地球科学进展 ›› 2024, Vol. 39 ›› Issue (7): 737 -751. doi: 10.11867/j.issn.1001-8166.2024.052

层序地层学 上一篇    下一篇

南海琼东南盆地西区晚更新世陆架边缘层序结构及差异机制
葛家旺 1( ), 唐小龙 1, 赵晓明 1, 朱筱敏 2, 齐昆 1   
  1. 1.西南石油大学 地球科学与技术学院,四川 成都 610500
    2.中国石油大学(北京) 地球科学学院,北京 102249
  • 收稿日期:2024-04-01 修回日期:2024-06-07 出版日期:2024-07-10
  • 基金资助:
    四川省自然科学基金项目(2023NSFSC0810);国家自然科学基金项目(42072183)

Variability in the Shelf-edge Sequence Architecture and Its Controlling Factors in the Western Part of the Late-Pleistocene Qiongdongnan Basin, South China Sea

Jiawang GE 1( ), Xiaolong TANG 1, Xiaoming ZHAO 1, Xiaomin ZHU 2, Kun QI 1   

  1. 1.College of Geosciences and Technology, Southwest Petroleum University, Chengdu 610500, China
    2.College of Geosciences, China University of Petroleum, Beijing 102249, China
  • Received:2024-04-01 Revised:2024-06-07 Online:2024-07-10 Published:2024-07-29
  • About author:GE Jiawang, Associated professor, research areas include quantitative sequence stratigraphy, seismic sedimentology and petroleum development geology. E-mail: gjwddn@163.com
  • Supported by:
    the Natural Science Foundation of Sichuan Province(2023NSFSC0810);The National Natural Science Foundation of China(42072183)

层序地层学前期研究注重顺物源方向的二维剖面解释,垂直物源方向的层序结构差异性是当前研究的热点和难点。以南海琼东南盆地西区晚更新世(0.125 Ma至今)陆架边缘地层序列为例,通过典型地层终止关系、地层叠置样式和陆架边缘迁移轨迹方法,识别了体系域单元内部结构和组合特征,自下而上划分为低位体系域、海侵体系域、高位体系域和下降体系域。其中下降体系域内部分界面可将下降体系域分为早、晚两期,该界面对应陆架边缘迁移轨迹角由正到负和地层叠置样式由进积到降积的转换面。琼东南盆地西区上更新统发育稳定型和滑塌型两类陆架边缘层序结构,随着相对海平面的变化,稳定型陆架边缘主要发育多期次陆架边缘前积体和深水扇沉积,滑塌型陆架边缘则主要发育大规模峡谷和块体搬运沉积体系;响应于“快速海侵而缓慢下降”的不对称海平面升降特征,晚更新世陆架边缘层序表现为较薄或者不发育的低位—海侵体系域,厚的强制海退楔单元,而外陆架区活动性断裂增加了高位体系域组分在层序中的占比。先存的坡折地形、断裂活动及非对称海平面升降旋回差异共同导致了研究区层序结构多样性体系,高频层序地层驱动机制的定量化探索是更新世层序地层学未来的发展趋势,为层序地层学标准化实践和侧向层序结构差异研究提供了一定的参考。

Previous sequence stratigraphy research has mainly focused on two-dimensional seismic interpretation in the dipping direction, while variations in sequence architecture in the vertical provenance direction are the focus and difficulty of current research. This study considers the Late Pleistocene (0.125 Ma to the present) shelf-margin stratigraphic successions of the Qiongdongnan Basin as a typical example. The internal structure and combination characteristics of the system tract units were established and identified according to typical stratal termination, stratal stacking patterns, and shelf-edge migration trajectories. The systems tracts in the studied sequence were classified from bottom to top, including the Lowstand Systems Tract (LST), Transgressive Systems Tract (TST), Highstand Systems Tract (HST), and Falling-Stage Systems Tract (FSST). The surface of Within Systems Tract Surface (WSTS) divides the FSST into early and late phases. The WSTS interface is the transitional surface for the positive-to-negative angle of the migration trajectory of the shelf edge and for the stratal stacking transition from progradation to degradation. Stabilized and collapsed shelf-edge sequence architectures developed during the Upper Pleistocene in the western part of the eastern Qiongdongnan Basin. With the change in relative sea level, the stabilized shelf edge mainly developed multi-phase shelf-margin clinoforms and deep-water fan deposits, whereas the collapsed shelf edge mainly developed large-scale canyons and mass transport deposits. In response to the short sea-level rise but prominent falling cycle, the late Pleistocene shelf-edge sequences were composed of thin or undeveloped LST and TST units and a thick FSST unit, whereas the active faults in the outer shelf locations increased the proportion of the HST unit in the sequences. The pre-existing slope-break geomorphology, fault activities, and asymmetric sea-level fluctuations coevally led to the diverse sequence architectures in the study area. The quantitative exploration of high-frequency sequence stratigraphic driving mechanisms is a future development trend in Pleistocene stratigraphy, and this study provides a potential reference for the standardization of 3D sequence stratigraphic investigations.

