地球科学进展 ›› 2024, Vol. 39 ›› Issue (7): 661 -670. doi: 10.11867/j.issn.1001-8166.2024.045

综述与评述 上一篇    下一篇

陆—气相互作用研究展望
周广胜 1 , 2 , 3( ), 周梦子 1 , 3, 周莉 1 , 3, 汲玉河 1 , 3   
  1. 1.中国气象科学研究院灾害天气国家重点实验室, 河北固城农业气象国家野外科学观测研究站, 北京 100081
    2.南京信息工程大学气象灾害预报预警与评估协同创新中心, 江苏 南京 210044
    3.中国气象科学研究院—郑州大学生态气象联合实验室, 河南 郑州 450001
  • 收稿日期:2024-04-30 修回日期:2024-05-24 出版日期:2024-07-10
  • 基金资助:
    国家自然科学基金项目(42130514)

Prospects for Land-Atmosphere Interaction

Guangsheng ZHOU 1 , 2 , 3( ), Mengzi ZHOU 1 , 3, Li ZHOU 1 , 3, Yuhe JI 1 , 3   

  1. 1.State Key Laboratory of Severe Weather, Gucheng Agro-meteorology National Field Scientific Observation Station, Chinese Academy of Meteorological Sciences, Beijing 100081, China
    2.Collaborative Innovation Center on Forecast Meteorological Disaster Warning and Assessment, Nanjing University of Information Science & Technology, Nanjing 210044, China
    3.Joint Laboratory of Eco-Meteorology, Chinese Academy of Meteorological Sciences, Zhengzhou University, Zhengzhou 450001, China
  • Received:2024-04-30 Revised:2024-05-24 Online:2024-07-10 Published:2024-07-29
  • About author:ZHOU Guangsheng, Professor, research areas include impact of climate change and disaster mitigation. E-mail: zhougs@cma.gov.cn
  • Supported by:
    the National Natural Science Foundation of China(42130514)

综述了陆—气相互作用在观测、机制和模型方面的最新进展,指出现有陆—气相互作用观测研究没有同时考虑陆面生理生态与大气边界层变化对陆—气通量的影响,制约了陆面过程参数化或参数的卫星遥感反演以及陆面过程模式的业务应用。从全面认识陆—气相互作用与陆面过程模式发展出发,指出未来需进一步强化陆面生理生态与大气边界层变化对陆—气相互作用的影响研究以及陆面过程模式的业务应用研究,并提出了拟关注的重点任务: 陆—气相互作用的跨界面立体观测; 多源数据在跨界面陆—气相互作用中的应用; 陆面过程模式发展与业务应用。

This paper summarizes recent progress in the observation, mechanism, and modeling of land-atmosphere interactions, and demonstrates that existing observational studies have not considered the effects of changes in terrestrial ecophysiology and the atmospheric boundary layer on land-atmosphere fluxes. Consequently, they restrict the parameterization of land surface processes, parameter inversion from satellite remote sensing, and the operational application of the land surface process model. To gain a comprehensive understanding of land-atmosphere interactions and the development of land surface process models, studies on the effects of changes in terrestrial ecophysiology and atmospheric boundary layers on land-atmosphere interactions and the operational application of land-surface process models need to be emphasized in the future. The main tasks to be considered include: three-dimensional observation of the land-atmosphere interactions across the boundary layer, application of multi-source data in the land-atmosphere interactions across the boundary layer, and development and operational application of land surface process models.

中图分类号: 

1 NIYOGI D, CHANG H I, SAXENA V K, et al. Direct observations of the effects of aerosol loading on net ecosystem CO2 exchanges over different landscapes[J]. Geophysical Research Letters, 2004, 31(20). DOI:10.1029/2004GL020915 .
2 KNOHL A, BALDOCCHI D D. Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem[J]. Journal of Geophysical Research: Biogeosciences, 2008, 113(G2). DOI: 10.1029/2007JG000663 .
3 NIU S L, LUO Y Q, FEI S F, et al. Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms[J]. The New Phytologist, 2012, 194(3): 775-783.
4 ZHOU L, WANG Y, JIA Q Y, et al. Increasing temperature shortened the carbon uptake period and decreased the cumulative net ecosystem productivity in a maize cropland in northeast China[J]. Field Crops Research, 2021, 267. DOI:10.1016/j.fcr.2021.108150 .
