地球科学进展 ›› 2025, Vol. 40 ›› Issue (1): 82 -98. doi: 10.11867/j.issn.1001-8166.2025.007

表层地球 上一篇    下一篇

多年冻土区热喀斯特湖水—热—碳循环过程研究进展
陈梦佳1,2(), 白炜1,3, 张成铭2,4, 刘文艳2,4, 高泽永2()   
  1. 1.兰州交通大学 环境与市政工程学院,甘肃 兰州 730070
    2.中国科学院西北生态环境资源研究院 冰冻圈科学与冻土工程全国重点实验室,甘肃 兰州 730000
    3.寒旱地区水资源综合利用教育部 工程研究中心,甘肃 兰州 730070
    4.中国科学院大学,北京 100049
  • 收稿日期:2024-11-14 修回日期:2024-12-30 出版日期:2025-01-10
  • 通讯作者: 高泽永 E-mail:12231135@stu.lzjtu.edu.cn;gaozy@lzb.ac.cn
  • 基金资助:
    甘肃省杰出青年基金项目(25JRRA489);甘肃省教育厅高校科研创新平台重大培育项目(2024CXPT-14)

Advances in the Study of Water, Heat, and Carbon Cycling Dynamics in Thermokarst Lakes of Permafrost

Mengjia CHEN1,2(), Wei BAI1,3, Chengming ZHANG2,4, Wenyan LIU2,4, Zeyong GAO2()   

  1. 1.School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
    2.State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    3.Ministry of Education Engineering Research Center of Water Resource Comprehensive Utilization in Cold and Arid Regions, Lanzhou 730070, China
    4.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-11-14 Revised:2024-12-30 Online:2025-01-10 Published:2025-03-24
  • Contact: Zeyong GAO E-mail:12231135@stu.lzjtu.edu.cn;gaozy@lzb.ac.cn
  • About author:CHEN Mengjia, research area includes cryosphere environment research. E-mail: 12231135@stu.lzjtu.edu.cn
  • Supported by:
    Science Fund for Distinguished Young Scholars of Gansu Province(25JRRA489);Department of Education of Gansu Province: Major Cultivation Project of Scientific Research Innovation Platform in University(2024CXPT-14)

热喀斯特湖作为多年冻土响应气候变暖最显著的冰冻圈地貌之一,其形成演化过程深刻影响着生态环境变化、区域水文循环及生物地球化学过程,并危害冻土工程稳定性。通过综述北半球多年冻土区热喀斯特湖形成演化、水文循环、热量迁移及生态环境效应和工程影响的研究进展,发现在环北极不连续多年冻土区,多数区域的湖塘面积呈减少趋势;在连续多年冻土区,湖塘面积的增加和减少均有发生,而青藏高原区域气候暖湿化导致热喀斯特湖快速形成和扩张。同时,热喀斯特湖演化耦合水文循环过程及产生的热效应会改变周围土壤理化性质,影响高寒生态系统的水热过程,并降低毗邻冻土工程的稳定性。热喀斯特湖发育加速多年冻土碳库分解,释放CO2、CH4和N2O等温室气体,并反馈于气候变化系统。目前,热喀斯特湖“水—热—碳”循环过程及环境效应是国际冻土研究的热点议题之一。未来需综合考虑人类活动及气候变化的协同作用,并基于热喀斯特湖水—热—碳循环耦合过程,发展高精度陆面过程模型,研究变化环境下多年冻土区生态环境演替、水资源变化及碳循环等问题,推动冰冻圈科学发展。

As one of the most significant cryospheric landforms that respond to climate warming in permafrost regions, thermokarst lakes profoundly influence ecological changes, regional hydrological cycles, and biogeochemical processes while compromising the stability of permafrost engineering. This study reviews recent advances in the formation and evolution of thermokarst lakes, their hydrological cycles, heat transfer, ecological and environmental effects, and engineering impacts across northern hemisphere permafrost regions. Research indicates that in the discontinuous permafrost zones of the Arctic, lake and pond areas show a predominantly decreasing trend, whereas, in continuous permafrost zones, both expansion and shrinkage are observed. On the Qinghai-Tibet Plateau, climate warming and increased precipitation have led to the rapid formation and expansion of thermokarst lakes. The evolution of these lakes, coupled with hydrological cycling and thermal effects, alters the physicochemical properties of the surrounding soils, influences hydrothermal dynamics in alpine ecosystems, and reduces the stability of adjacent permafrost engineering structures. Furthermore, the development of thermokarst lakes accelerates the decomposition of permafrost carbon stocks, releasing greenhouse gases such as CO2, CH4, and N2O, which further feedback into the climate system. Currently, coupled water-heat-carbon cycling processes and their environmental implications represent a key research focus in permafrost science. Future studies should comprehensively consider the interactive effects of climate change and human activities and, based on coupled water-heat-carbon cycling processes, develop high-precision land surface process models to investigate ecological succession, water resource dynamics, and carbon cycling in permafrost regions under changing environmental conditions, thereby advancing cryospheric science.