中图分类号: 

图1 琼东南盆地构造划分及研究区位置图
Fig. 1 Tectonic division and study area location map in the Qiongdongnan Basin
图2 南海北部中更新世以来构造—物源及海平面波动特征
氧同位素和海平面变化数据来自参考文献[ 15 ];物源供给速率来自参考文献[ 16 ];构造沉降速率(以琼东南盆地西北部为主)来自参考文献[ 17
Fig. 2 Tectonic and sediment supply as well as sea level fluctuations since the middle Pleistocene in the northern South China Sea
The oxygen-isotope and paleo-sea level change data is from reference [ 15 ]; Source supply rate is from reference [ 16 ]; Tectonic subsidence rate (mainly in the northwest Qiongdongnan Basin) is from reference [ 17
表1 地层几何关系法、可容空间序列法及陆架边缘迁移轨迹法对比一览表(据参考文献[ 8 ]修改)
Table 1 Comparisons between geometrical breakdown approachaccommodation successionand shelf-edge trajectory methodmodified after reference 8 ])
对比项 地层几何关系法 可容空间序列法 陆架边缘迁移轨迹法
核心要点 地层接触关系和叠置样式 地层叠置样式 陆架边缘轨迹(轨迹角)
方法类型 基于地层接触关系的几何变化 基于地层叠置样式 基于陆架坡折的运动学特征
构成单元 上超点和下超点的相对移动方向(<0向陆、>0向海) 地层叠置序列 陆架坡折的运动轨迹
建造单元 上超点<0下超点>0型、上超点和下超点<0型、上超点和下超点>0型和上超点>0下超点<0型 进积—加积(PA)序列、退积(R)序列和加积—进积—降积(APD)序列 低角度上升型、后退型、高角度上升型、平坦型和下降型陆架边缘迁移轨迹
资料条件 高分辨率地震资料为主 以地震和钻测井资料为主 高分辨率地震资料为主
层序类型 独立于模式的层序地层学 独立于模式的层序地层学 独立于模式的层序地层学
普适型 可识别典型地层接触关系的区域,以陆架边缘为主 可识别地层叠置样式的区域,以陆架边缘为主 可识别陆架坡折轨迹的陆架边缘
与四分层序模式的对应关系

