地球科学进展 ›› 2007, Vol. 22 ›› Issue (4): 341 -349. doi: 10.11867/j.issn.1001-8166.2007.04.0341

研究论文 上一篇    下一篇

古新世—始新世最热事件对地球表层循环的影响及其触发机制
赵玉龙,刘志飞   
  1. 同济大学海洋地质国家重点实验室,上海 200092
  • 收稿日期:2006-11-07 修回日期:2007-02-06 出版日期:2007-04-10
  • 通讯作者: 赵玉龙(1982-),男,内蒙古四子王旗人,硕士研究生,主要从事海洋地质学与古气候学研究.E-mail:yeoloon@gmail.com E-mail:yeoloon@gmail.com
  • 基金资助:

    教育部新世纪优秀人才支持计划“早新生代极端气候事件的海陆对比研究”;国家自然科学基金项目“南海中更新世气候转型期千年尺度气候波动及其全球意义”(编号:40331002)和“西太平洋暖池与东亚古环境:沉积记录的海陆对比”(编号:40321603);霍英东教育基金会项目“青藏高原东部晚第四纪侵蚀和气候演变在南海中的记录”(编号:101018)资助.

The Impacts of the Paleocene-Eocene Thermal Maximum (PETM) Event on Earth Surface Cycles and Its Trigger Mechanism

ZHAO Yu-long, LIU Zhi-fei   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092,China
  • Received:2006-11-07 Revised:2007-02-06 Online:2007-04-10 Published:2007-04-10

古新世—始新世最热事件(PETM, PaleoceneEocene Thermal Maximum)是发生在古新世—始新世交界时的一次全球性的气候突变事件。它造成了大洋环流模式的突然倒转和海水盐度、大气湿度的迅速上升。海洋表层生态系统和陆地生态系统生产力迅速上升,许多属种的植物、动物、微生物生活范围向高纬区扩大;大洋底栖微生物发生集群灭绝。现代哺乳动物的主要属种(灵长类、奇蹄类及偶蹄类)产生,哺乳动物演化进程发生重大改变。地球表层碳循环系统发生不同程度的碳同位素负偏移,全球碳循环系统发生大规模搅动。对于PETM的触发机制,主流的观点认为是海底天然气水合物突然释放造成巨量甲烷迅速进入表层系统引发的碳循环系统内部反馈。而对于甲烷释放的原因,又存在着减压释放和热释放两种解释;此外还有科学家用岩浆作用和地外星体撞击来解释PETM的发生。

The Paleocene-Eocene Thermal Maximum (PETM) event is an abrupt climate change event that occurred at the Paleocene-Eocene boundary. The event led to a sudden reversal in ocean overturning along with an abrupt rise in sea surface salinity (SSSs) and atmospheric humidity. An unusual proliferation of biodiversity and productivity during the PETM is indicative of massive fertility increasing in both oceanic and terrestrial ecosystems. Global warming enabled the dispersal of low-latitude populations into mid-and high-latitude. Biological evolution also exhibited a dramatic pulse of change, including the first appearance of many important groups of “modern” mammals (such as primates, artiodactyls, and perissodactyls) and the mass extinction of benthic foraminifera. Massive input of 12C enriched carbon into the oceanic-atmospheric system induced a prominent negative carbon isotope excursion (CIE) and rapid perturbation of global carbon cycle. The trigger mechanism of PETM remains obscure. One plausible explanation involves abrupt release of marine methane hydrate. Magma activity and bolide effect are also announced accounting for the occurrence of PETM. As for the gas hydrate hypothesis, there are still a lot of different theories explaining how the thermal or depressure dissociation of gas hydrate happened.