5 YAN Y J, ZHOU L, ZHOU G S, et al. Extreme temperature events reduced carbon uptake of a boreal forest ecosystem in northeast China: evidence from an 11-year eddy covariance observation[J]. Frontiers in Plant Science, 2023, 14. DOI:10.3389/fpls.2023.1119670 .
6 SONG J X, ZHOU L, ZHOU G S, et al. Hydrometeorological controls on net carbon dioxide exchange over a temperate desert steppe in Inner Mongolia, China[J]. Frontiers in Ecology and Evolution, 2023, 11. DOI:10.3389/fevo.2023.1169297 .
7 ZHOU L, WANG Y, JIA Q Y, et al. Evapotranspiration over a rainfed maize field in northeast China: how are relationships between the environment and terrestrial evapotranspiration mediated by leaf area?[J]. Agricultural Water Management, 2019, 221: 538-546.
8 YUE P, ZHANG Q, REN X Y, et al. Environmental and biophysical effects of evapotranspiration in semiarid grassland and maize cropland ecosystems over the summer monsoon transition zone of China[J]. Agricultural Water Management, 2022, 264. DOI:10.1016/j.agwat.2022.107462 .
9 KEENAN T F, HOLLINGER D Y, BOHRER G, et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise[J]. Nature, 2013, 499: 324-327.
10 NOVICK K A, FICKLIN D L, STOY P C, et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes[J]. Nature Climate Change, 2016, 6: 1 023-1 027.
11 ZHANG G, ZHOU G S, CHEN F, et al. A trial to improve surface heat exchange simulation through sensitivity experiments over a desert steppe site[J]. Journal of Hydrometeorology, 2014, 15(2): 664-684.
12 ZHANG G, ZHOU G S, CHEN F. Analysis of parameter sensitivity on surface heat exchange in the Noah land surface model at a temperate desert steppe site in China[J]. Journal of Meteorological Research, 2017, 31(6): 1 167-1 182.
13 MA Yaoming, HU Zeyong, WANG Binbin, et al. The review of the observation experiments on land-atmosphere interaction progress on the Qinghai-Xizang(Tibetan) Plateau[J]. Plateau Meteorology, 2021, 40(6): 1 241-1 262.
马耀明, 胡泽勇, 王宾宾, 等. 青藏高原多圈层地气相互作用过程研究进展和回顾[J]. 高原气象, 2021, 40(6): 1 241-1 262.
14 LAWFORD R G. A midterm report on the GEWEX Continental-scale International Project (GCIP)[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D16): 19 279-19 292.
15 HUTJES R W A, KABAT P, RUNNING S W, et al. Biospheric aspects of the hydrological cycle[J]. Journal of Hydrology, 1998, 212/213: 1-21.
16 ZHANG Qiang, YUE Ping, ZHANG Liang, et al. Land-atmosphere interaction over the summer monsoon transition zone in China: a review and prospects[J]. Acta Meteorologica Sinica, 2019, 77(4): 758-773.
张强, 岳平, 张良, 等. 夏季风过渡区的陆—气相互作用: 述评与展望[J]. 气象学报, 2019, 77(4): 758-773.
17 BLYTH E M, ARORA V K, CLARK D B, et al. Advances in land surface modelling[J]. Current Climate Change Reports, 2021, 7(2): 45-71.
18 HELBIG M, GERKEN T, BEAMESDERFER E R, et al. Integrating continuous atmospheric boundary layer and tower-based flux measurements to advance understanding of land-atmosphere interactions[J]. Agricultural and Forest Meteorology, 2021, 307. DOI: 10.1016/j.agrformet.2021.108509 .
19 SANTANELLO J A, DIRMEYER P A, FERGUSON C R, et al. Land-atmosphere interactions: the LoCo perspective[J]. Bulletin of the American Meteorological Society, 2018, 99(6): 1 253-1 272.
20 KONINGS A G, RAO K, STEELE-DUNNE S C. Macro to micro: microwave remote sensing of plant water content for physiology and ecology[J]. The New Phytologist, 2019, 223(3): 1 166-1 172.
21 XIE Z H, WANG L H, WANG Y, et al. Land surface model CAS-LSM: model description and evaluation[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(12). DOI: 10.1029/2020MS002339 .
22 HICKS B B, MARTIN H C. Atmospheric turbulent fluxes over snow[J]. Boundary-Layer Meteorology, 1972, 2(4): 496-502.
23 LEBEL T, TAUPIN J D, D’AMATO N. Rainfall monitoring during HAPEX-Sahel. 1. General rainfall conditions and climatology[J]. Journal of Hydrology, 1997, 188/189: 74-96.