PA序列=低角度上升型陆架边缘迁移轨迹=上超点<0下超点>0型=LST

R序列=后退型陆架边缘迁移轨迹=上超点和下超点<0型=TST

AP序列=低角度上升-平坦型陆架边缘迁移轨迹=上超点<0下超点>0型=HST

PD序列=平坦型-下降型陆架边缘迁移轨迹=上超点和下超点>0=FSST

以PD序列和PA序列的分界面作为层序界面

下降体系域二分识别标志 下降体系域内部分界面为一下超面,地层叠置样式由进积型转变为降积型,陆架边缘轨迹由平坦型转变为下降型
优点 基于地层接触关系几何变化的客观现象,增加了地震上层序划分的精度,层序划分不会因人而异 基于地层叠置样式等客观现象,层序划分不确定性降低 基于陆架坡折的运动学等客观现象,可定量的划分层序
缺点 普适性较低,在无明显地震接触关系的陆架区难以适用 普适性较低,仅适用于可识别地层叠置样式的地层 普适性较低,在无明显的陆架坡折轨迹的地质背景条件下不适用
图3 陆架边缘斜坡体系域划分模式(据参考文献[ 21 ]有修改)
Fig. 3 Division model of slope systems tract at the edge of shelfmodified after reference 21 ])
图4 南海琼东南盆地西区晚更新世陆架边缘迁移轨迹类型
Fig. 4 The shelf-edge trajectory patterns in the western part of the late Pleistocene Qiongdongnan BasinSouth China Sea
图5 南海琼东南盆地西区晚更新世层序界面及体系域构成(Line1Line2剖面位置见图1
(a) 地震剖面Line1;(b) 地震剖面Line2
Fig. 5 The sequence boundary and systems tract characteristics in the western part of the late Pleistocene Qiongdongnan BasinSouth China Seathe locations of seismic profiles Line1 and Line2 are shown in Fig. 1
(a) Seismic profile Line1; (b) Seismic profile Line2
图6 南海琼东南盆地西区晚更新世层序界面及体系域构成(Line4Line5剖面位置见图1
(a) 地震剖面Line4;(b) 地震剖面Line5
Fig. 6 The sequence boundary and systems tract characteristics in the western part of the late Pleistocene Qiongdongnan BasinSouth China Seathe locations of seismic profiles Line4 and Line 5 are shown in Fig. 1
(a) Seismic profile Line4; (b) Seismic profile Line5
图7 南海琼东南盆地西区晚更新世陆架边缘轨迹角统计图
Fig. 7 Statistical chart of shelf-edge migration angle in the western part of the late Pleistocene Qiongdongnan BasinSouth China Sea
表2 南海琼东南盆地西区晚更新世深水体系地震相类型及其沉积环境解释
Table 2 Seismic facies types and their depositional interpretations of deep-water sedimentary system in the western part of the late Pleistocene Qiongdongnan BasinSouth China Sea
图8 南海琼东南盆地西区典型体系域组合及关键深水沉积体系解释(地震剖面Line1Line2位置见图1
(a) 地震剖面Line1;(b) 地震剖面Line2
Fig. 8 Systems tract and deep-water sedimentary pattern in the western part of the late Pleistocene Qiongdongnan BasinSouth China Seathe locations of seismic profiles Line1 and Line2 are shown in Fig. 1
(a) Seismic profile Line1; (b) Seismic profile Line2
图9 南海琼东南盆地西部晚更新统地层厚度(时间域)及其关键沉积体系
(a)低位—高位体系域(LST-HST);(b)下降体系域早期(E-FSST);(c)下降体系域晚期(L-FSST);BSFR:下降体系域底界面;WSTS:下降体系域内部分界面;MTDs:块体搬运体系
Fig. 9 The upper Pleistocene stratigraphic thicknesstime domainand its key sedimentary systems in the western part of the Qiongdongnan BasinSouth China Sea
(a) Lowstand-Highstand Systems Tract (LST-HST); (b) Early Falling-Stage Systems Tract (E-FSST); (c) Late Falling-Stage Systems Tract (L-FSST);BSFR: Basal Surface of Forced Regression; WSTS: Within Systems Tract Surface; MTDs: Mass Transport Deposits system
图10 南海琼东南盆地西区晚更新世层序地层结构模式
Fig. 10 The summarized motifs of stratigraphic sequence architecture in the western part of the late Pleistocene Qiongdongnan BasinSouth China Sea
1 HUNT D, TUCKER M E. Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level’fall[J]. Sedimentary Geology, 1992, 81(1/2): 1-9.
2 CATUNEANU O. Sequence stratigraphy of deep-water systems[J]. Marine and Petroleum Geology, 2020, 114. DOI:10.1016/j.marpetgeo.2020.104238 .