中图分类号: 

图1 以“热喀斯特湖”为主题的文献发文量年际变化(a)及关键词共现(b
Fig. 1 Yearly variation in the publication volume on “thermokarst lakes”aand keyword co-occurrence analysisb
图2 21世纪末青藏高原冻土面积预测30
(a)SSP126模式下冻土面积预测图;(b)SSP245模式下冻土面积预测图;(c)SSP370模式下冻土面积预测图;(d)SSP585模式下冻土面积预测图
Fig. 2 Prediction maps of permafrost area on the Qinghai-Tibet Plateau at the end of 21th century30
(a) Projection map of permafrost area under the SSP126 scenario; (b) Projection map of permafrost area under the SSP245 scenario; (c) Projection map of permafrost area under the SSP370 scenario; (d) Projection map of permafrost area under the SSP585 scenario
图3 北半球多年冻土区热喀斯特湖分布
(a)北半球热喀斯特湖及多年冻土分布,多年冻土数据引自参考文献[10],热喀斯特湖数据引自湖泊湿地数据集;(b)西伯利亚雅库茨克地区典型热喀斯特湖;(c)青藏高原热喀斯特湖分布,冻土分布数据引自参考文献[24],湖泊分布数据引自参考文献[11];(d)青藏高原北麓河流域典型热喀斯特湖
Fig. 3 Distribution of thermokarst lakes in permafrost regions of the Northern Hemisphere
(a) Distribution of thermokarst lakes and permafrost in the northern hemisphere, the permafrost data are from reference [10], and the thermokarst lake data are from global lakes and wetlands database; (b) Typical thermokarst lakes in the Yakutsk region of Siberia; (c) Distribution of thermokarst lakes on the Qinghai-Tibet Plateau, with permafrost distribution data sourced from reference [24], and lake distribution data from reference [11]; (d) Typical thermokarst lakes in the Beiluhe basin of the Qinghai-Tibet Plateau
图4 热喀斯特湖形成过程示意图38
(a)~(d)冰楔融化形成热喀斯特湖;(e)~(h)厚层地下冰融化形成热喀斯特湖。(a)原始多年冻土地貌(冰楔广泛分布);(b)冰楔开始融化,地面沉陷积水;(c)冰楔持续融化,热喀斯特湖加速发育;(d)冰楔完全融化,热喀斯特湖发育趋于稳定;(e)原始多年冻土地貌(富含地下冰);(f)多年冻土逐渐融化,地面沉陷积水;(g)融区逐渐扩大,热喀斯特湖加速形成;(h)热喀斯特湖形成趋于稳定
Fig. 4 Schematic diagram of thermokarst lake formation processes38
(a)~(d) Thermokarst lakes formed by the melting of ice wedges; (e)~(h) Thermokarst lakes formed by the melting of thick buried ice. (a) Original permafrost landform with widespread ice wedges; (b) Ice wedges begin to melt, causing ground subsidence and water accumulation; (c) Continued melting of ice wedges accelerates the development of thermokarst lakes; (d) Complete melting of ice wedges leads to stable development of thermokarst lakes; (e) Original permafrost landform rich in buried ice; (f) Gradual thawing of permafrost results in ground subsidence and water accumulation; (g) Expansion of the melting zone accelerates the formation of thermokarst lakes; (h) Thermokarst lakes reaches stability
图5 热喀斯特湖热量迁移过程56
Fig. 5 Heat transfer processes in thermokarst lakes56
图6 热喀斯特湖水文循环过程
(a)夏季热喀斯特湖水文循环;(b)冬季冰盖期热喀斯特湖水文循环
Fig. 6 Hydrological cycle in thermokarst lakes
(a) and (b) represent the hydrological cycle of thermokarst lakes during summer and winter ice cover period, respectively
图7 热喀斯特湖的温室气体排放示意图109
Fig. 7 Schematic diagram of greenhouse gas emissions from thermokarst lakes109
图8 热喀斯特湖对冻土路基的影响
Fig. 8 Impact of thermokarst lakes on permafrost roadbed
76 GAO Z, NIU F, LIN Z, et al. Evaluation of thermokarst lake water balance in the Qinghai-Tibet Plateau via isotope tracers[J]. Science of the Total Environment2018636: 1-11.
77 KE X, LI Y, WANG W, et al. Hydrogeochemical characteristics and processes of thermokarst lake and groundwater during the melting of the active layer in a permafrost region of the Qinghai-Tibet Plateau, China[J]. Science of the Total Environment2022, 851. DOI: 1016/j.scitotenv.2022.158183 .
78 MANASYPOV R M, LIM A G, KRICKOV I V, et al. Carbon storage and burial in thermokarst lakes of permafrost peatlands[J]. Biogeochemistry2022159(1): 69-86.
79 KONG Detao. Study on the permeability of sediment and the relationship between lake water and groundwater transformation in lake chigast [D]. Xi’an: Chang’an University, 2020.
孔德涛.热喀斯特湖沉积物渗透性能及湖水—地下水转化关系研究[D]. 西安: 长安大学, 2020.
80 CHAI Mingtang, MA Wei, MU Yanhu. Distribution and engineering effect of supra-permafrost groundwater: review and prospect[J]. Journal of Glaciology and Geocryology202143(6): 1 794-1 808.
柴明堂,马巍,穆彦虎. 冻结层上水的分布及工程影响研究现状与展望[J]. 冰川冻土202143(6): 1 794-1 808.
81 FEDOROV A N, GAVRILIEV P P, KONSTANTINOV P Y, et al. Estimating the water balance of a thermokarst lake in the middle of the Lena River basin, eastern Siberia[J]. Ecohydrology20147(2): 188-196.
82 GUO Shuhai, CHEN Rensheng, HAN Chuntan, et al. Advances in the measurement and calculation results and influencing factors of the sublimation of ice and snow[J]. Advances in Earth Science201732(11): 1 204-1 217.
郭淑海, 陈仁升, 韩春坛, 等. 冰雪升华测算结果及影响因素研究进展[J]. 地球科学进展201732(11): 1 204-1 217.
83 GAO Zeyong, NIU Fujun, WANG Yibo, et al. Hydrological characteristics of thermokarst lake and its environmental effects on Qinghai-Tibet Plateau[J]. Advances in Water Science202233(2): 174-184.
高泽永, 牛富俊, 王一博, 等. 青藏高原多年冻土区热喀斯特湖水文特征及环境效应[J]. 水科学进展202233(2): 174-184.
84 ZHAO Lin, HU Guojie, ZOU Defu, et al. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences201934(11): 1 233-1 246.
赵林, 胡国杰, 邹德富, 等. 青藏高原多年冻土变化对水文过程的影响[J]. 中国科学院院刊201934(11): 1 233-1 246.
