地球科学进展 ›› 1999, Vol. 14 ›› Issue (2): 153 -158. doi: 10.11867/j.issn.1001-8166.1999.02.0153

综述与评述 上一篇    下一篇

岩浆作用的物理过程研究进展
赖绍聪   
  1. 西北大学地质系,陕西 西安 710069
  • 收稿日期:1998-06-10 修回日期:1998-10-19 出版日期:1999-04-01
  • 通讯作者: 赖绍聪,男,1963年10月出生,副教授,从事造山带火山岩地球化学及岩石大地构造学的研究工作。
  • 基金资助:

    陕西省教委专项科研基金“秦岭造山带勉县—略阳地区蛇绿岩地球化学及超镁铁质糜棱岩型金矿床”(项目编号:PJ96220)和西北大学科研基金“大别山南缘随州—京山地区蛇绿混杂岩带火山岩同位素年代学及地球化学”(97NW23)资助。

ADVANCES IN THE PHYSICS PROCESS RESEARCH ON MAGMATISM

LAI Shaocong   

  1. Northwest University,Xi an 710069,China
  • Received:1998-06-10 Revised:1998-10-19 Online:1999-04-01 Published:1999-04-01

概略地介绍了80年代以来硅酸盐熔体及硅酸盐晶—液悬浮体的密度、粘度、熔体结构、流体动力学等方面的研究动向,及其对岩浆作用、岩浆运移、岩浆侵位机制的动力学约束条件,硅酸盐熔体的结构是制约熔体粘度的主导因素,化学成分对熔体粘度的控制是通过改变熔体结构而实现的,粘度在一定程度上决定着岩浆的迁移、侵位和喷发方式。密度和浮力是岩浆上升侵位的重要约束,地壳是岩浆上升的一个密度过滤器,岩浆最终由于浮力的消失而停止上升。

The newdevelopment and progress in density,viscosity,melt structure and fluid dynamics of the magmatic silicate melt-silicate crystal/liquid suspension are briefly summarized in this paper.Then the relationship and constrainting conditions between physical features ofthe magma andmagmatism,magma transport aswell asmagma emplacementmechanism are discussed in this paper.It is believed thatthe viscosityof silicate melt dependenton the characters of its chemical composition,however,the change of melt structure is the reason for the change of viscosity. The relationship between viscosity and chemical composition,actually,is the reflection of the relationship between viscosity and melt structure.In some degree the transport,emplacement and eruption pattern ofthe magmas are determined byviscosityofthe melt.In addition,the density and buoyancy are important constrainting conditions formagma ascending and emplacement.In fact,the earth s crust is a density filter for magma rising.Finally the magmas stop ascendingwhen the buoyancy disappears.

中图分类号: 