3 GONG C L, LI D W, STEEL R J, et al. Delta-to-fan source-to-sink coupling as a fundamental control on the delivery of coarse clastics to deepwater: insights from stratigraphic forward modelling[J]. Basin Research, 2021, 33(6): 2 960-2 983.
4 CATUNEANU O, ABREU V, BHATTACHARYA J P, et al. Towards the standardization of sequence stratigraphy[J]. Earth-Science Reviews, 2009, 92(1/2): 1-33.
5 GUO W, XU G Q, XU S H, et al. Influence of sediment supply rate on sequence stratigraphic architecture change: a case study from the Kaiping Sag, northern South China Sea[J]. Marine and Petroleum Geology, 2021, 129. DOI: 10.1016/j.marpetgeo.2021.105106 .
6 XU G Q, PANG X. Sequence-stratigraphic dynamics: variations of genetic stratigraphic units driven by basin subsidence[J]. Global and Planetary Change, 2021, 201. DOI: 10.1016/j.gloplacha.2021.103482 .
7 GONG C L, WANG Y M, PYLES D R, et al. Shelf-edge trajectories and stratal stacking patterns: their sequence-stratigraphic significance and relation to styles of deep-water sedimentation and amount of deep-water sandstone[J]. AAPG Bulletin, 2015, 99(7): 1 211-1 243.
8 GONG Chenglin, STEEL R J, PENG Yang, et al. Major advances in deep-marine siliciclastic sequence stratigraphy, 1970 to 2020[J]. Acta Sedimentologica Sinica, 2022, 40(2): 292-318.
龚承林, STEEL R J, 彭旸, 等. 深海碎屑岩层序地层学50年(1970—2020)重要进展[J]. 沉积学报, 2022, 40(2): 292-318.
9 XU S H, HAN J H, WANG Y M, et al. How much systems-tract scale, three-dimensional stratigraphic variability is present in sequence stratigraphy? an answer from the middle Miocene Pearl River Mouth Basin[J]. AAPG Bulletin, 2020, 104(6): 1 261-1 285.
10 ZHUO H T, NIE X, SU M, et al. Quaternary stratigraphic architecture of the Pearl River Mouth continental shelf, northern South China Sea: unraveling stratigraphic imprints of tectonism, paleoceanography, and climate change[J]. Sedimentary Geology, 2024, 459. DOI: 10.1016/j.sedgeo.2023.106548 .
11 XU Shaohua, HE Min, PANG Xiong, et al. Lateral variation of sequence stratigraphic architecture on passive continental margin and its enlightenment: a case from the middle Miocene in Pearl River Mouth Basin in 13.8 Ma[J]. Oil & Gas Geology, 2018, 39(4): 811-822.
徐少华, 何敏, 庞雄, 等. 被动陆缘层序地层结构的侧向变化及其启示: 以珠江口盆地中中新世13.8 Ma为例[J]. 石油与天然气地质, 2018, 39(4): 811-822.
12 ZHAO Zengxiang, WAN Shiming, JU Mengshan, et al. The Sr-Nd isotopic and REE geochemical evidence for the provenance and weathering evolution of sediments in the NW South China Sea since the last glacial age[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2023, 42(4): 702-716, 682-683.
赵增祥, 万世明, 鞠梦珊, 等. 末次冰期以来南海西北部沉积物源和风化演变的Sr-Nd同位素与稀土元素证据[J]. 矿物岩石地球化学通报, 2023, 42(4): 702-716, 682-683.
13 XIE X N, MÜLLER R D, REN J Y, et al. Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern South China Sea[J]. Marine Geology, 2008, 247(3/4): 129-144.
14 HE Yunlong, XIE Xinong, LI Junliang, et al. Depositional characteristics and controlling factors of continental slope system in the Qiongdongnan Basin[J]. Geological Science and Technology Information, 2010, 29(2): 118-122.
何云龙, 解习农, 李俊良, 等. 琼东南盆地陆坡体系发育特征及其控制因素[J]. 地质科技情报, 2010, 29(2): 118-122.
15 LISIECKI L E, RAYMO M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1). DOI: 10.1029/2004PA001071 .