24 BHAT G S, THOMAS M A, RAJU J V S, et al. Surface characteristics observed over the central tropical Indian Ocean during indoex IFP99[J]. Boundary-Layer Meteorology, 2003, 106(2): 263-281.
25 MA Yaoming, YAO Tandong, WANG Jiemin. Experimental study of energy and water cycle in Tibetan Plateau—the progress introduction on the study of GAME/Tibet and CAMP /Tibet[J]. Plateau Meteorology, 2006, 25(2):344-351.
马耀明, 姚檀栋, 王介民. 青藏高原能量和水循环试验研究——GAME/Tibet与CAMP/Tibet研究进展[J]. 高原气象, 2006, 25(2):344-351.
26 HU Yinqiao, GAO Youxi, WANG Jiemin, et al. Some research results of Heihe experiment (HEIFE)[J]. Plateau Meteorology, 1994, 13(3): 225-236.
胡隐樵, 高由禧, 王介民, 等. 黑河实验(HEIFE)的一些研究成果[J]. 高原气象, 1994, 13(3): 225-236.
27 Daren LÜ, CHEN Zuozhong, CHEN Jiayi, et al. Composite study on Inner Mongolia semi-arid grassland soil-vegetation-atmosphere interaction (IMGRASS)[J]. Earth Science Frontiers, 2002, 9(2): 295-306.
吕达仁, 陈佐忠, 陈家宜, 等. 内蒙古半干旱草原土壤植被大气相互作用 (IMGRASS) 综合研究[J]. 地学前缘, 2002, 9(2): 295-306.
28 Daren LÜ, CHEN Zuozhong, WANG Gengchen, et al. Climate-ecology interaction in Inner Mongolia semi-arid grassland—preliminary results of IMGRASS project[J]. Earth Science Frontiers, 2002, 9(2): 307-320.
吕达仁, 陈佐忠, 王庚辰, 等. 内蒙古半干旱草原气候生态相互作用问题——IMGRASS计划初步结果[J]. 地学前缘, 2002, 9(2): 307-320.
29 ZHANG Qiang, WANG Sheng. A study on atmospheric boundary layer structure on a clear day in the arid region in northwest China[J]. Acta Meteorologica Sinica, 2008, 66(4): 599-608.
张强, 王胜. 西北干旱区夏季大气边界层结构及其陆面过程特征[J]. 气象学报, 2008, 66(4): 599-608.
30 YU Guirui, ZHANG Leiming, SUN Xiaomin, et al. Advances in carbon flux observation and research in Asia [J]. Science in China Series D: Earth Sciences, 2004, 34(): 15-29.
于贵瑞, 张雷明, 孙晓敏, 等. 亚洲区域陆地生态系统碳通量观测研究进展 [J]. 中国科学D辑: 地球科学, 2004, 34(): 15-29.
31 KEENAN T F, MOORE D J P, DESAI A. Growth and opportunities in networked synthesis through AmeriFlux[J]. The New Phytologist, 2019, 222(4): 1 685-1 687.
32 YI C, DAVIS K J, BAKWIN P S, et al. Observed covariance between ecosystem carbon exchange and atmospheric boundary layer dynamics at a site in northern Wisconsin[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D8): 9 991-9 999.
33 Sr PIELKE R A. Influence of the spatial distribution of vegetation and soils on the prediction of cumulus Convective rainfall[J]. Reviews of Geophysics, 2001, 39(2): 151-177.
34 LIU Weicheng, ZHANG Qiang, LIU Xinwei. The impact of land-atmosphere interaction on the initiation and development of convective activities: a review[J]. Plateau Meteorology, 2021, 40(6): 1 278-1 293.
刘维成, 张强, 刘新伟. 陆—气相互作用对大气对流活动影响研究进展和展望[J]. 高原气象, 2021, 40(6): 1 278-1 293.
35 MAUDER M, FOKEN T, CUXART J. Surface-energy-balance closure over land: a review[J]. Boundary-Layer Meteorology, 2020, 177(2): 395-426.
36 WHARTON S, MA S, BALDOCCHI D D, et al. Influence of regional nighttime atmospheric regimes on canopy turbulence and gradients at a closed and open forest in mountain-valley terrain[J]. Agricultural and Forest Meteorology, 2017, 237/238: 18-29.
37 KLJUN N, CALANCA P, ROTACH M W, et al. A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP)[J]. Geoscientific Model Development, 2015, 8(11): 3 695-3 713.
