-down” approaches, respectively, indicating that the flaring was the primary source of atmospheric CH4. On the other hand, the difference in the results estimated by the “bottom-up” and “top-down” approaches was still remarkable, mostly due to the limited spatiotemporal representation of emission factors and observation data. This study is beneficial for promoting the recycling and reuse of associated gas and reducing CH4 emissions from marine oil and gas exploitation in China.

中图分类号: 

图1 渤海油气平台分布
(a)2012年11月航次;(b)2014年8月航次;黑色线代表调查船航线,其中锯齿箭头线表示调查船途径蓬莱油气田海域的航线和航向;圆圈代表油气平台;虚线方框内为蓬莱油气田海域
Fig. 1 Distribution of oil and gas platforms in the Bohai Sea
(a) and (b) Survey in November 2012 and August 2014, respectively. Black line represents cruise track, the arrow with serration represents cruise track and direction of ship;Circles represent oil and gas platforms;Rectangle represents the Penglai oil and gas exploration area
图2 201211月(a)和20148月(b)航次蓬莱油气田海域大气CO2CH4 混合比及船速观测结果
Fig. 2 Atmospheric CO2 and CH4 mixing ratio and cruise speed in the Penglai oil and gas exploration area in November 2012aand August 2014b), respectively
图3 201211月(a~b)和20148月(c~d)沿航线大气CO2CH4 混合比时空分布观测结果
圆圈代表油气平台
Fig. 3 Spatiotemporal distribution of CO2 and CH4 mixing ratio along the cruise track in November 2012a~band August 2014c~d
Circles represent oil and gas platforms
图4 现场观测期间风向和气团后向轨迹模拟结果
(a)和(b)分别为2012年11月和2014年8月观测期间风玫瑰图; (c)和(d)分别为2012年11月和2014年8月观测期间气团后向轨迹模拟结果
Fig. 4 Wind direction and simulated backward trajectory during the field survey
(a) and (b) were wind rose during field surveys of November 2012 and August 2014, respectively; (c) and (d) were backward trajectory of air masses during field surveys of November 2012 and August 2014, respectively
图5 渤海蓬莱海域油气平台下风向ΔCH4/ΔCO2
黑色虚线代表陆地人为过程ΔCH 4/ΔCO 2的land(20)值,黑色圆圈和灰色点及对应实线分别代表2014年8月和2012年11月现场观测海域大气CH 4和CO 2峰值的ΔCH 4/ΔCO 2
Fig. 5 ΔCH4/ΔCO2 in the downwind region of Penglai oil/gas field in the Bohai Sea
Black dashed line represents upper limit of emission ratio of ΔCH 4/ΔCO 2 for artificial sources, black cycles and gray points and corresponding lines represent regression for observed ΔCH 4 and ΔCO 2 determined by reduced major axis regression
1 WMO, Greenhouse Gas Bulletin. The state of greenhouse gases in the atmosphere based on global observations through. [EB/OL]. 2021. [2023-09-20]. .
2 WATSON S M. Greenhouse gas emissions from offshore oil and gas activities—relevance of the Paris Agreement, law of the sea, and regional seas programmes[J]. Ocean & Coastal Management, 2020, 185. DOI:10.1016/j.ocecoaman.2019.104942 .
3 Global Methane Initiative. Oil and gas systems [EB/OL]. 2019. [2023-10-10]. .
4 SAUNOIS M, STAVERT A R, POULTER B, et al. The global methane budget 2000-2017[J]. Earth System Science Data, 2020, 12(3): 1 561-1 623.
5 SHI Buqing, WANG Zhaoming, WEN Zhixin, et al. Global oil and gas exploration review and 2020 outlook[J]. International Petroleum Economics, 2020, 28(3): 29-35.
史卜庆, 王兆明, 温志新, 等. 全球油气勘探形势回顾与2020年展望[J]. 国际石油经济, 2020, 28(3): 29-35.
6 RIDDICK S N, MAUZERALL D L, CELIA M, et al. Methane emissions from oil and gas platforms in the North Sea[J]. Atmospheric Chemistry and Physics, 2019, 19(15): 9 787-9 796.
7 GAI H L, WANG A N, FANG J, et al. Clean combustion and flare minimization to reduce emissions from process industry[J]. Current Opinion in Green and Sustainable Chemistry, 2020, 23: 38-45.
8 ZHANG Renjian, WANG Mingxing, LI Jing, et al. The present status of the emission methane in China[J]. Climatic and Environmental Research, 1999, 4(2): 67-75.
张仁健, 王明星, 李晶, 等. 中国甲烷排放现状[J]. 气候与环境研究, 1999, 4(2): 67-75.
9 ZHANG B, CHEN G Q. Methane emissions by Chinese economy: inventory and embodiment analysis[J]. Energy Policy, 2010, 38(8): 4 304-4 316.
10 DONG X C, PI G L, MA Z W, et al. The reform of the natural gas industry in the PR of China[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 582-593.