16 ZHAO R, CHEN S, OLARIU C, et al. A model for oblique accretion on the South China Sea margin; Red River (Song Hong) sediment transport into Qiongdongnan Basin since upper Miocene[J]. Marine Geology, 2019, 416. DOI: 10.1016/j.margeo.2019.106001 .
17 YUAN Yusong, YANG Shuchun, HU Shengbiao, et al. Tectonic subsidence of Qiongdongnan Basin and its main control factors[J]. Chinese Journal of Geophysics, 2008, 51(2): 376-383.
袁玉松, 杨树春, 胡圣标, 等. 琼东南盆地构造沉降史及其主控因素[J]. 地球物理学报, 2008, 51(2): 376-383.
18 LOBO F J, RIDENTE D. Stratigraphic architecture and spatio-temporal variability of high-frequency (Milankovitch) depositional cycles on modern continental margins: an overview[J]. Marine Geology, 2014, 352: 215-247.
19 NEAL J, ABREU V. Sequence stratigraphy hierarchy and the accommodation succession method[J]. Geology, 2009, 37(9): 779-782.
20 AALI M, RICHARDS B, NEDIMOVIĆ M R, et al. Geometrical breakdown approach to interpretation of depositional sequences[J]. Geosphere, 2021, 17(5): 1 454-1 471.
21 MELLERE D, PLINK-BJÖRKLUND P, STEEL R. Anatomy of shelf deltas at the edge of a prograding Eocene shelf margin, Spitsbergen[J]. Sedimentology, 2002, 49(6): 1 181-1 206.
22 XIE Jinyou, ZHU Youhua, LI Xushen, et al. The Cenozoic sea-level changes in Yinggehai-Qiongdongnan Basin, northern South China Sea[J]. Marine Origin Petroleum Geology, 2012, 17(1): 49-58.
谢金有, 祝幼华, 李绪深, 等. 南海北部大陆架莺琼盆地新生代海平面变化[J]. 海相油气地质, 2012, 17(1): 49-58.
23 SU Ming, XIE Xinong, WANG Zhenfeng, et al. Sedimentary evolution of the central canyon system in Qiongdongnan Basin, northern South China Sea[J]. Acta Petrolei Sinica, 2013, 34(3): 467-478.
苏明, 解习农, 王振峰, 等. 南海北部琼东南盆地中央峡谷体系沉积演化[J]. 石油学报, 2013, 34(3): 467-478.
24 XING Zuochang, ZHANG Zhongtao, LIN Changsong, et al. Sedimentary types and features of gravity flow depositional systems from late Oligocene to early Miocene in Liwan Sag, Pearl River Mouth Basin[J]. Journal of Palaeogeography, 2020, 22(6): 1 143-1 156.
邢作昌, 张忠涛, 林畅松, 等. 珠江口盆地荔湾凹陷晚渐新世: 早中新世重力流沉积类型及其特征[J]. 古地理学报, 2020, 22(6): 1 143-1 156.
25 GE J W, ZHAO X M, TAN M X, et al. Sequence stratigraphy and depositional evolution of the north-eastern shelf (33.9~10.5 Ma) of the Pearl River Mouth Basin, South China Sea[J]. Marine and Petroleum Geology, 2022, 141. DOI: 10.1016/j.marpetgeo.2022.105697 .
26 MA Chang, GE Jiawang, ZHAO Xiaoming, et al. Quaternary Qiongdongnan Basin in South China Sea: shelf-edge trajectory migration and deep-water depositional models[J]. Earth Science Frontiers, 2022, 29(4): 55-72.
马畅, 葛家旺, 赵晓明, 等. 南海北部琼东南盆地第四系陆架边缘轨迹迁移及深水沉积模式[J]. 地学前缘, 2022, 29(4): 55-72.
27 ZHANG M L, LIN C S, HE M, et al. Stratigraphic architecture, shelf-edge delta and constraints on the development of the late Oligocene to early Miocene continental margin prism, the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geology, 2019, 416. DOI: 10.1016/j.margeo.2019.105982 .
28 QIN Yanqun, WAN Lunkun, JI Zhifeng, et al. Progress of research on deep-water mass-transport deposits[J]. Oil & Gas Geology, 2018, 39(1): 140-152.
秦雁群, 万仑坤, 计智锋, 等. 深水块体搬运沉积体系研究进展[J]. 石油与天然气地质, 2018, 39(1): 140-152.