38 KUTTER E, YI C X, HENDREY G, et al. Recirculation over complex terrain[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(12): 6 637-6 651.
39 MENKE R, VASILJEVIĆ N, MANN J, et al. Characterization of flow recirculation zones at the Perdigão site using multi-lidar measurements[J]. Atmospheric Chemistry and Physics, 2019, 19(4): 2 713-2 723.
40 HILTON T W, DAVIS K J, KELLER K. Evaluating terrestrial CO2 flux diagnoses and uncertainties from a simple land surface model and its residuals[J]. Biogeosciences, 2014, 11(2): 217-235.
41 DÍAZ-ISAAC L I, LAUVAUX T, DAVIS K J. Impact of physical parameterizations and initial conditions on simulated atmospheric transport and CO2 mole fractions in the US Midwest[J]. Atmospheric Chemistry and Physics, 2018, 18(20): 14 813-14 835.
42 FENG S, LAUVAUX T, DAVIS K J, et al. Seasonal characteristics of model uncertainties from biogenic fluxes, transport, and large-scale boundary inflow in atmospheric CO2 simulations over North America[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(24): 14 325-14 346.
43 HELBIG M, WISCHNEWSKI K, KLJUN N, et al. Regional atmospheric cooling and wetting effect of permafrost thaw-induced boreal forest loss[J]. Global Change Biology, 2016, 22(12): 4 048-4 066.
44 CHEN L, DIRMEYER P A, TAWFIK A, et al. Sensitivities of land cover-precipitation feedback to convective triggering[J]. Journal of Hydrometeorology, 2017, 18(8): 2 265-2 283.
45 PIELKE R A, ADEGOKE J, BELTRÁN-PRZEKURAT A, et al. An overview of regional land-use and land-cover impacts on rainfall[J]. Tellus B: Chemical and Physical Meteorology, 2007, 59(3): 587-601.
46 SENEVIRATNE S I, PHIPPS S J, PITMAN A J, et al. Land radiative management as contributor to regional-scale climate adaptation and mitigation[J]. Nature Geoscience, 2018, 11: 88-96.
47 FORZIERI G, ALKAMA R, MIRALLES D G, et al. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth[J]. Science, 2017, 356(6 343): 1 180-1 184.
48 HUA Wenjian, CHEN Haishan, ZHU Siguang, et al. Hot spots of land hydrological cycle sensitivity to climate change[J]. Chinese Science Bulletin, 2013, 58(Suppl.2). DOI:10.1360/csb2013-58-28-29-2987 .
华文剑, 陈海山, 朱司光, 等. 陆面水文循环对气候变化敏感性的热点区域[J]. 科学通报, 2013, 58(增刊2). DOI:10.1360/csb2013-58-28-29-2987 .
49 CHEN Haishan, LI Xing, HUA Wenjian. Numerical simulation of the impact of land use/land cover change over China on regional climates during the last 20 years[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(2): 357-369.
陈海山, 李兴, 华文剑. 近20年中国土地利用变化影响区域气候的数值模拟[J]. 大气科学, 2015, 39(2): 357-369.
50 YU E T, WANG H J, SUN J Q, et al. Climatic response to changes in vegetation in the Northwest Hetao Plain as simulated by the WRF model[J]. International Journal of Climatology, 2013, 33(6): 1 470-1 481.
51 SCHULZ J P, VOGEL G, BECKER C, et al. Evaluation of the ground heat flux simulated by a multi-layer land surface scheme using high-quality observations at grass land and bare soil[J]. Meteorologische Zeitschrift, 2016, 25(5): 607-620.
52 BOLLASINA M, NIGAM S. Modeling of regional hydroclimate change over the Indian subcontinent: impact of the expanding thar desert[J]. Journal of Climate, 2011, 24(12): 3 089-3 106.
53 LI Yanying, ZHANG Qiang, HU Xingcai, et al. Atmosphere boundary layer characteristics and their responses to wetness change over arid regions and Loess Plateau in northwest China[J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1 047-1 058.
李岩瑛, 张强, 胡兴才, 等. 西北干旱区和黄土高原大气边界层特征对比及其对气候干湿变化的响应[J]. 冰川冻土, 2012, 34(5): 1 047-1 058.
54 SEGAL M, ARRITT R W. Nonclassical mesoscale circulations caused by surface sensible heat-flux gradients[J]. Bulletin of the American Meteorological Society, 1992, 73(10): 1 593-1 604.