11 ALLEN D T. Methane emissions from natural gas production and use: reconciling bottom-up and top-down measurements[J]. Current Opinion in Chemical Engineering, 2014, 5: 78-83.
12 CONLEY S, FALOONA I, MEHROTRA S, et al. Application of Gauss’s theorem to quantify localized surface emissions from airborne measurements of wind and trace gases[J]. Atmospheric Measurement Techniques, 2017, 10(9): 3 345-3 358.
13 PAN J P, LOU Y, WANG L X. Target post-evaluation of China’s “12th Five-Year” oil and gas exploration and development planning and its “13th Five-Year” target prediction[J]. Natural Gas Industry B, 2016, 3(2): 108-116.
14 NARA H, TANIMOTO H, TOHJIMA Y, et al. Emissions of methane from offshore oil and gas platforms in southeast Asia[J]. Scientific Reports, 2014, 4(1): 1-6.
15 PANDEY S, GAUTAM R, HOUWELING S, et al. Satellite observations reveal extreme methane leakage from a natural gas well blowout[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(52): 26 376-26 381.
16 ZAVALA-ARAIZA D, OMARA M, GAUTAM R, et al. A tale of two regions: methane emissions from oil and gas production in offshore/onshore Mexico[J]. Environmental Research Letters, 2021, 16(2). DOI:10.1088/1748-9326/abceeb .
17 CHEN Chunci, Yonglong LÜ, HE Guizhen. Estimating methane fugitive emissions from oil and natural gas systems in China[J]. Environmental Science, 2022, 43(11):4 905-4 913.
陈春赐, 吕永龙, 贺桂珍. 中国油气系统甲烷逸散排放估算[J]. 环境科学, 2022, 43(11):4 905-4 913.
18 ZHANG Cen, LI Wei. Analysis of methane emission reduction strategies in Europe and America and actions of oil and gas industry[J]. International Petroleum Economics, 2021, 29(12):16-23.
张岑, 李伟. 欧美甲烷减排战略与油气行业减排行动分析[J]. 国际石油经济, 2021, 29(12):16-23.
19 ZHANG Bo, LI Huizhu, ZHONG Bing, et al. The situation, problems and countermeasures for the controls of China’s methane emissions[J]. China Mining Magazine, 2022, 31(2):1-10.
张博, 李蕙竹, 仲冰, 等. 中国甲烷控排面临的形势、问题与对策[J]. 中国矿业, 2022, 31(2):1-10.
20 ZHANG Y, ZHAO H D, ZHAI W D, et al. Enhanced methane emissions from oil and gas exploration areas to the atmosphere—the central Bohai Sea[J]. Marine Pollution Bulletin, 2014, 81(1): 157-165.
21 ZANG K P, ZHOU L X, WANG J Y. Carbon dioxide and methane in the China Sea shelf boundary layer observed by cavity ring-down spectroscopy[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(10): 2 233-2 244.
22 WU Zuchang, DONG Baoqun. Research on the thickness of atmospheric boundary-layer over China in the morning and the evening[J]. Environmental Protection of Oil & Gas Fields, 1998, 8(3): 31-34.
吴祖常, 董保群. 我国早晨与傍晚的大气边界层厚度研究[J]. 油气田环境保护, 1998, 8(3): 31-34.
23 OGCI. Oil and gas climate initiative[EB/OL]. 2018. [2023-11-01]. .
24 International Energy Agency (IEA). World energy outlook[EB/OL]. 2018. [2023-11-03]. .
25 LI Jiaxin, ZANG Kunpeng, LIN Yi, et al. Study of data quality assurance/control on the shipborne continuous CO2 observations[J]. Environmental Chemistry, 2022, 41(10): 3 335-3 344.
李嘉鑫, 臧昆鹏, 林溢, 等. 海洋大气二氧化碳船基走航连续观测数据的质量控制方法[J]. 环境化学, 2022, 41(10): 3 335-3 344.
26 ALLEN D T, TORRES V M, THOMAS J, et al. Measurements of methane emissions at natural gas production sites in the United States[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(44): 17 768-17 773.
27 BRANTLEY H L, THOMA E D, SQUIER W C, et al. Assessment of methane emissions from oil and gas production pads using mobile measurements[J]. Environmental Science & Technology, 2014, 48(24): 14 508-14 515.
28 YACOVITCH T I, DAUBE C, HERNDON S C. Methane emissions from offshore oil and gas platforms in the gulf of Mexico [J]. Environmental Science & Technology, 2020, 54(6): 3 530-3 538.
29 LIU Y S, ZHOU L X, TANS P P, et al. Ratios of greenhouse gas emissions observed over the Yellow Sea and the East China Sea[J]. Science of the Total Environment, 2018, 633: 1 022-1 031.
30 BARTLETT K B, SACHSE G W, SLATE T, et al. Large-scale distribution of CH4 in the western North Pacific: sources and transport from the Asian continent[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D20). DOI:10.1029/2002JD003076 .
