地球科学进展 ›› 2024, Vol. 39 ›› Issue (7): 726 -736. doi: 10.11867/j.issn.1001-8166.2024.050

研究论文 上一篇    下一篇

羌塘高原极大陆型冰川厚度分布模拟与冰储量估算
梁鹏斌 1 , 2( ), 牟建新 3, 高永鹏 4( ), 田立德 5, 李林涛 1 , 2   
  1. 1.青海理工学院 生态与环境科学学院,青海 西宁 810000
    2.青海省高原气候变化及其生态环境效应 重点实验室,青海 西宁 810000
    3.中国科学院西北生态环境资源研究院 冰冻圈科学与冻土工程 重点实验室,甘肃 兰州 730000
    4.云南师范大学 地理学部,云南 昆明 650500
    5.云南大学 国际河流与生态安全研究院,云南 昆明 650500
  • 收稿日期:2024-05-16 修回日期:2024-06-19 出版日期:2024-07-10
  • 通讯作者: 高永鹏 E-mail:pbliang@qhnu.edu.cn;gyp1991@ynnu.edu.cn
  • 基金资助:
    青海省“昆仑英才”人才引进科研项目(2023-QLGKLYCZX-001);青海理工学院新进教师硕博论文延伸计划项目(2023011wys007)

Ice Thickness Simulation and Storage Estimation of the Extreme Glaciers on the Qiangtang Plateau

Pengbin LIANG 1 , 2( ), Jianxin MU 3, Yongpeng GAO 4( ), Lide TIAN 5, Lintao LI 1 , 2   

  1. 1.Faculty of Ecology and Environmental Sciences, Qinghai Institute of Technology, Xining 810000, China
    2.Qinghai Provincial Key Laboratory of Plateau Climate Change and Corresponding Ecological and Environmental Effects, Xining 810000, China
    3.Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    4.Faculty of Geography, Yunnan Normal University, Kunming 650500, China
    5.Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China
  • Received:2024-05-16 Revised:2024-06-19 Online:2024-07-10 Published:2024-07-29
  • Contact: Yongpeng GAO E-mail:pbliang@qhnu.edu.cn;gyp1991@ynnu.edu.cn
  • About author:LIANG Pengbin, Lecturer, research area includes cryospheric dynamics and climate effects. E-mail: pbliang@qhnu.edu.cn
  • Supported by:
    the Top-notch Talent of the Qinghai Province ‘Kunlun Talent’ High-end Innovation and Entrepreneurship Talent’ Program(2023-QLGKLYCZX-001);The Researcher Development Program of Qinghai Institute of Technology(2023011wys007)

冰川厚度与储量是未来冰川变化预测、可用淡水资源估计以及潜在海平面上升评估等冰川学研究的前提。基于我国西部31条冰川实测探地雷达厚度数据,对GlabTop2冰厚模型进行参数校正和优化,模拟羌塘高原冰川厚度分布并评估冰川水资源总量,结果表明: GlabTop2模型模拟的冰川平均厚度与实测平均厚度较接近,二者相关性为0.87,均方根误差为18.2 m,模型对冰川厚度的高估和低估分别为9%和-17%,模型模拟冰川中流线基岩地形形状的能力优于剖面基岩形状; 2022年羌塘高原冰川储量为(177.6±26.6) km3,平均冰川厚度为(88.2±12.3) m,冰储量集中分布在5 600~6 200 m,为(148.28±22.24) km3,占整个羌塘高原冰川总储量的84.4%,其余高程带冰储量分布相对较少。