55 GARCIA-CARRERAS L, PARKER D J, MARSHAM J H. What is the mechanism for the modification of convective cloud distributions by land surface-induced flows?[J]. Journal of the Atmospheric Sciences, 2011, 68(3): 619-634.
56 BIRCH C E, PARKER D J, MARSHAM J H, et al. A seamless assessment of the role of convection in the water cycle of the West African Monsoon[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(6): 2 890-2 912.
57 BAIDYA R S, AVISSAR R. Impact of land use/land cover change on regional hydrometeorology in Amazonia[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D20). DOI:10.1029/2000JD000266 .
58 ZHANG T, BARRY R G, KNOWLES K, et al. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere[J]. Polar Geography, 1999, 23(2): 132-154.
59 KOVEN C D, RILEY W J, STERN A. Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 earth system models[J]. Journal of Climate, 2013, 26(6): 1 877-1 900.
60 XU Xiaoming, WU Qingbai, ZHANG Zhongqiong. Responses of active layer thickness on the Qinghai-Tibet Plateau to climate change[J]. Journal of Glaciology and Geocryology, 2017, 39(1): 1-8.
徐晓明, 吴青柏, 张中琼. 青藏高原多年冻土活动层厚度对气候变化的响应[J]. 冰川冻土, 2017, 39(1): 1-8.
61 WANG Chenghai, YANG Kai, ZHANG Feimin, et al. Climate effects of soil freeze-thaw process over Qinghai-Xizang Plateau: progress and perspectives[J]. Plateau Meteorology, 2021, 40(6): 1 318-1 336.
王澄海, 杨凯, 张飞民, 等. 青藏高原土壤冻融过程的气候效应: 进展和展望[J]. 高原气象, 2021, 40(6): 1 318-1 336.
62 SCHUUR E A G, MCGUIRE A D, SCHÄDEL C, et al. Climate change and the permafrost carbon feedback[J]. Nature, 2015, 520: 171-179.
63 DING Yongjian, YE Baisheng, LIU Shiyin, et al. Study on hydrological monitoring of large-scale frozen soil in Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2000, 45(2): 208-214.
丁永建, 叶佰生, 刘时银, 等. 青藏高原大尺度冻土水文监测研究[J]. 科学通报, 2000, 45(2): 208-214.
64 CHEN L T, WU R G. Interannual and decadal variations of snow cover over Qinghai-Xizang Plateau and their relationships to summer monsoon rainfall in China[J]. Advances in Atmospheric Sciences, 2000, 17(1): 18-30.
65 GUO Jibing, XU Xiangde, SHI Xiaohui, et al. Characteristics of winter apparent heat source in the key area of snow cover on Qinghai-Xizang Plateau and spring drought in southwest China[J]. Plateau Meteorology, 2012, 31(4): 900-909.
过霁冰, 徐祥德, 施晓晖, 等. 青藏高原冬季积雪关键区视热源特征与中国西南春旱的联系[J]. 高原气象, 2012, 31(4): 900-909.
66 CHEN Haishan, ZHOU Jing. Impact of interannual soil moisture anomaly on simulation of extreme climate events in China. part Ⅱ: sensitivity experiment analysis[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(1): 1-13.
陈海山, 周晶. 土壤湿度年际变化对中国区域极端气候事件模拟的影响研究 Ⅱ.敏感性试验分析[J]. 大气科学, 2013, 37(1): 1-13.
67 SHI Yicong, CHEN Haishan, GAO Chujie. Sensitivity experiments of impacts of initial soil moisture anomalies on East Asian regional climate simulation[J]. Journal of the Meteorological Sciences, 2015, 35(4): 379-388.
史一丛, 陈海山, 高楚杰. 土壤湿度初始异常对东亚区域气候模拟影响的敏感性试验[J]. 气象科学, 2015, 35(4): 379-388.
68 ZHANG J Y, WU L Y, HUANG G, et al. The role of May vegetation greenness on the southeastern Tibetan Plateau for East Asian summer monsoon prediction[J]. Journal of Geophysical Research, 2011, 116(D5). DOI:10.1029/2010JD015095 .
69 WEI J F, SU H, YANG Z L. Impact of moisture flux convergence and soil moisture on precipitation: a case study for the southern United States with implications for the globe[J]. Climate Dynamics, 2016, 46(1): 467-481.
70 WILLIAMS I N, TORN M S. Vegetation controls on surface heat flux partitioning, and land-atmosphere coupling[J]. Geophysical Research Letters, 2015, 42(21): 9 416-9 424.