29 DU Hao, SHI Wanzhong, LIANG Jinqiang, et al. Genesis of mass transport deposits and their effect on gas hydrate accumulation in the Qiongdongnan Basin[J]. Oil Geophysical Prospecting, 2021, 56(4): 869-881.
杜浩, 石万忠, 梁金强, 等. 琼东南盆地块体搬运沉积体系成因及其对水合物成藏的影响[J]. 石油地球物理勘探, 2021, 56(4): 869-881.
30 GAO Yifan, LI Lei, CHENG Linyan, et al. Sedimentary architecture of mass transport deposits and its influence on later turbidity deposition—an example from the L area of Lingshui Sag in Qiongdongnan Basin[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 101-109.
高毅凡, 李磊, 程琳燕, 等. 块体搬运沉积构型及其对后期浊流沉积的影响: 以琼东南盆地陵水凹陷L区为例[J]. 海洋地质与第四纪地质, 2022, 42(2): 101-109.
31 SUN Q L, CARTWRIGHT J, XIE X N, et al. Reconstruction of repeated Quaternary slope failures in the northern South China Sea[J]. Marine Geology, 2018, 401: 17-35.
32 LIN Changsong, SHI Hesheng, LI Hao, et al. Sequence architecture, depositional evolution and controlling processes of continental slope in Pearl River Mouth Basin, northern South China Sea[J]. Earth Science, 2018, 43(10): 3 407-3 422.
林畅松, 施和生, 李浩, 等. 南海北部珠江口盆地陆架边缘斜坡带层序结构和沉积演化及控制作用[J]. 地球科学, 2018, 43(10): 3 407-3 422.
33 ZHUO H T, WANG Y M, SUN Z, et al. Along-strike variability in shelf-margin morphology and accretion pattern: an example from the northern margin of the South China Sea[J]. Basin Research, 2019, 31(3): 431-460.
34 LI Xiaojie. The early Pleistocene climate change recorded in the northern South China Sea sediments[D]. Xi’an: Institute of Earth Environment, Chinese Academy of Sciences, 2015.
李小洁. 南海北部沉积物记录的早更新世气候变化[D]. 西安: 中国科学院地球环境研究所, 2015.
35 ZHENG Hongbo, YANG Wenguang, HE Juan, et al. Marine Isotope Stage 3 (MIS 3) of South China Sea[J]. Quaternary Sciences, 2008, 28(1): 68-78.
郑洪波, 杨文光, 贺娟, 等. 南海的氧同位素3期[J]. 第四纪研究, 2008, 28(1): 68-78.
36 GE J W, ZHU X M, ZHANG X T, et al. Tectono-stratigraphic evolution and hydrocarbon exploration in the Eocene southern Lufeng Depression, Pearl River Mouth Basin, South China Sea[J]. Australian Journal of Earth Sciences, 2017, 64(7): 931-956.
37 GE J W, ZHU X M, WANG R, et al. Tectono-sedimentary evolution and hydrocarbon reservoirs in the early Cretaceous Tanan Depression, Tamtsag Basin, Mongolia[J]. Marine and Petroleum Geology, 2018, 94: 43-64.
38 CHIOCCI F L. Depositional response to Quaternary fourth-order sea-level fluctuations on the Latium margin (Tyrrhenian Sea, Italy)[J]. Geological Society, London, Special Publications, 2000, 172(1): 271-289.
39 ZHAO Z X, SUN Z, WANG Z F, et al. The high resolution sedimentary filling in Qiongdongnan Basin, northern South China Sea[J]. Marine Geology, 2015, 361: 11-24.
40 LIN C S, JIANG J, SHI H S, et al. Sequence architecture and depositional evolution of the northern continental slope of the South China Sea: responses to tectonic processes and changes in sea level[J]. Basin Research, 2018, 30(): 568-595.
[1] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[2] 周烨, 蒋富清, 南青云, 刘华华, 李安春. 奄美三角盆地晚更新世以来碎屑沉积物粒度特征及其物源和古气候意义[J]. 地球科学进展, 2016, 31(3): 298-309.
[3] 张虎才. 我国东北地区晚更新世中晚期环境变化与猛犸象—披毛犀动物群绝灭研究综述[J]. 地球科学进展, 2009, 24(1): 49-60.
[4] 吴德星,兰健. 中国东部陆架边缘海海洋物理环境演变及其环境效应[J]. 地球科学进展, 2006, 21(7): 667-672.
[5] 崔之久; 宋长青. 中国第四纪晚更新世晚期以来冰缘环境[J]. 地球科学进展, 1993, 8(2): 1-8.
阅读次数
全文


摘要