85 YANG Y, WU Q, YUN H, et al. Evaluation of the hydrological contributions of permafrost to the thermokarst lakes on the Qinghai-Tibet Plateau using stable isotopes[J]. Global and Planetary Change2016140: 1-8.
86 WANG Yuhan, YANG Dawen, LEI Huimin, et al. Impact of cryosphere hydrological processes on the river runoff in the upper reaches of Heihe River[J]. Journal of Hydraulic Engineering201546(9): 1 064-1 071.
王宇涵, 杨大文, 雷慧闽, 等. 冰冻圈水文过程对黑河上游径流的影响分析[J]. 水利学报201546(9): 1 064-1 071.
87 LAMONTAGNE-HALLE P, MCKENZIE J M, KURYLYK B L, et al. Changing groundwater discharge dynamics in permafrost regions[J]. Environmental Research Letters201813(8). DOI: 10.1088/1748-9326/aad404 .
88 ZHU X, WU T, HU G, et al. Long‐distance atmospheric moisture dominates water budget in permafrost regions of the Central Qinghai-Tibet Plateau[J]. Hydrological Processes202034(22): 4 280-4 294.
89 GAO Z, NIU F, WANG Y, et al. Impact of a thermokarst lake on the soil hydrological properties in permafrost regions of the Qinghai-Tibet Plateau, China[J]. Science of the Total Environment2017574: 751-759.
90 REN Z, LI X, ZHANG C, et al. From permafrost soil to thermokarst lake sediment: a view from C∶N∶P stoichiometry[J]. Frontiers in Environmental Science2022, 10. DOI: 10.3389/fenvs.2022.986879 .
91 WANG Yibo, GAO Zeyong, WEN Jing, et al. Effect of a thermokarst lake on soil physical properties and infiltration processes in the permafrost region of the Qinghai-Tibet Plateau, China[J]. Science China: Earth Sciences201457: 2 357-2 365.
王一博, 高泽永, 文晶, 等. 青藏高原多年冻土区热融湖塘对土壤物理特性及入渗过程的影响[J]. 中国科学: 地球科学201444(10): 2 285-2 293.
92 WANG Yibo, Mingxia LÜ, ZHAO Haipeng, et al. Analysis on soil water infiltration characteristics and mechanism in active layer in permafrost area of the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology202143(5): 1 301-1 311.
王一博, 吕明侠, 赵海鹏, 等. 青藏高原多年冻土区活动层土壤入渗特征及机理分析[J]. 冰川冻土202143(5): 1 301-1 311.
93 XU Q, DU Z, WANG L, et al. The role of thermokarst lake expansion in altering the microbial community and methane cycling in Beiluhe basin on Tibetan Plateau[J]. Microorganisms202210(8). DOI: 10.3390/microorganisms10081620 .
94 NIU Fujun, WANG Wei, LIN Zhanju, et al. Study on environmental and hydrological effects of thermokarst lakes in permafrost regions of the Qinghai-Tibet Plateau[J]. Advances in Earth Science201833(4): 335-342.
牛富俊, 王玮, 林战举, 等. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展201833(4): 335-342.
95 SUN Zhizhong, LIU Minghao, WU Guilong, et al. Characteristics of permafrost under a nonpenerative thermokarst lake in Beiluhe basin on the Tibetan Plateau [J]. Journal of Glaciology and Geocryology201234(1): 37-42.
孙志忠, 刘明浩, 武贵龙, 等. 非贯穿型热喀斯特湖下部及其周围多年冻土特征[J]. 冰川冻土201234(1): 37-42.
96 BOWDEN W B. Climate change in the Arctic-permafrost, thermokarst, and why they matter to the non‐Arctic world[J]. Geography Compass20104(10): 1 553-1 566.
97 GAO Zeyong. Effect of thermokarst lake on soil hydrological processes in the permafrost regions of Qinghai-Tibet Plateau[D]. Lanzhou: Lanzhou University, 2015.
高泽永. 青藏高原多年冻土区热融湖塘对土壤水文过程的影响[D]. 兰州: 兰州大学, 2015.
98 GAO Zeyong, WANG Yibo, LIU Guohua.Effect of thermokarst lake on soil saturated hydraulic conductivity and analysis of its influenced factors[J].Transactions of the Chinese Society of Agricultural Engineering201430(20): 109-117.
高泽永, 王一博, 刘国华. 热融湖塘对青藏高原土壤饱和导水率的影响及因素分析[J]. 农业工程学报201430(20): 109-117.
99 WANG Y, WU Q, TIAN L, et al. Correlation of alpine vegetation degradation and soil nutrient status of permafrost in the source regions of the Yangtze River, China[J]. Environmental Earth Sciences201267(4): 1 215-1 223.
1 van EVERDINGEN R O. Multi-language glossary of permafrost and related ground-ice terms[R]. International Permafrost Association, 1998.
2 CHENG Guodong, ZHAO Lin. The problems associated with permafrost in the development of the Qinghai-Xizang Plateau[J]. Quaternary Sciences200020(6): 521-531.
程国栋, 赵林. 青藏高原开发中的冻土问题[J]. 第四纪研究200020(6): 521-531.
3 MU C, ABBOTT B W, NORRIS A J, et al. The status and stability of permafrost carbon on the Tibetan Plateau[J]. Earth-Science Reviews2020, 211. DOI: 10.1016/j.earscirev.2020.103433 .
4 OBU J, WESTERMANN S, BARTSCH A, et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000-2016 at 1 km2 scale[J]. Earth-Science Reviews2019193: 299-316.
5 PENG Xiaoqing, TIAN Weiwei, LI Xuanjia, et al. Research progress on changes in frozen ground on the Qinghai-Tibet Plateau and in the circum-Arctic region[J]. Journal of Glaciology and Geocryology202345(2): 521-534.