71 SANTANELLO J A, PETERS-LIDARD C D, KENNEDY A, et al. Diagnosing the nature of land-atmosphere coupling: a case study of dry/wet extremes in the U.S. southern great Plains[J]. Journal of Hydrometeorology, 2013, 14(1): 3-24.
72 HOHENEGGER C, BROCKHAUS P, BRETHERTON C S, et al. The soil moisture-precipitation feedback in simulations with explicit and parameterized convection[J]. Journal of Climate, 2009, 22(19): 5 003-5 020.
73 YUAN G H, ZHANG L, LIU Y B. Impacts of soil moisture and atmospheric moisture transport on the precipitation in two typical regions of China[J]. Atmospheric Research, 2021, 247. DOI:10.1016/j.atmosres.2020.105151 .
74 WEI Yongheng, FAN Guangzhou. Day and night comparison analysis of the effect of soil moisture on a case of convective precipitation over Qinghai-Tibetan Plateau[J]. Journal of Chengdu University of Information Technology, 2020, 35(1): 96-103.
魏永恒, 范广洲. 青藏高原土壤湿度对一次对流降水影响的昼夜对比分析[J]. 成都信息工程大学学报, 2020, 35(1): 96-103.
75 GANTNER L, KALTHOFF N. Sensitivity of a modelled life cycle of a mesoscale convective system to soil conditions over West Africa[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 136(S1): 471-482.
76 CIONI G, HOHENEGGER C. Effect of soil moisture on diurnal convection and precipitation in large-eddy simulations[J]. Journal of Hydrometeorology, 2017, 18(7): 1 885-1 903.
77 TAYLOR C M, PRIGENT C, DADSON S J. Mesoscale rainfall patterns observed around wetlands in sub-Saharan Africa[J]. Quarterly Journal of the Royal Meteorological Society, 2018, 144(716): 2 118-2 132.
78 AVISSAR R, PIELKE R A. A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology[J]. Monthly Weather Review, 1989, 117(10): 2 113-2 136.
79 CUTRIM E, MARTIN D W, RABIN R. Enhancement of cumulus clouds over deforested lands in Amazonia[J]. Bulletin of the American Meteorological Society, 1995, 76(10): 1 801-1 805.
80 RABIN R M, STENSRUD D J, STADLER S, et al. Observed effects of landscape variability on convective clouds[J]. Bulletin of the American Meteorological Society, 1990, 71(3): 272-280.
81 MA Y M, MA W Q, ZHONG L, et al. Monitoring and modeling the Tibetan Plateau’s climate system and its impact on East Asia[J]. Scientific Reports, 2017, 7. DOI:10.1038/srep44574 .
82 DEVARAJU N, de NOBLET-DUCOUDRÉ N, QUESADA B, et al. Quantifying the relative importance of direct and indirect biophysical effects of deforestation on surface temperature and teleconnections[J]. Journal of Climate, 2018, 31(10): 3 811-3 829.
83 ALKAMA R, CESCATTI A. Biophysical climate impacts of recent changes in global forest cover[J]. Science, 2016, 351(6 273): 600-604.
84 JACKSON R B, LAJTHA K, CROW S E, et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls[J]. Annual Review of Ecology, Evolution, and Systematics, 2017, 48: 419-445.
85 BUDYKO M I. The heat balance of the Earth’s surface[J]. Soviet Geography, 1961, 2(4): 3-13.
86 MANABE S. Climate and the ocean circulation[J]. Monthly Weather Review, 1969, 97(11): 739-774.
87 CARSON D J. Current parameterizations of land surface processes in atmospheric general circulation models[C]// Proceedings of the JSC study conference on land-surface processes in atmospheric general circulation models. WMO, 1982: 67-108.
88 DEARDORFF J W. Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation[J]. Journal of Geophysical Research: Oceans, 1978, 83(C4): 1 889-1 903.
89 SELLERS P J, MINTZ Y, SUD Y C, et al. A Simple Biosphere model (SIB) for use within general circulation models[J]. Journal of the Atmospheric Sciences, 1986, 43(6): 505-531.
90 XUE Y, SELLERS P J, KINTER J L, et al. A simplified biosphere model for global climate studies[J]. Journal of Climate, 1991, 4(3): 345-364.
91 NOILHAN J, MAHFOUF J F. The ISBA land surface parameterisation scheme[J]. Global and Planetary Change, 1996, 13(1/2/3/4): 145-159.
