地球科学进展 ›› 2006, Vol. 21 ›› Issue (1): 1 -9. doi: 10.11867/j.issn.1001-8166.2006.01.0001

研究论文    下一篇

城市人口分布空间自相关的功率谱分析
陈彦光 1,刘继生 2   
  1. 1.北京大学地理科学研究中心,北京 100871;2.东北师范大学城市与环境科学学院,吉林 长春 130024
  • 收稿日期:2004-10-18 修回日期:2005-09-28 出版日期:2006-01-15
  • 通讯作者: 陈彦光 E-mail:chenyg@pku.edu.cn
  • 基金资助:

    国家自然科学基金项目“城市结构的的空间复杂性研究”(编号:40371039) 资助.

Power Spectra Analyses of Spatial Auto-Correlations of Urban Density: An Application to the Hangzhou Metropolis

Chen Yanguang 1, Liu Jisheng 2   

  1. 1.Department of Geography, Peking University, Beijing  100871,China;2.College of Urban and Environment Science, Northeast Normal University, Changchun  130024,China
  • Received:2004-10-18 Revised:2005-09-28 Online:2006-01-15 Published:2006-01-15

从理论上可以证明标准的城市人口密度负指数距离衰减模型本质上是一种空间相关函数,基于这种思想对Clark模型进行Fourier变换,可以导出城市人口密度的幂次频谱分布,且功率谱指数理应为β=2±。负指数与幂指数的这种变换关系暗示了城市地理系统简单与复杂的辩证关系。借助中国杭州市4年的人口普查资料转换的平均人口密度分布数据对上述推论进行检验,发现β渐进式趋近于2但并不约等于2。将β值进一步换算为人口过程的分维D和Hurst指数H,结果表明:城市人口具有长程负相关作用,但这种空间作用显示明确的局域化倾向。目前的城市形态演化模拟几乎无一例外地引入了长程作用,根据杭州人口分布的局域化特征,有关地理长程作用的假设和应用有必要重新探讨。

The standard negative exponential distance-decay relationship of urban population density, namely the Clark empirical law, ρ(r)=ρ0exp(-br), is proved to be a correlation function reflecting the relation between the center of the city and the point at a given distance. Therefore the Fourier transformation of the urban density should give an index/exponent of power spectra such as β≈2 theoretically. However, when the fast Fourier transformation (FFT) is applied to the urban densities of the Hangzhou metropolis in 1964, 1982, 1990 and 2000 (according to Census time), it turns out to be that the β values vary from 1.44 to 1.80, not often approximating to 2. If the exponential function with power,ρ(r)=ρ0exp(-brσ), is employed to fit the urban density data of Hangzhou instead of Clark’s model, the results are the restraint parameter σ values vary from 0.45 to 0.78, not often approximating to 1. A semi-log relation between σ and β values can be expressed as β≈2+0.7 lnσ . Going a further step, the fractal dimension of self-similar curves, D, and Hurst exponent, H, can be given by means of the formulae β=5-2D and D=2-H. The conclusions can be drawn from the mathematical transformations and computations as follows: First, Urban density has a long-distance dependence, but it is passive/negative and tends to become weak with the lapse of time; Second, the action of urban population in space is localized as a city grows. Third, since the Clark model can be derived using entropy-maximizing method, the calculated results imply that the so-called entropy-maximization is only a developing tendency instead of a realistic state. Last but not least, the idea of action-at-a-distance has been introduced into the various urban simulations based on cellular automata (CA) and all that, but the localization of urban population activity means that the long-range effect should be reflected and revised in the light of amplitude-spectra analyses of urban density equation as an auto-correlation function.

中图分类号: 

[1] Clark C. Urban population densities [J]. Journal of Royal Statistical Society,1951,114: 490-496.

[2] Cadwallader M T. Urban Geography: An Analytical Approach [M]. Upper Saddle River, NJ: Prentice Hall, 1996.

[3] Batty M, Longley P A. Fractal Cities: A Geometry of Form and Function [M]. London: Academic Press, Harcourt Brace & Company, Publishers, 1994.

[4] Sherratt G G. A model for general urban growth [A]. In: Churchman C W, Verhulst M, eds. Management Sciences, Model and Techniques: Proceedings of the Sixth International Meeting of Institute of Management sciences (Vol.2)[C]. New York, Elmsford: Pergamon Press, 1960:147-159.

[5] Tanner J C. Factors Affecting the Amount Travel [Z]. Road Research Technical Paper No.51, HMSO (Department of Scientific and Industrial Research), London, 1961.

[6] Dacey M F. Some comments on population density models, tractable and otherwise[J]. Papers of the Regional Science Association,1970,27:119-133.

[7] Bussiere R, Snickers F. Derivation of the negative exponential model by an entropy maximizing method [J]. Environment and Planning A, 1970, 2: 295-301.