〔1〕赵海玲.岩浆物理性质和流体动力学.北京:地震出版社,1995.1~122.
〔2〕托鲁基安YS,贾德WR,罗伊RF,等.岩石与矿物的物理性质.单家增,李继亮等译.北京:石油工业出版社,1990.6~80.
〔3〕Bottinga Y,Weill D F.Densities of liquid silicate systems calculated from partial molar volums of oxide components.Am J Sci,1970,267(2):169~182.
〔4〕Stolper E.Water in silicate glasses:an infrared spectroscopic study.Contrib Mineral Petrol,1982,81:1~17.
〔5〕Stebbins J F,Sykes D.The structure of NaAlSi3O8liquid at high pressure:new constraints from NMR spectroscopy.Am Mineral,1990,75:943~946.
〔6〕Poe B T,McMillan P F,Austen A C,et al.Al and Si coodination in SiO2—Al2O3glasses and liquids:Astudy byNMR and IR spectroscopy and MD simulations.Chemical Geology,1992,96:333~349.
〔7〕Stebbins JF,Farnan I,Xue A.The structure and dynmaicsof alkali silicate liquids:A review from NMR spectroscopy.Chemical Geology,1992,96:371~385.
〔8〕Sisson T W,Grove T L.Experimental investigations of the role of the H2O in calc-alkaline differentiation and subduction zone magmatism.Contrib Mineral Petrol,1993.143~166.
〔9〕朱永峰,赵永超,郭光军.一种计算NaAlSi3O8熔体粘度的理论方法.岩石学报,1997,13(2):173~179.
〔10〕Bottinga Y,Weill D F.The viscosity of magmatic silicate liquids:A model for calculation.Amer J Sci,1972,272:438~475.
〔11〕ShawHR.Viscosity of magmatic silicate liquids:an empirical method of prediction.Amer J Sci,1972,272:870~893.
〔12〕Persikov ES,ZharlkovVA,Bukhtiyarov PG,et al.The effect of volatiles on the properties ofmagmatic melts.Eur JMineral,1990,2:621~642.
〔13〕Baker D R.Trace diffusion of network formers and multicomponent diffusion in dacitic and rhyolitic melts.Geochim Cosmochim Acta,1992,56:617~631.
〔14〕Bottinga Y,Weill D F.Density calculations for silicate liquids:Revised method for aluminosilicate composition.Geochimica et Cosmo-chemica Acta,1982,46:909~919.
〔15〕Dingwell D B,Webb S L.Relaxation in silicate melts.Eur JMineral,1990,2:427~449.
〔16〕Knoche R,Dingwell D B,Webb S L.Temperature-dependent thermal expansivities of silicate melts:The system anorthite-diopside.Geochim Cosmochim Acta,1992,56:689~699.
〔17〕金志升,黄智龙,朱成明.硅酸盐熔体结构与岩浆液态不混溶作用.地质地球化学,1997,(1):60~64.
〔18〕Mysen B O.The structure of silicate melts:implications for chemical and physical properties of natural magma.Reviews of Geophysics and Space Physics,1982,20(3):353~383.
〔19〕Mysen B O.Magmatic silicate melts:relations between bulk composition, Structure and properties. The Geochemical Society Special Publication, 1987,(1):375~399.
〔20〕Farnan I,Grandintetti P J,Baktisberger J H,et al.Quantification of the disorder in network-modified silicate glasses.Nature,1992,358:31~35.
〔21〕Mysen BO.Relationshipsbetween silicatemelt structure and petrologic processes.Earth Science Reviews,1990,27(3~4):281~365.
〔22〕朱永峰,张传清.硅酸盐熔体结构学.北京:地质出版社,1996.22~89.
〔23〕邓晋福.岩浆的密度、结构及流体动力学.地质科技情报,1989,8(3):11~17.
〔24〕Huppert H E.Replenishment of magma chambers by light inputs.Journal of Geophysical Research,1986,91(6):6 113~6 122.
〔25〕Church A A,Jones A P.Slicate-carbonate immiscibility at Oldoinyo Lengai.Journal of Petrology,1995,26(4):869~889.
〔26〕Lee W J,Wyillie P J.Liquid immiscibility in the join NaAlSi3O8—CaCO3to 2.5 GPa and the origin of calciocarbonatite magmas.Journal of Petrology,1996,37(5):1 125~1 152.
〔27〕黄智龙,朱成明,金志升,等.煌斑岩类与花岗岩类液态分离高温高压初步实验.贵阳:贵州科技出版社,1996.198~111.
〔28〕Cheney S M,Dean C P.Liquid phase relations in the CaO—MgO—Al2O3—SiO2system at 3.0 GPa;the aluminous pyroxene thermal divide and high-pressure fractionation of picritic and komatitic magmas.Journal of Petrology,1998,39(1):3~27.
〔29〕Neuvile D R,Courtial P,Dingwell D B,et al.Thermodynamic and geological properties of rhyolite and andesitemelts.Contrib Mineral Patrol,1993,113:572~581.
〔30〕Lee W J,Wyillie P J.Petrogenesis of carbonatite magmas frommantle to crust,constrained by the system CaO—(MgO+FeO*)—(Na2O+K2O)—(SiO2+ Al2O3+ TiO2)—CO2. Journal of Petrology,1998,39(3):495~517.
〔31〕Milholland C S,Presnall D C.Liquidus phase relations in the CaO—MgO—Al2O3—SiO2systemat 3.0 GPa,the aluminous pyroxene thermal divide and high-pressure fractionation of picritic and komatiitic magmas.Journal of Petrology,1998,39(1):3~27.
〔32〕Kurt M K,Jon P D.The origin and evolution of large-volume silicic magma system: long valley Caldera. International Geology Review,1997,39(11):1 038~1 052.
〔33〕Ramsay J G.Emplacement kinematics of a granite diapir:the chindamore batholith, zimbabwe. Jour Struct Geology, 1989, 11: 191 ~209.
〔34〕Pitcher WS.The nature,ascent and emplacement of granitic magmas.J Geol Soc Lond,1979,136:62~627.
〔35〕Grout F F.Scale models of structures related to batholiths.Am Jour Sci,1945,243:260~284.
〔36〕RambergH.Gravity deformation of the earth s crust in theory,experiments and geological application.London:Academic Press,1981.452.
〔37〕Alexander R C.Flow and fabric development during the diapiric rise of magma.J Geol,1990,98(5):681~697.
〔38〕Geist D,NaumannT,Larson P.Evolution of galapagosmagmas:mantle and crustal fractionation without assimilation. Journal of Petrology,1998,39(5):953~971.
〔39〕March B D.On the interpretation of crystal size distributions in magmatic systems.Journal of Petrology,1998,39(4):553~599.