92 POLLARD D. Use of a land-surface-transfer scheme (LSX) in a global climate model: the response to doubling stomatal resistance[J]. Global and Planetary Change, 1995, 10(1/2/3/4): 129-161.
93 WOOD E F, LETTENMAIER D P, ZARTARIAN V G. A land-surface hydrology parameterization with subgrid variability for general circulation models[J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D3): 2 717-2 728.
94 LIANG X, WOOD E F, LETTENMAIER D P. Surface soil moisture parameterization of the VIC-2L model: evaluation and modification[J]. Global and Planetary Change, 1996, 13(1/2/3/4): 195-206.
95 DAI Y J, ZENG Q C. A land surface model (IAP94) for climate studies part I: formulation and validation in off-line experiments[J]. Advances in Atmospheric Sciences, 1997, 14(4): 433-460.
96 JI J J. A climate-vegetation interaction model: simulating physical and biological processes at the surface[J]. Journal of Biogeography, 1995, 22(2/3). DOI:10.2307/2845941 .
97 PAN H L, MAHRT L. Interaction between soil hydrology and boundary-layer development[J]. Boundary-Layer Meteorology, 1987, 38(1): 185-202.
98 SELLERS P J, RANDALL D A, COLLATZ G J, et al. A revised land surface parameterization (SiB2) for atmospheric GCMS. part I: model formulation[J]. Journal of Climate, 1996, 9(4): 676-705.
99 SELLERS P J, TUCKER C J, COLLATZ G J, et al. A revised land surface parameterization (SiB2) for atmospheric GCMS. part II: the generation of global fields of terrestrial biophysical parameters from satellite data[J]. Journal of Climate, 1996, 9(4): 706-737.
100 FOLEY J A, PRENTICE I C, RAMANKUTTY N, et al. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics[J]. Global Biogeochemical Cycles, 1996, 10(4): 603-628.
101 DAI Y. The Common Land Model (CoLM) user’s guide [R]. Beijing: School of Geography, Beijing Normal University, 2005.
102 OLESON K W, NIU G Y, YANG Z L, et al. Improvements to the Community Land Model and their impact on the hydrological cycle[J]. Journal of Geophysical Research: Biogeosciences, 2008, 113(G1). DOI:10.1029/2007JG000563 .
103 NIU G Y, YANG Z L, MITCHELL K E, et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D12). DOI:10.1029/2010JD015139 .
104 LAWRENCE D M, THORNTON P E, OLESON K W, et al. The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: impacts on land-atmosphere interaction[J]. Journal of Hydrometeorology, 2007, 8(4): 862-880.
105 NIU G Y, YANG Z L, DICKINSON R E, et al. Development of a simple groundwater model for use in climate models and evaluation with gravity recovery and climate experiment data[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D7). DOI:10.1029/2006JD007522 .
106 DECKER M, ZENG X B. Impact of modified richards equation on global soil moisture simulation in the Community Land Model (CLM3.5)[J]. Journal of Advances in Modeling Earth Systems, 2009, 1(3). DOI:10.3894/JAMES.2009.1.5 .
107 OLESON K, LAWRENCE D M, BONAN G B, et al. Technical description of version 4.5 of the Community Land Model (CLM), NCAR Tech [R]. Boulder, Colorado:National Center for Atmospheric Research,2013. DOI:10.5065/D6RR1W7M .
108 LAWRENCE D M. Technical description of version 5.0 of the Community Land Model(CLM)[M/OL]. 2019. [2019-12-26]. .
109 CHEN F, XIE Z H. Effects of crop growth and development on regional climate: a case study over East Asian monsoon area[J]. Climate Dynamics, 2012, 38(11): 2 291-2 305.
110 ZOU J, XIE Z H, ZHAN C S, et al. Effects of anthropogenic groundwater exploitation on land surface processes: a case study of the Haihe River Basin, northern China[J]. Journal of Hydrology, 2015, 524: 625-641.
111 GAO J Q, XIE Z H, WANG A W, et al. A new frozen soil parameterization including frost and thaw fronts in the community land model[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(3): 659-679.
112 LIU L, MA Y M, MENENTI M, et al. Evaluation of WRF modeling in relation to different land surface schemes and initial and boundary conditions: a snow event simulation over the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(1): 209-226.
113 WANG B B, MA Y M, SU Z B, et al. Quantifying the evaporation amounts of 75 high-elevation large dimictic lakes on the Tibetan Plateau[J]. Science Advances, 2020, 6(26). DOI:10.1126/sciadv.aay8558 .