Ice thickness and storage are prerequisites for glaciological studies that predict future glacier changes, estimate available freshwater resources, and assess potential sea level rise. Based on Ground-Penetrating Radar (GPR) thickness data from 31 glaciers in western China, the parameters of the GlabTop2 (Glacier Bed Topography) model were calibrated and optimized. The simulation of ice thickness on the Qiangtang Plateau and the assessment of the total amount of glacier water resources revealed the following results: The average ice thickness simulated by the GlabTop2 model closely matched the measured average thickness, with a correlation of 0.87 and root-mean-square error of 18.2 m. Overestimation and underestimation of ice thickness by the model were 9% and -17% respectively. The ice thickness distribution along flow was better captured than the distribution across flow; The GlabTop2 model estimated that the ice storage of glaciers on the Qinghai-Xizang Plateau in 2022 was (177.6±26.6) km3, with an average ice thickness of (88.2±12.3) m. The glacier volume was mainly distributed between 5 600 and 6 200 m, amounting to (148.28±22.24) km3, which accounted for 84.4% of the total glacier volume of the Qiangtang Plateau. The glacial volumes in the other elevational bands were relatively small.

中图分类号: 

图1 羌塘高原位置示意图
Fig. 1 The location of the Qiangtang Plateau
图2 31条厚度监测冰川的地理位置分布
Fig. 2 Geographic location of 31 monitoring glaciers
图3 GlabTop2模型模拟的31条冰川厚度空间分布
Fig. 3 Thickness distribution of 31 glaciers modelled by the GlabTop2 model
图4 基于GlabTop2模型的羌塘高原冰川厚度空间分布
Fig. 4 Thickness distribution of Qiangtang Plateau glacier based on the GlabTop2 model
图5 基于GlabTop2模型的羌塘高原冰川厚度与体积分布特征
Fig. 5 Thickness and volume distribution characteristics of Qiangtang Plateau glaciers based on the GlabTop2 model
图6 31条冰川实测与GlabTop2模型模拟的平均冰川厚度对比
Fig. 6 Comparison of measured and modelled ice thickness of the GlabTop2 model
图7 GlabTop2模型模拟的冰川剖面形状与GPR实测结果对比
Fig. 7 Comparison between estimated and measured bedrock topographies of cross-sectional profiles derived from the GlabTop2 model
图8 GlabTop2模型模拟的冰川中流线形状与GPR实测结果对比
Fig. 8 Comparison between estimated and measured bedrock topographies of longitudinal-sectional profiles derived from the GlabTop2 model
表1 GlabTop2模型敏感性分析
Table 1 Sensitivity analysis of the GlabTop2 model
1 YAO T D, THOMPSON L, YANG W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.
2 PRITCHARD H D. Asia’s shrinking glaciers protect large populations from drought stress[J]. Nature, 2019, 569(7 758): 649-654.
3 KANG Shichang, GUO Wanqin, WU Tonghua, et al. Cryospheric changes and their impacts on water resources in the Belt and Road regions [J]. Advances in Earth Science, 2020, 35(1): 1-17.
康世昌, 郭万钦, 吴通华, 等. “一带一路” 区域冰冻圈变化及其对水资源的影响[J]. 地球科学进展, 2020, 35(1): 1-17.
4 CHEN Deliang, XU Baiqing, YAO Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau[J]. Chinese Science Bulletin, 2015, 60(32): 3 025-3 035.
陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估: 过去、现在与未来[J]. 科学通报, 2015, 60(32): 3 025-3 035.
5 YAO T D, BOLCH T, CHEN D L, et al. The imbalance of the Asian water tower[J]. Nature Reviews Earth & Environment, 2022, 3(10): 618-632.
6 HU Yang, WANG Ziwei, JIANG Hongmao, et al. Current knowledge and future prospects regarding microorganisms in mountain glacier ecosystems[J]. Advances in Earth Science, 2022, 37(9): 899-914.