彭小清, 田伟伟, 李璇佳, 等. 青藏高原和环北极冻土变化研究进展[J]. 冰川冻土202345(2): 521-534.
6 STOCKER T F, QIN D, PLATTNER G K, et al. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2013.
7 SCHELLNHUBER H J, CRAMER W, NAKICENOVIC N, et al. Avoiding dangerous climate change[M]. Cambridge: Cambridge University Press, 2006.
8 JONES B M, GROSSE G, ARP C D, et al. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska[J]. Journal of Geophysical Research-Biogeosciences2011116(G2). DOI:10.1029/2011jg001666 .
9 GROSSE G, ROMANOVSKY V, WALTER K, et al. Distribution of thermokarst lakes and ponds at three yedoma sites in Siberia [C]// Proceedings of the ninth international conference on permafrost. Davos, Switzerland: A.A. PublishersBalkema,2008: 551-556.
10 MU Mei, MU Cuicui, LIU Hebin, et al. Spatial distribution and methane emission potentiality from thermokarst lakes in the northem hemisphere [J]. Journal of Glaciology and Geocryology202345(2): 535-547.
100 ABBOTT B W, LAROUCHE J R, JONES J B, et al. Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost[J]. Journal of Geophysical Research: Biogeosciences2014119(10): 2 049-2 063.
101 DENG Y, LI X, SHI F, et al. Nonlinear effects of thermokarst lakes on peripheral vegetation greenness across the Qinghai-Tibet Plateau using stable isotopes and satellite detection[J]. Remote Sensing of Environment2022, 280. DOI: 10.1016/j.rse.2022.113215 .
102 CHEN Y, LIU A, CHENG X. Vegetation grows more luxuriantly in Arctic permafrost drained lake basins[J]. Global Change Biology202127(22): 5 865-5 876.
103 LUO J, NIU F, LIN Z, et al. Thermokarst lake changes between 1969 and 2010 in the Beilu River Basin, Qinghai-Tibet Plateau, China[J]. Science Bulletin201560(5): 556-564.
104 WANG Yibo, WU Qingbai, NIU Fujun. The impact of thermokarst lake formation on soil environment of alpine meadow in permafrost regions in the Beiluhe Basin of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology201133(3): 659-667.
王一博, 吴青柏, 牛富俊. 长江源北麓河流域多年冻土区热融湖塘形成对高寒草甸土壤环境的影响[J]. 冰川冻土201133(3): 659-667.
105 MANASYPOV R M, VOROBYEV S N, LOIKO S V, et al. Seasonal dynamics of organic carbon and metals in thermokarst lakes from the discontinuous permafrost zone of western Siberia[J]. Biogeosciences201512(10): 3 009-3 028.
106 ALA-AHO P, SOULSBY C, POKROVSKY O S, et al. Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high latitude wetland and permafrost influenced landscape[J]. Journal of Hydrology (Amsterdam)2018556: 279-293.
107 ZABELINA S A, SHIROKOVA L S, KLIMOV S I, et al. Carbon emission from thermokarst lakes in NE European tundra[J]. Limnology and Oceanography202166(): S216-S230.
108 WEI Z, DU Z, WANG L, et al. Sedimentary organic carbon storage of thermokarst lakes and ponds across Tibetan permafrost region[J]. Science of the Total Environment2022, 831. DOI: 10.1016/j.scitotenv.2022.154761 .
109 IN’T ZANDT M H, LIEBNER S, WELTE C U. Roles of thermokarst lakes in a warming world. [J]. Trends in Microbiology202028(9):769-779.
110 ROSSI P G, LAURION I, LOVEYOY C. Distribution and identity of bacteria in subarctic permafrost thaw ponds[J]. Aquatic Microbial Ecology201369(3): 231-245.
10 母梅, 牟翠翠, 刘和斌, 等. 北半球热融湖塘分布及其甲烷排放潜力 [J]. 冰川冻土202345(2): 535-547.
11 WEI Z, DU Z, WANG L, et al. Sentinel-based inventory of thermokarst lakes and ponds across permafrost landscapes on the Qinghai-Tibet Plateau[J]. Earth and Space Science20218(11). DOI:10.1029/2021ea001950 .
12 SERIKOVA S, POKROVSKY O S, LAUDON H, et al. High carbon emissions from thermokarst lakes of Western Siberia[J]. Nature Communications201910(1). DOI: 10.1038/s41467-019-09592-1 .
13 WALTER K M, EDWARDS M E, GROSSE G, et al. Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation[J]. Science2007318(5 850): 633-636.
14 NITZE I, GROSSE G, JONES B M, et al. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic[J]. Nature Communications20189(1). DOI: 10.1038/s41467-018-07663-3 .
15 YI S, WISCHNEWSKI K, LANGER M, et al. Freeze/thaw processes in complex permafrost landscapes of northern Siberia simulated using the TEM ecosystem model: impact of thermokarst ponds and lakes[J]. Geoscientific Model Development20147(4): 1 671-1 689.
16 SERREZE M C, WALSH J E, CHAPIN F S, et al. Observational evidence of recent change in the northern high-latitude environment[J]. Climatic change200046: 159-207.
17 LIN Z J, NIU F J, FANG J H, et al. Interannual variations in the hydrothermal regime around a thermokarst lake in Beiluhe, Qinghai-Tibet Plateau[J]. Geomorphology2017276: 16-26.
18 FERNÁNDEZ-FERNÁNDEZ J M, OLIVA M, RIBOLINI A, et al. Cryosphere degradation in a changing climate[J]. Land Degradation & Development202435(15): 4 359-4 363.
19 CHADBURN S E, BURKE E J, COX P M, et al. An observation-based constraint on permafrost loss as a function of global warming[J]. Nature Climate Change20177(5): 340-344.