114 ZENG Y J, XIE Z H, LIU S, et al. Global land surface modeling including lateral groundwater flow[J]. Journal of Advances in Modeling Earth Systems, 2018, 10(8): 1 882-1 900.
115 ZENG Y J, XIE Z H, LIU S. Seasonal effects of irrigation on land-atmosphere latent heat, sensible heat, and carbon fluxes in semiarid basin[J]. Earth System Dynamics, 2017, 8(1): 113-127.
116 LIU L, MA Y M, YAO N, et al. Diagnostic analysis of a regional heavy snowfall event over the Tibetan Plateau using NCEP reanalysis data and WRF[J]. Climate Dynamics, 2021, 56(7): 2 451-2 467.
117 ZHANG Qiang, WANG Rong, YUE Ping, et al. Several scientific issues about the land-atmosphere interaction under complicated conditions[J]. Acta Meteorologica Sinica, 2017, 75(1): 39-56.
张强, 王蓉, 岳平, 等. 复杂条件陆—气相互作用研究领域有关科学问题探讨[J]. 气象学报, 2017, 75(1): 39-56.
118 LANSU E M, van HEERWAARDEN C C, STEGEHUIS A I, et al. Atmospheric aridity and apparent soil moisture drought in European forest during heat waves[J]. Geophysical Research Letters, 2020, 47(6). DOI:10.5194/egusphere-egu2020-7281 .
119 BIANCO L, DJALALOVA I V, KING C W, et al. Diurnal evolution and annual variability of boundary-layer height and its correlation to other meteorological variables in California’s central valley[J]. Boundary-Layer Meteorology, 2011, 140(3): 491-511.
120 MIRALLES D G, TEULING A J, van HEERWAARDEN C C, et al. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation[J]. Nature Geoscience, 2014, 7: 345-349.
121 SEIBERT P. Review and intercomparison of operational methods for the determination of the mixing height[J]. Atmospheric Environment, 2000, 34(7): 1 001-1 027.
122 FU Congbin, YUAN Huiling. A virtual experiment on the effects of natural vegetation restoration on summer climate and environment in East Asia[J]. Science Bulletin, 2001, 46(8):691-695.
符淙斌, 袁慧玲. 恢复自然植被对东亚夏季气候和环境影响的一个虚拟试验[J]. 科学通报, 2001, 46(8):691-695.
[1] 胥佩, 李茂善, 常娜, 龚铭, 伏薇. 藏东南林芝地区冬季大气边界层参数化方案适应性研究[J]. 地球科学进展, 2023, 38(9): 954-966.
[2] 王春晓, 马耀明, 韩存博. 青藏高原大气边界层结构及其发展机制研究[J]. 地球科学进展, 2023, 38(4): 414-428.
[3] 张璐, 李倩惠, 孟露, 张强, 张宏昇, 何清, 赵天良. 深厚大气边界层演变与湍流运动、沙尘滞空的研究[J]. 地球科学进展, 2022, 37(10): 991-1004.
[4] 王蓉, 张强, 岳平, 黄倩. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展, 2020, 35(4): 331-349.
[5] 郭准, 周天军. IAP近期际气候预测系统海洋初始化试验中海表温度和层积云的关系[J]. 地球科学进展, 2017, 32(4): 373-381.
[6] 刘彦华,张述文,毛璐,薛宏宇. 评估两类模式对陆面状态的模拟和估算[J]. 地球科学进展, 2013, 28(8): 913-922.
[7] 张强,王胜,张杰,王润元,刘宏宜,李岩瑛. 干旱区陆面过程和大气边界层研究进展[J]. 地球科学进展, 2009, 24(11): 1185-1194.
[8] 刘罡;蒋维楣;罗云峰. 非均匀下垫面边界层研究现状与展望[J]. 地球科学进展, 2005, 20(2): 223-230.
[9] 王澄海,董文杰,韦志刚. 陆面模式中土壤冻融过程参数化研究进展[J]. 地球科学进展, 2002, 17(1): 44-52.
[10] 张强, 胡隐樵. 大气边界层物理学的研究进展和面临的科学问题[J]. 地球科学进展, 2001, 16(4): 526-532.
[11] 李 昕. 混沌理论与大气边界层湍流研究[J]. 地球科学进展, 2000, 15(2): 178-183.
[12] 胡隐樵,张强. 大气边界层相似性理论及其应用[J]. 地球科学进展, 1996, 11(6): 550-554.
阅读次数
全文


摘要