中图分类号: 

[1]Integrated Ocean Drilling Program (IODP) Planning Sub-Committee (IPSC). Earth, Oceans and Life, IODP Initial Science Plan: 2003-2013[R].Translated by Marine Geology Key Laboratory of MOE, Tongji University. Shanghai: Tongji University Press, 2003.[IODP科学规划委员会.地球、海洋与生命,IODP初始科学计划:2003-2013[R].同济大学海洋地质教育部重点实验室译.上海:同济大学出版社,2003.]
[2]Kennett J, Scott L. Abrupt deep sea warming, paleoceanographic changes and benthic extinctions at the end of the Paleocene[J].Nature,1991,353:319-322.
[3]Liu Zhifei, Hu Xiumian. Extreme climates events in the Cretaceous and Paleogene[J].Advances in Earth Science,2003,18 (5):681-690.[刘志飞,胡修棉.白垩纪至早第三纪的极端气候事件[J].地球科学进展, 2003,18(5):681-690.]
[4]Gingerich P. Environment and evolution through the Paleocene-Eocene thermal maximum[J].Trends in Ecology and Evolution,2006,21(5):246-253.
[5]Cramer B, Kent D. Bolide summer: The Paleocene/Eocene thermal maximum as a response to an extraterrestrial trigger[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2005, 224: 144-166.
[6]Moran K, Backman J, Brinkhuis H, et al. The Cenozoic palaeoenvironment of the Arctic Ocean[J]. Nature,2006,441:601-605.
[7]Zachos J, Wara M, Bohaty S, et al. A transient rise in tropical sea surface temperature during the Paleocene-Eocene thermal maximum[J].Science,2003,302(28):1 551-1 554.
[8]Nunes F, Norris R. Abrupt reversal in ocean overturning during the Paleocene/Eocene warm period [J].Nature,2006, 439: 60-63.
[9]Bowen G, Beerling D, Koch P, et al. A humid climate state during the Palaeocene/Eocene Thermal Maximum[J].Nature,2004, 432:495-499.
[10]Crouch E,Heilmann-Clausen C, Brinkhuis H, et al. Global dinoflagellate event associated with the late Paleocene thermal maximum[J].Geology,2001,29:315-318.
[11]Gibbs S, Bralower T, Bowen P, et al. Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene Thermal Maximum: Implications for global productivity gradients[J].Geology,2006,34(4):233-236.
[12]Lu G, Keller G. Ecological stasis and saltation: species richness change in planktic foraminifera during the late Paleocene to early Eocene, DSDP Site 577[J].Palaeogeography, Palaeoclimatology, Palaeoecology,1995,117:211-227.
[13]Bains S, Norris R, Corfield R, et al. Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback[J].Nature,2000,407:171-174.
[14]Kelly D, Bralower T, Zachos J, et al. Rapid diversification of planktonic foraminifera in the tropical Pacific (ODP Site 865) during the late Paleocene thermal maximum[J].Geology,1996,24(5):423-426.
[15]Beerling D. Increased terrestrial carbon storage across the Palaeocene-Eocene boundary[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2000,161:395-405.
[16]Wing S, Harrigton G, Smith F, et al. Transient floral change and rapid global warming at the Paleocene-Eocene boundary[J].Science,2005,310:993-996.
[17]Bowen G, Clyde W, Koch P, et al. Mammalian dispersal at the Paleocene/Eocene boundary [J].Science,2002,295:2 062-2 065.
[18]Clyde W, Khan I, Gingerich P. Stratigraphic response and mammalian dispersal during initial India Asia collision: Evidence from the Ghazij Formation, Baluchistan, Pakistan [J].Geology, 2003,31(12):1 097-1 100.
[19]Clyde W, Gingerich P. Mammalian community response to the latest Paleocene thermal maximum: An isotaphonomic study in the northern Bighorn basin, Wyoming [J].Geology,1998, 26(11):1 011-1 014.
[20]Bains S, Corfield R, Norris R. Mechanisms of climate warming at the end of the Paleocene[J].Science,1999,285:724-727.
[21]Dickens G, O'Neil J, Rea D, et al. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene [J].Paleoceanography,1995,10:965-971.
[22]Thomas D, Zachos J, Bralower T, et al. Warming the fuel for the fire: Evidence for the thermal dissociation of methane hydrate during the Paleocene-Eocene thermal maximum [J].Geology,2002,30(12):1 067-1 070.
[23]Zachos J, Röhl U, Schellenberg S, et al. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum[J]. Science, 2005,308:1 611-1 615.
[24]Eldholm O, Thomas E. Environmental impact of volcanic margin formation[J]. Earth and Planetary Science Letters,1993,117:319-329.
[25]Bice K, Marotzke J. Numerical evidence against reversed thermohaline circulation in the warm Paleocene/Eocene ocean[J].Journal of Geophysical Research,2001,106:11 529-11 542.
[26]Thomas D, Bralower T, Jones C. Neodymium isotopic reconstruction of late Paleocene-early Eocene thermohaline circulation[J].Earth and Planetary Science Letters,2003,209:309-322.
[27]Bralower T, Thomas D, Zachos J, et al. High-resolution records of the late Paleocene thermal maximum and circum-Caribbean volcanism: Is there a causal link[J].Geology,1997,25(11):963-966.
[28]Svensen H,Planke S, Malthe-S renssen A, et al. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming[J].Nature,2004,429:542-545.
[29]Lourens L, Sluijs A, Kroon D, et al. Astronomical pacing of late Palaeocene to early Eocene global warming events[J].Nature,2005, 435: 1 083-1 087.
[30]Katz M, Cramer B, Mountain G, et al. Uncorking the bottle: What triggered the Paleocene/Eocene thermal maximum methane release[J].Paleocenography,2001,16(6):549-562.
[31]Maclennan J, Jones S. Regional uplift, gas hydrate dissociation and the origins of the Paleocene-Eocene thermal maximum[J].Earth and Planetary Science Letters,2006, 245:65-80.
[32]Kent D, Cramer B, Lanci L, et al. A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion[J].Earth and Planetary Science Letters, 2003, 211:13-26.
[33]Higgins J, Schrag D. Beyond methane: Towards a theory for the Paleocene-Eocene thermal maximum[J].Earth and Planetary Science Letters,2006, 245:523-537.
[34]Kurtz A, Kump L, Arthur M, et al. Early Cenozoic decoupling of the global carbon and sulfur cycles[J].Paleoceanography,2003, 18(4):1 090, doi: 10.1029/2003PA000908.