20 MU Cuicui, ZHANG Guofei, XIAO Cunde, et al. Interpretation of the IPCC sixth assessment report: permafrost changes and their impacts[J]. Journal of Glaciology and Geocryology202345(2): 306-317.
牟翠翠, 张国飞, 效存德, 等. IPCC第六次评估报告解读:多年冻土变化及其影响[J].冰川冻土202345(2): 306-317.
111 DESHPANDE B N, MAPS F, MATVEEV A, et al. Oxygen depletion in subarctic peatland thaw lakes[J]. Arctic Science20173(2): 406-428.
112 DESHPANDE B N, MACINTYRE S, MATVEEV A, et al. Oxygen dynamics in permafrost thaw lakes: anaerobic bioreactors in the Canadian subarctic[J]. Limnology and Oceanography201560(5): 1 656-1 670.
113 WALTER K M, ZIMOV S A, CHANTON J P, et al. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming[J]. Nature2006443(7 107): 71-75.
114 WALTER A K, DAANEN R, ANTHONY P, et al. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s[J]. Nature Geoscience20169(9): 679-682.
115 KYZIVAT E D, SMITH L C. A closer look at the effects of lake area, aquatic vegetation, and double‐counted wetlands on Pan‐Arctic Lake methane emissions estimates[J]. Geophysical Research Letters202350(24). DOI:10.1029/2023GL104825 .
116 ZIMOV S A, VOROPAEV Y V, SEMILETOV I P, et al. North Siberian Lakes: a methane source fueled by Pleistocene carbon[J]. Science1997277(5 327): 800-802.
117 WIK M, VARNER R K, ANTHONY K W, et al. Climate-sensitive northern lakes and ponds are critical components of methane release[J]. Nature Geoscience20169(2): 99-105.
118 MU C, ZHANG T, WU Q, et al. Dissolved organic carbon, CO2, and CH4 concentrations and their stable isotope ratios in thermokarst lakes on the Qinghai-Tibetan Plateau[J]. Journal of Limnology201675(2). DOI:10.4081/jlimnol.2016.1346 .
119 KOVEN C D, SCHUUR E A, SCHADEL C, et al. A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences2015373(2 054). DOI:10.1098/rsta.2014.0423 .
120 GAO Z, NIU F, LIN Z. Effects of permafrost degradation on thermokarst lake hydrochemistry in the Qinghai-Tibet Plateau, China[J]. Hydrological Processes202034(26): 5 659-5 673.
121 YANG M, WANG X, PANG G, et al. The Tibetan Plateau cryosphere: observations and model simulations for current status and recent changes[J]. Earth-Science Reviews2019190: 353-369.
122 XU Q, DU Z, WANG L, et al. Temperature sensitivity of methanogenesis and anaerobic methane oxidation in thermokarst lakes modulated by surrounding vegetation on the Qinghai-Tibet Plateau[J]. Science of the Total Environment2024, 907. DOI: 10.1016/j.scitotenv.2023.167962 .
21 SMITH S L, O’NEILL H B, ISAKSEN K, et al. The changing thermal state of permafrost[J]. Nature Reviews Earth & Environment20223(1): 10-23.
22 JORGENSON M T, OSTERKAMP T E. Response of boreal ecosystems to varying modes of permafrost degradation[J]. Canadian Journal of Forest Research200535(9): 2 100-2 111.
23 WANG C, WANG Z, KONG Y, et al. Most of the northern hemisphere permafrost remains under climate change[J]. Scientific reports20199(1). DOI: 10.1038/s41598-019-39942-4 .
24 ZOU D, ZHAO L, SHENG Y, et al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere201711(6): 2 527-2 542.
25 ZHANG Y, LIU F, WANG X, et al. Field investigation on thermal regime of permafrost and talik in a river terrace, the interior of Qinghai‐Tibet Plateau[J]. Geofluids20222022(1). DOI: 10.1155/2022/1160531 .
26 JIN H J, HE R, CHENG G, et al. Change in frozen ground and eco-environmental impacts in the Sources Area of the Yellow River (SAYR) on the northeastern Qinghai-Tibet Plateau, China[J]. Environmental Research Letters2009, 4. DOI: 10.1088/1748-9326/4/045206 .
27 CHENG G, WU T. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research: Earth Surface2007112(F2). DOI: 10.1029/2006JF000631 .
28 ZHANG Z, WU Q, JIANG G, et al. Changes in the permafrost temperatures from 2003 to 2015 in the Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology2020, 169. DOI: 10.1016/j.coldregions.2019.102904 .
29 ZHAO L, ZOU D, HU G, et al. Changing climate and the permafrost environment on the Qinghai-Tibet (Xizang) Plateau[J]. Permafrost and Periglacial Processes202031(3): 396-405.
30 ZHANG G, NAN Z, HU N, et al. Qinghai‐Tibet Plateau permafrost at risk in the late 21st century[J]. Earth’s Future202210(6). DOI: 10.1029/2022EF002652 .
31 WU Qingbai, ZHANG Zhongqiong, LIU Ge. Relationships between climate warming and engineering stability of permafrost on Qinghai-Tibet plateau[J]. Journal of Engineering Geology29(2): 342-352.
吴青柏, 张中琼, 刘戈. 青藏高原气候转暖与冻土工程的关系[J]. 工程地质学报202129(2): 342-352.
123 MU C, MU M, WU X, et al. High carbon emissions from thermokarst lakes and their determinants in the Tibet Plateau[J]. Global Change Biology202329(10): 2 732-2 745.
124 WU Q, ZHANG P, JIANG G, et al. Bubble emissions from thermokarst lakes in the Qinghai-Xizang Plateau[J]. Quaternary International2014321: 65-70.
125 VONK J E, TANK S E, BOWDEN W B, et al. Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems[J]. Biogeosciences201512(23): 7 129-7 167.