胡扬, 汪子微, 蒋洪毛, 等. 山地冰川生态系统微生物研究现状与展望[J]. 地球科学进展, 2022, 37(9): 899-914.
7 TANG Qiuhong, LIU Xingcai, ZHOU Yuanyuan, et al. Cascading impacts of Asian water tower change on downstream water systems[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1 306-1 312.
汤秋鸿, 刘星才, 周园园, 等. “亚洲水塔” 变化对下游水资源的连锁效应[J]. 中国科学院院刊, 2019, 34(11): 1 306-1 312.
8 LANGHAMMER L, GRAB M, BAUDER A, et al. Glacier thickness estimations of alpine glaciers using data and modeling constraints[J]. The Cryosphere, 2019, 13(8): 2 189-2 202.
9 WELTY E, ZEMP M, NAVARRO F, et al. Worldwide version-controlled database of glacier thickness observations[J]. Earth System Science Data, 2020, 12(4): 3 039-3 055.
10 GRINSTED A. An estimate of global glacier volume[J]. The Cryosphere, 2013, 7(1): 141-151.
11 RADIĆ V, HOCK R. Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data[J]. Journal of Geophysical Research: Earth Surface, 2010, 115(F1). DOI:10.1029/2009JF001373 .
12 HUSS M, FARINOTTI D. Distributed ice thickness and volume of all glaciers around the globe[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F4). DOI:10.1029/2012JF002523 .
13 FREY H, MACHGUTH H, HUSS M, et al. Estimating the volume of glaciers in the Himalayan-Karakoram region using different methods[J]. The Cryosphere, 2014, 8(6): 2 313-2 333.
14 MILLAN R, MOUGINOT J, RABATEL A, et al. Ice velocity and thickness of the world’s glaciers[J]. Nature Geoscience, 2022, 15(2): 124-129.
15 CLARKE G K C, BERTHIER E, SCHOOF C G, et al. Neural networks applied to estimating subglacial topography and glacier volume[J]. Journal of Climate, 2009, 22(8): 2 146-2 160.
16 WERDER M A, HUSS M, PAUL F, et al. A Bayesian ice thickness estimation model for large-scale applications[J]. Journal of Glaciology, 2020, 66(255): 137-152.
17 FARINOTTI D, BRINKERHOFF D J, CLARKE G K C, et al. How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment[J]. The Cryosphere, 2017, 11(2): 949-970.
18 WU K P, LIU S Y, JIANG Z L, et al. Spatiotemporal pattern of glacier mass balance in the Tibetan Plateau interior area over the past 40 years[J]. Journal of Hydrology, 2024, 635: 131200.
19 WANG Liping, XIE Zichu, LIU Shiyin, et al. Glacierized area variation and its response to climate change in Qiangtang Plateau during 1970—2000[J]. Journal of Glaciology and Geocryology, 2011, 33(5): 979-990.
王利平, 谢自楚, 刘时银, 等. 1970—2000年羌塘高原冰川变化及其预测研究[J]. 冰川冻土, 2011, 33(5): 979-990.
20 CHEN Chuanyou, FAN Yunqi. Rivers, lakes, and water resources of the Qiangtang Plateau[J]. Resources Science, 1983 (2): 38-44.
陈传友, 范云崎. 羌塘高原的河流, 湖泊及水资源[J]. 资源科学, 1983 (2): 38-44.
21 LINSBAUER A, PAUL F, HAEBERLI W. Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: application of a fast and robust approach[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F3). DOI:10.1029/2011JF002313 .
22 CUFFEY K, PATERSON W. The physics of glaciers[M]. Cambridge: Academic Press, 2010.
23 HUGONNET R, MCNABB R, BERTHIER E, et al. Accelerated global glacier mass loss in the early twenty-first century[J]. Nature, 2021, 592(7 856): 726-731.
[1] 武震,张世强,刘时银,杜文涛. 祁连山老虎沟12号冰川冰内结构特征分析[J]. 地球科学进展, 2011, 26(6): 631-641.
[2] 崔喜红,陈晋,关琳琳. 探地雷达技术在植物根系探测研究中的应用[J]. 地球科学进展, 2009, 24(6): 606-611.
[3] 武震,刘时银,张世强. 祁连山老虎沟12号冰川冰下形态特征分析[J]. 地球科学进展, 2009, 24(10): 1149-1158.
阅读次数
全文


摘要