31 KOURTIDIS K, KIOUTSIOUKIS I, MCGINNIS D F, et al. Effects of methane outgassing on the black sea atmosphere[J]. Atmospheric Chemistry and Physics, 2006, 6(12): 5 173-5 182.
32 FANG Shuangxi, ZHOU Lingxi, XU Lin, et al. CH4 concentrations and the variation characteristics at the four WMO/GAW background stations in China[J]. Chinese Journal of Environmental Science, 2012, 33(9): 2 917-2 923.
方双喜, 周凌唏, 许林, 等. 我国4个WMO/GAW本底站大气CH4浓度及变化特征[J]. 环境科学, 2012, 33(9): 2 917-2 923.
33 LI Peipei, ZHANG Guiling, ZHAO Yuchuan, et al. Study on distributions and flux of methane dissolved in the Bohai Sea in summer[J]. Advances in Marine Science, 2010, 28(4): 478-488.
李佩佩, 张桂玲, 赵玉川, 等. 夏季渤海溶解甲烷的分布与通量研究[J]. 海洋科学进展, 2010, 28(4): 478-488.
34 BORGES A V, SPEECKAERT G, CHAMPENOIS W, et al. Productivity and temperature as drivers of seasonal and spatial variations of dissolved methane in the southern bight of the north sea[J]. Ecosystems, 2018, 21(4): 583-599.
35 ZANG K P, ZHANG G, XU X M, et al. Impact of air-sea exchange on the spatial distribution of atmospheric methane in the Dalian Bay and adjacent coastal area, China[J]. Chemosphere, 2020, 251. DOI:10.1016/j.chemosphere.2020.126412 .
36 WILLYARD K A, SCHADE G W. Flaring in two Texas shale areas: comparison of bottom-up with top-down volume estimates for 2012 to 2015[J]. Science of the Total Environment, 2019, 691: 243-251.
[1] 张企盈, 苗晓明, 常鑫, 孔凡兴, 谷玉, 刘喜停. 自生黄铁矿指示海底甲烷渗漏[J]. 地球科学进展, 2024, 39(6): 589-601.
[2] 于晓涵, 李哲, 肖艳, 袁翰卿, 李清. 有氧水环境中藻类产生甲烷的研究进展[J]. 地球科学进展, 2024, 39(2): 157-168.
[3] 鲁易, 张稳, 李婷婷, 周筠珺. 大气甲烷浓度变化的源汇因素模拟研究进展[J]. 地球科学进展, 2015, 30(7): 763-772.
[4] 刘军, 于志刚, 臧家业, 孙涛, 赵晨英, 冉祥滨. 黄渤海有机碳的分布特征及收支评估研究[J]. 地球科学进展, 2015, 30(5): 564-578.
[5] 李玉红, 詹力扬, 陈立奇. 北冰洋CH 4研究进展[J]. 地球科学进展, 2014, 29(12): 1355-1361.
[6] 吴自军,任德章,周怀阳. 海洋沉积物甲烷厌氧氧化作用(AOM)及其对无机硫循环的影响[J]. 地球科学进展, 2013, 28(7): 765-773.
[7] 支鹏遥,刘保华,华清峰,刘晨光,裴彦良,郑彦鹏,郝天珧. 渤海海底地震仪探测试验及初步成果[J]. 地球科学进展, 2012, 27(7): 769-777.
[8] 赵吉,李靖宇,周玉,白玉涛,于景丽. 甲烷氧化与氨氧化微生物及其耦合功能[J]. 地球科学进展, 2012, 27(6): 651-659.
[9] 孙治雷,何拥军,李 军,黄 威,李 清,李季伟,王 丰. 海洋环境中甲烷厌氧氧化机理及环境效应[J]. 地球科学进展, 2012, 27(11): 1262-1273.
[10] 于新生, 李丽娜,胡亚丽,兰志刚. 海洋中溶解甲烷的原位检测技术研究进展[J]. 地球科学进展, 2011, 26(10): 1030-1037.
[11] 范昌福,王宏,裴艳东,Koeniger Paul,李延河. 牡蛎壳体的同位素贝壳年轮研究[J]. 地球科学进展, 2010, 25(2): 163-173.
[12] 向 荣,刘 芳,陈 忠,颜 文,陈木宏. 冷泉区底栖有孔虫研究进展[J]. 地球科学进展, 2010, 25(2): 193-202.
[13] 李清,王家生,王晓芹,陈祈,陈洪仁. IODP 311航次底栖有孔虫碳稳定同位素对天然气水合物地质系统的指示[J]. 地球科学进展, 2008, 23(11): 1161-1166.
[14] 赵玉龙,刘志飞. 古新世—始新世最热事件对地球表层循环的影响及其触发机制[J]. 地球科学进展, 2007, 22(4): 341-349.
[15] 蒲毅彬,吴青柏,蒋观利. 封闭系统中多孔介质甲烷水合物的CT实验研究[J]. 地球科学进展, 2007, 22(4): 362-368.
阅读次数
全文


摘要