126 MA X, LIU G, WU X, et al. Influence of land cover on riverine dissolved organic carbon concentrations and export in the Three Rivers Headwater Region of the Qinghai-Tibetan Plateau[J]. Science of the Total Environment2018630: 314-322.
127 LAMMERS J M, SCHUBERT C J, MIDDELBURG J J, et al. Microbial carbon processing in oligotrophic Lake Lucerne (Switzerland): results of in situ 13C-labelling studies[J]. Biogeochemistry2017136: 131-149.
128 WEN Z, ZHELEZNIAK M, WANG D, et al. Thermal interaction between a thermokarst lake and a nearby embankment in permafrost regions[J]. Cold Regions Science and Technology2018155: 214-224.
129 LIN Zhanju, NIU Fujun, LIU Hua, et al. Numerical simulation of lateral thermal process of a thaw lake and its influence on permafrost engineering on Qinghai-Tibet Plateau[J]. Chinese Journal of Geotechnical Engineering201234(8): 1 394-1 402.
林战举, 牛富俊, 刘华, 等. 青藏高原热融湖对冻土工程影响的数值模拟[J]. 岩土工程学报201234(8): 1 394-1 402.
130 DING Z, NIU F, MU Y, et al. Primarily investigation with multiple methods on permafrost state around a rapid change lake in the interior of the Tibet Plateau[J]. Environmental Research Letters202318(11). DOI:10.1088/1748-9326/ad0063 .
131 PENG E, SHENG Y, HU X, et al. Thermal effect of thermokarst lake on the permafrost under embankment[J]. Advances in Climate Change Research202112(1): 76-82.
132 LIU Z, WANG S, JIANG Z, et al. Study on the coupling thermal effect of thermokarst lake and high sunny slope on permafrost embankment[J]. Transportation Geotechnics2023, 41. DOI:10.1016/j.trgeo.2023.101024 .
133 CHAI M, LUO Y, GAO Y, et al. Seepage influence of supra-permafrost groundwater on thermal field of embankment on Qinghai-Tibet Plateau, China[J]. Research in Cold and Arid Regions202315(3): 132-140.
134 LI Yongqiang, LIU Gang, QIAN Guohua, et al. The harmful geological phenomenon in permafrost area and its harm to railway engineering [J]. Journal of Engineering Geology200210(): 202-206.
32 MUSTER S, ROTH K, LANGER M, et al. PeRL: a circum-Arctic permafrost region pond and lake database[J]. Earth System Science Data20179(1): 317-348.
33 SMITH L C, SHENG Y, MACDONALD G M, et al. Disappearing Arctic Lakes[J]. Science2005308(5 727): 1 429.
34 ZHOU G, LIU W, XIE C, et al. Accelerating thermokarst lake changes on the Qinghai-Tibetan Plateau[J]. Scientific Reports202414(1). DOI: 10.1038/s41598-024-52558-7 .
35 LUO J, NIU F, LIN Z, et al. Abrupt increase in thermokarst lakes on the central Tibetan Plateau over the last 50 years[J]. Catena2022, 217. DOI:10.1016/j.catena.2022.106497 .
36 van HUISSTEDEN J, DOLMAN A J. Soil carbon in the Arctic and the permafrost carbon feedback[J]. Current Opinion in Environmental Sustainability20124(5): 545-551.
37 ROMANOVSKII N N, HUBBERTEN H W, GAVRILOV A V, et al. Permafrost of the east Siberian Arctic shelf and coastal lowlands[J]. Quaternary Science Reviews200423(11/13): 1 359-1 369.
38 BOUCHARD F, MACDONALD L A, TUNNERK W, et al. Paleolimnology of thermokarst lakes: a window into permafrost landscape evolution[J]. Arctic Scienc20173(2): 91-117.
39 CZUDEK T, DEMEK J. Thermokarst in Siberia and its influence on the development of lowland relief[J]. Quaternary Research19701(1): 103-120.
40 LUOTO M, SEPPÄLÄ M. Thermokarst ponds as indicators of the former distribution of palsas in Finnish Lapland[J]. Permafrost and Periglacial Processes200314(1): 19-27.
41 CALMELS F, ALLARD M, DELISLE G. Development and decay of a lithalsa in northern Québec: a geomorphological history[J]. Geomorphology200897(3/4): 287-299.
42 NIU F, LIU M, CHENG G, et al. Long-term thermal regimes of the Qinghai-Tibet railway embankments in plateau permafrost regions[J]. Science China Earth Sciences201558(9): 1 669-1 676.
43 FRENCH H M. The periglacial environment [M]. Hoboken: John Wiley & Sons, 2017: 182-185.
134 李永强, 刘钢, 钱国华, 等. 多年冻土区不良冻土地质现象及其对铁路工程的危害[J]. 工程地质学报200210(): 202-206.
135 NIU F, LUO J, LIN Z, et al. Development and thermal regime of a thaw slump in the Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology201283/84: 131-138.
136 LUO J, NIU F, LIN Z, et al. Recent acceleration of thaw slumping in permafrost terrain of Qinghai-Tibet Plateau: an example from the Beiluhe region[J]. Geomorphology2019341: 79-85.
137 WANG Liping, CHU Xiao, BAI Fengpo. The problems to destroy geology of subgrade in frost area[J]. Northeast Highway Journal2000(1): 22-23.
王丽平, 初晓, 柏凤坡. 冰缘地区破坏路基的环境地质问题[J]. 东北公路2000(1): 22-23.
138 中华人民共和国第十四届全国人民代表大会常务委员会. 中华人民共和国青藏高原生态保护法[Z/OL]. (2023-04-26)[2024-01-15]. .
44 MACDONALD L A, TURNER K W, BALASUBRAMANIAM A M, et al. Tracking hydrological responses of a thermokarst lake in the Old Crow Flats (Yukon Territory, Canada) to recent climate variability using aerial photographs and paleolimnological methods[J]. Hydrological Processes201226(1): 117-129.