 

[1] 杜欣儒,路紫,董雅晴,丁疆辉. 机场终端空域航空流量热区云图模型及其北京首都国际机场案例研究[J]. 地球科学进展, 2019, 34(8): 879-888.
[2] 吴成平,于长春,王卫平,马勋表,范正国,朱宏伟. 鲁西齐河地区岩(矿)石物性特征及应用[J]. 地球科学进展, 2019, 34(10): 1099-1107.
[3] 冯旭亮. 空间域密度界面反演方法及其进展[J]. 地球科学进展, 2019, 34(1): 57-71.
[4] 张亚峰, 姚振, 马强, 姬丙艳, 苗国文, 许光, 马风娟. 青藏高原北缘土壤碳库和碳汇潜力研究[J]. 地球科学进展, 2018, 33(2): 206-212.
[5] 廖一帆, 孙宁宇, 毛竹. 地球下地幔矿物结构和热力学参数的研究进展与展望[J]. 地球科学进展, 2017, 32(5): 465-480.
[6] 王磊, 陈仁升, 宋耀选. 基于Γ函数的祁连山葫芦沟流域湿季小时降水统计特征[J]. 地球科学进展, 2016, 31(8): 840-848.
[7] 吴立新,陈朝晖. 物理海洋观测研究的进展与挑战[J]. 地球科学进展, 2013, 28(5): 542-551.
[8] 王培震,石培基,魏伟,张胜武. 基于空间自相关特征的人口密度格网尺度效应与空间化研究[J]. 地球科学进展, 2012, 27(12): 1363-1372.
[9] 张友联, 杜建国,崔月菊. 地核物质成分研究进展[J]. 地球科学进展, 2011, 26(4): 365-374.
[10] 赵兵科,邵德民,鲁小琴,徐同,翁永元. 多通道地基微波辐射计在0713号“韦帕”台风登陆前后探测性能及特征分析[J]. 地球科学进展, 2009, 24(9): 1001-1008.
[11] 陈彦光,刘继生. 城市人口分布空间自相关的功率谱分析[J]. 地球科学进展, 2006, 21(1): 1-9.
[12] 徐建桥;孙和平;傅容珊. 地球固体内核平动振荡的研究和检测[J]. 地球科学进展, 2005, 20(7): 740-745.
[13] 季顺迎;岳前进;王瑞学. 海冰动力学数值方法研究进展[J]. 地球科学进展, 2004, 19(6): 963-970.
[14] 曾佐勋,付永涛. 岩石古流变性质的构造研究进展[J]. 地球科学进展, 1998, 13(2): 157-160.
[15] 徐夕生; 周新民; 王德滋. 中酸性岩浆岩中岩石包体研究的新进展[J]. 地球科学进展, 1993, 8(4): 54-58.
阅读次数
全文


摘要