[1] 同济大学海洋科技中心海底观测组. 美国的两大海洋观测系统:OOI与IOOS[J]. 地球科学进展, 2011, 26(6): 650-655.
[2] 陈大可,许建平,马继瑞,陈显尧,王桂华,王伟,韩桂军,张启龙,袁耀初,周伟东. 全球实时海洋观测网(Argo)与上层海洋结构、变异及预测研究[J]. 地球科学进展, 2008, 23(1): 1-7.
[3] 苏京志;王东晓;陈举;杜岩;谢强. 利用回归模型模拟卫星跟踪海洋漂流浮标轨迹[J]. 地球科学进展, 2005, 20(6): 607-617.
[4] 吕恒;江南;李新国;. 内陆湖泊的水质遥感监测研究[J]. 地球科学进展, 2005, 20(2): 185-192.
[5] 刘志飞,胡修棉. 白垩纪至早第三纪的极端气候事件[J]. 地球科学进展, 2003, 18(5): 681-690.
[6] 孙连浦,周祖翼. 科学大洋钻探中的新技术[J]. 地球科学进展, 2003, 18(5): 789-794.
[7] 汪品先. 走向地球系统科学的必由之路[J]. 地球科学进展, 2003, 18(5): 795-796.
[8] 沈建忠. 大洋钻探计划的最新动态[J]. 地球科学进展, 1998, 13(6): 582-587.
阅读次数
全文


摘要