45 MORGENSTERN A, GROSSE G, GÜNTHER F, et al. Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta[J]. The Cryosphere20115(4): 849-867.
46 MU Cuicui. Thermokarst terrains change landscape and Earth surface processes[J]. Chinese Journal of Nature202042(5):386-392.
牟翠翠. 热喀斯特改变多年冻土区景观和地表过程[J]. 自然杂志202042(5): 386-392.
47 WANG H, LIU H, NI W. Factors influencing thermokarst lake development in Beiluhe basin, the Qinghai-Tibet Plateau[J]. Environmental Earth Sciences201776(24): 1-15.
48 PAYETTE S, DELWAIDE A, CACCIANIGA M, et al. Accelerated thawing of subarctic peatland permafrost over the last 50 years[J]. Geophysical Research Letters200431(18): 1-4.
49 LANTZ T C, TURNER K W. Changes in lake area in response to thermokarst processes and climate in Old Crow Flats, Yukon[J]. Journal of Geophysical Research: Biogeosciences2015120(3): 513-524.
50 TURNER K W, WOLFE B B, EDWARDS T W D. Characterizing the role of hydrological processes on lake water balances in the Old Crow Flats, Yukon Territory, Canada, using water isotope tracers[J]. Journal of Hydrology2010386(1/4): 103-117.
51 RIORDAN B, VERBYLA D, MCGUIRE A D. Shrinking ponds in subarctic Alaska based on 1950-2002 remotely sensed images[J]. Journal of Geophysical Research: Biogeosciences2006111(G4). DOI:10.1029/2005JG000150 .
52 YOSHIKAWA K, HINZMAN L D. Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near council, Alaska[J]. Permafrost and Periglacial Processes200314(2): 151-160.
53 BOUCHARD F, TURNER K W, MACDONALD L A, et al. Vulnerability of shallow subarctic lakes to evaporate and desiccate when snowmelt runoff is low[J]. Geophysical Research Letters201340(23): 6 112-6 117.
54 JORGENSON M T, SHUR Y. Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle[J]. Journal of Geophysical Research: Earth Surface2007112(F2). DOI: 10.1029/2006jf000531 .
55 LUO Jing, NIU Fujun, LIN Zhanju, et al. Permafrost features around a representative thermokarst lake in Beiluhe on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology201234(5): 1 110-1 117.
罗京,牛富俊,林战举,等. 青藏高原北麓河地区典型热融湖塘周边多年冻土特征研究[J]. 冰川冻土201234(5): 1 110-1 117.
56 HUANG W, ZHANG J, LEPPÄRANTA M, et al. Thermal structure and water-ice heat transfer in a shallow ice-covered thermokarst lake in central Qinghai-Tibet Plateau[J]. Journal of Hydrology2019, 578. DOI: 10.1016/j.jhydrol.2019.124122 .
57 KE Xianmin, Anfeng OU, WANG Wei, et al. Interaction of thermokarst lake and permafrost in Qinghai-Tibet Plateau[J]. Advances in Water Science202233(4): 542-552.
柯贤敏,欧安锋,王玮,等. 青藏高原热喀斯特湖与多年冻土的相互作用[J]. 水科学进展202233(4): 542-552.
58 LIN Zhanju, NIU Fujun, LUO Jing, et al. Thermal regime at bottom of thermokarst lakes along Qinghai-Tibet engineering corridor[J]. Earth Science—Journal of China University of Geosciences201540(1): 179-188.
林战举, 牛富俊, 罗京, 等. 青藏工程走廊热融湖湖底热状态[J]. 地球科学(中国地质大学学报)201540(1): 179-188.
59 NIU Fujun, DONG Cheng, LIN Zhanju, et al. Distribution of thermokarst lakes and its thermal influence on permafrost along Qinghai-Tibet highway[J]. Advances in Earth Science201328(6): 695-702.
牛富俊, 董晟, 林战举, 等. 青藏公路沿线热喀斯特湖分布特征及其热效应研究[J]. 地球科学进展201328(6): 695-702.
60 FANG Jianhong, XU Anhua, YANG Yuzhong, et al. Hydrological changes of thermokarst lake on the Qinghai-Tibet Plateau and implications for the engineering constructions[J]. Journal of Capital Normal University (Natural Science Edition)201940(3): 54-60.
房建宏, 徐安花, 杨玉忠, 等. 青藏高原热融湖塘水文变化及其工程指示意义[J]. 首都师范大学学报(自然科学版)201940(3): 54-60.
61 KOKELJ S V, JORGENSON M T. Advances in thermokarst research[J]. Permafrost and Periglacial Processes201324(2): 108-119.
62 CUI Wei, LIU Chengkun, KANG Jianlin. Development and evolution of permafrost impacted by thermokarst lake[J]. Forestry Construction2014(1): 58-62.
崔巍, 刘成昆, 康建林. 热融湖塘对多年冻土发展演化趋势的影响[J]. 林业建设2014(1): 58-62.
63 YANG Zhen, WEN Zhi, MA Wei, et al. Numerical simulation on the dynamic evolution process of thermokarst lake based on the moving mesh technology[J]. Journal of Glaciology and Geocryology201537(1): 183-191.
杨振, 温智, 马巍, 等. 基于移动网格技术的热融湖动态演化过程数值模拟[J]. 冰川冻土201537(1): 183-191.
64 HU Xiaoying, SHENG Yu, WU Jichun, et al.Hydrothermal processes of thermokarst ponds in the Tibetan Plateau and its thermal impact on the underlying permafrost[J]. Journal of Lake Sciences201830(3): 825-835.
胡晓莹, 盛煜, 吴吉春, 等. 青藏高原热融湖塘的水热过程及其对下伏多年冻土的热影响[J]. 湖泊科学201830(3): 825-835.