[8] Muth R. Cities and Housing: The Spatial Patterns of Urban Residential Land Use [M]. Chicago, IL: Unversity of Chargo Press, 1969.

[9] Mills E S, Tan J P. A comparison of urban population density functions in developed and developing countries [J]. Urban Studies,1980, 17: 313-321.

[10] Kohsaka H. The location process of central place system within a circular city [J]. Economic Geography, 1986, 62(3): 254-266.

[11] Frankhauser P. La Fractalit des Structures Urbaines [M]. Paris: Economica,1994.

[12] Benguigui L, Czamanski D, Marinov M, et al. When and where is a city fractal?[J]. Environment and Planning B: Planning and Design, 2000, 27: 507-519.

[13] Bak P. How Nature Works: The Science of Self-organized Criticality [M]. New York: Springer-Verlag, 1996.

[14] Goldenfeld N, Kadanoff L P. Simple lessons from complexity[J]. Science, 1999,284(2): 87-89.

[15] Lin Bingyao. An Introduction to Quantitative Geography[M]. Beijing: Higher Educational Press,1985:95-96.[林炳耀.计量地理学概论[M].北京:高等教育出版社,1985:95-96.]

[16] Wang F H, Zhou Y X. Modeling urban population densities in Beijing 1982-90: Suburbanisation and Its Causes[J]. Urban Studies, 1999,36(2): 271-287.

[17] Wang F H, Meng Y. Analyzing urban population change patterns in Shenyang, China 1982-90: Density function and spatial association approaches [J]. Geographic Information Sciences, 1999, 5 (2): 121-130.

[18] Shen Jianfa, Wang Guixin. A model study on population distribution and variational trend of Shanghai city in the 1990s[J]. Chinese Journal of Population Science, 2000,(5):45-52.[沈建法,王桂新.90年代上海市中心城人口分布及其变化趋势的模型研究[J].中国人口科学,2000,(5):45-52.]

[19] Feng Jian. Modeling the spatial distribution of urban population density and its evolution in Hangzhou[J]. Geographical Research,2002,21(5):635-646.[冯健.杭州市人口密度空间分布及其演化的模型研究[J].地理研究,2002,21(5):635-646.]

[20] Chalmer A F. What is This Thing Called Science? (3rd) [M]. Buckingham: Open University Press, 1999.

[21] Chen Yanguang. The fractalmodel of urban population density-decay and its related forms: Derivation andsynthesis of Clark model and Sherratt model[J]. Journal of Xinyang Teachers College (Natural Science Edition), 1999,12(1):60-64.[陈彦光.城市人口密度衰减的分形模型及其异化形式——Clark模型和 Sherratt模型的综合与发展[J].信阳师范学院学报:自然科学版,1999,12(1):60-64.]

[22] Chen Yanguang. Derivation and generalization of Clark’s model on urban population density using entropy—Maximising methods and fractal ideas[J]. Journal of Central Normal University (Natural Science Edition), 2000,34(4):489-492.[陈彦光.城市人口空间分布函数的理论基础与修正形式——利用最大熵方法推导关于城市人口密度衰减的Clark模型[J].华中师范大学学报:自然科学版,2000,34(4):489-492.]

[23] Takayasu H. Fractals in the Physical Sciences[M]. Manchester: Manchester University Press,1990.

[24] Wilson A G. Complex Spatial Systems: The Modelling Foundations of Urban and Regional Analysis [M]. Singapore: Pearson Education Asia Pte Ltd, 2000.

[25] Feder J. Fractals [M]. New York: Plenum Press, 1988.

[26] White R, Engelen G. Cellular automata and fractal urban form: A cellular modeling approach to the evolution of urban land-use patterns[J]. Environment and Planning A,1993,25: 1 175-1 199.

[27] Batty M, Couclelis H, Eichen M. Editorial: Urban systems as cellular automata [J]. Environment and Planning B: Planning and Design,1997, 24: 159-164.

[28] Banks R B. Growth and Diffusion Phenomena: Mathematial Frameworks and Applications [M]. Berlin Heidelberg: Springer-Verlag, 1994.

[29] Lee Y. An allmetric analysis of the US urban system: 1960-80[J]. Environment and Planning A,1989, 21: 463-476.

[30] Longley P, Mesev V. Beyond analogue models: Space filling and density measurements of an urban settlement [J]. Papers in Regional Sciences,1997,76: 409-427.

[1] 曲长伟,张 霞,林春明,陈顺勇,李艳丽,潘峰,姚玉来. 杭州湾地区晚第四纪浅层生物气藏盖层物性封闭特征[J]. 地球科学进展, 2013, 28(2): 209-220.
[2] 杨开忠,薛领. 复杂区域科学:21世纪的区域科学[J]. 地球科学进展, 2002, 17(1): 5-11.
阅读次数
全文


摘要