65 BENSE V F, FERGUSON G, KOOI H. Evolution of shallow groundwater flow systems in areas of degrading permafrost[J]. Geophysical Research Letters200936(22). DOI: 10.1029/2009GL039225 .
66 BENSE V F, KOOI H, FERGUSON G, et al. Permafrost degradation as a control on hydrogeological regime shifts in a warming climate[J]. Journal of Geophysical Research: Earth Surface2012117(F3). DOI: 10.1029/2011JF002143 .
67 ROMANOVSKY V E, OSTERKAMP T E. Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost[J]. Permafrost and Periglacial Processes200011(3): 219-239.
68 PELLETIER J D. Formation of oriented thaw lakes by thaw slumping[J]. Journal of Geophysical Research: Earth Surface2005110(F2). DOI:10.1029/2004JF000158 .
69 MATELL N, ANDERSON R S, OVEREEM I, et al. Modeling the subsurface thermal impact of Arctic thaw lakes in a warming climate[J]. Computers & Geosciences201353: 69-79.
70 PLUG L J, WEST J J. Thaw lake expansion in a two-dimensional coupled model of heat transfer, thaw subsidence, and mass movement[J]. Journal of Geophysical Research2009114(F1). DOI:10.1029/2006jf000740 .
71 LI S, ZHAN H, LAI Y, et al. The coupled moisture‐heat process of permafrost around a thermokarst pond in Qinghai‐Tibet Plateau under global warming[J]. Journal of Geophysical Research: Earth Surface2014119(4): 836-853.
72 WEN Z, YANG Z, YU Q, et al. Modeling thermokarst lake expansion on the Qinghai-Tibetan Plateau and its thermal effects by the moving mesh method[J]. Cold Regions Science and Technology2016121: 84-92.
73 LING Feng, ZHANG Tingjun. Progress in numerical simulation of long-term impact of thermokarst lakes on permafrost thermal regime[J]. Advances in Earth Science201833(2): 115-130.
令锋, 张廷军. 热卡斯特湖对多年冻土热状况长期作用的数值模拟研究进展[J]. 地球科学进展201833(2): 115-130.
74 WILCOX E J, WOLFE B B, MARSH P. Hydrological, meteorological, and watershed controls on the water balance of thermokarst lakes between Inuvik and Tuktoyaktuk, northwest Territories, Canada[J]. Hydrology and Earth System Science202327(11): 2 173-2 188.
75 YANG Y, WU Q, HOU Y, et al. Unraveling of permafrost hydrological variabilities on Central Qinghai-Tibet Plateau using stable isotopic technique[J]. Science of the Total Environment2017605/606: 199-210.
[1] 张井勇. 面向碳中和的气候变化预估与风险研究新框架[J]. 地球科学进展, 2025, 40(1): 15-20.
[2] 袁星, 周诗玙, 马凤, 王钰淼, 郝奕, 梁妙玲, 陈李楠. 气候和下垫面变化下骤旱形成演变机制研究进展[J]. 地球科学进展, 2024, 39(9): 877-888.
[3] 魏泽勋, 徐腾飞, 方越, 王晶, 秦秉斌, 胡石建, 李颖, 聂珣炜, 张志祥, 李志, 曹智勇, 马强. 热带太平洋—印度洋洋际交换及其气候效应的观测研究[J]. 地球科学进展, 2024, 39(8): 788-800.
[4] 刘锦波, 张勇, 刘时银, 王欣, 蒋宗立. 青藏高原及周边石冰川识别、冰储量及动力学过程研究进展[J]. 地球科学进展, 2024, 39(4): 391-404.
[5] 倪杰, 吴通华, 张雪, 朱小凡, 陈杰, 杜宜臻. 19792022年三江源地区大气冻融指数时空变化特征分析[J]. 地球科学进展, 2024, 39(12): 1299-1310.
[6] 兰措. 气候变化背景下陆面模式研究进展及不足[J]. 地球科学进展, 2024, 39(1): 46-55.
[7] 牛雪琦, 时巍巍, 吴文欣, 刘树伟, 杨平, 李思亮, 晏智锋. 内陆水体CH4 冒泡排放研究进展[J]. 地球科学进展, 2023, 38(8): 802-814.
[8] 赵显烨, 王伟, 关成国, 宋晨冉, 庞科, 陈哲, 周传明, 袁训来. 古元古代早中期大氧化事件及碳循环扰动[J]. 地球科学进展, 2023, 38(8): 838-851.
[9] 丁一汇, 柳艳菊, 徐影, 吴萍, 薛童, 汪靖, 石英, 张颖娴, 宋亚芳, 王朋岭. 全球气候变化的区域响应:中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望[J]. 地球科学进展, 2023, 38(6): 551-562.
[10] 许茜, 效存德, 冯雅茹, 杜志恒, 王磊, 魏志强. 微生物介导的热融湖碳循环关键过程研究进展[J]. 地球科学进展, 2023, 38(5): 470-482.
[11] 郑旻, 罗敏, 潘彬彬, 陈多福. 海洋沉积物溶解氧消耗研究进展[J]. 地球科学进展, 2023, 38(3): 236-255.
[12] 张雪冰, 张泽和, 鲁显楷. 森林生态系统土壤微生物碳利用效率对氮沉降增加的响应及其机制[J]. 地球科学进展, 2023, 38(10): 999-1014.
[13] 何志, 田军. 中中新世气候转型期太平洋深层环流变化与碳循环[J]. 地球科学进展, 2023, 38(1): 17-31.
[14] 陆瑶, 黄良波, 贾珺杰, 高扬. 内陆水体初级生产力评估方法研究进展[J]. 地球科学进展, 2023, 38(1): 57-69.
[15] 李耀辉, 于敬磊, 谷娟, 桑文军, 靳晓琳, 黄玉. 民航飞行CO2 排放及其对气候变化影响研究综述[J]. 地球科学进展, 2023, 38(1): 9-16.
阅读次数
全文


摘要