1 |
ZHONG Ruofei, GUO Huadong, WANG Weimin. Overview of soil moisture retrieval from passive microwave remote sensing[J]. Remote Sensing Technology and Application, 2005, 20(1): 49-57.
|
|
钟若飞, 郭华东, 王为民. 被动微波遥感反演土壤水分进展研究[J]. 遥感技术与应用, 2005, 20(1): 49-57.
|
2 |
WIGNERON J P, JACKSON T J, O’NEILL P, et al. Modelling the passive microwave signature from land surfaces: a review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms[J]. Remote Sensing of Environment, 2017, 192: 238-262.
|
3 |
JIA Yuanyuan, LI Zhaoliang. Progress in land surface temperature retrieval from passive microwave remotely sensed data[J]. Progress in Geography, 2006, 25(3): 96-105.
|
|
贾媛媛, 李召良. 被动微波遥感数据反演地表温度研究进展[J]. 地理科学进展, 2006, 25(3): 96-105.
|
4 |
DUAN S B, HAN X J, HUANG C, et al. Land surface temperature retrieval from passive microwave satellite observations: state-of-the-art and future directions[J]. Remote Sensing, 2020, 12(16). DOI:10.3390/rs12162573 .
|
5 |
ZHANG Miao, WANG Sujuan, QIN Danyu, et al. The inversion and quality validation of FY-3C MWRI sea surface temperature[J]. Journal of Remote Sensing, 2018, 22(5): 713-722.
|
|
张淼, 王素娟, 覃丹宇, 等. FY-3C微波成像仪海面温度产品算法及精度检验[J]. 遥感学报, 2018, 22(5): 713-722.
|
6 |
ALERSKANS E, ZINCK A P, NIELSEN-ENGLYST P, et al. Exploring machine learning techniques to retrieve sea surface temperatures from passive microwave measurements[J]. Remote Sensing of Environment, 2022, 281. DOI:10.1016/j.rse.2022.113220 .
|
7 |
LI Xiaoqing. Review of algorithms for retrieving rainfall from spaceborne passive microwave measurements[J]. Meteorological Science and Technology, 2004, 32(3): 149-154.
|
|
李小青. 星载被动微波遥感反演降水算法回顾[J]. 气象科技, 2004, 32(3): 149-154.
|
8 |
TODD M C, KIDD C, KNIVETON D, et al. A combined satellite infrared and passive microwave technique for estimation of small-scale rainfall[J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(5): 742-755.
|
9 |
LI Xin, CHE Tao. A review on passive microwave remote sensing of snow cover[J]. Journal of Glaciology and Geocryology, 2007, 29(3): 487-496.
|
|
李新, 车涛. 积雪被动微波遥感研究进展[J]. 冰川冻土, 2007, 29(3): 487-496.
|
10 |
TANNIRU S, RAMSANKARAN R. Passive microwave remote sensing of snow depth: techniques, challenges and future directions[J]. Remote Sensing, 2023, 15(4). DOI:10.3390/rs15041052 .
|
11 |
WU P H, YIN Z X, ZENG C, et al. Spatially continuous and high-resolution land surface temperature product generation: a review of reconstruction and spatiotemporal fusion techniques[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(3): 112-137.
|
12 |
ANDRÉ C, OTTLÉ C, ROYER A, et al. Land surface temperature retrieval over circumpolar Arctic using SSM/I-SSMIS and MODIS data[J]. Remote Sensing of Environment, 2015, 162: 1-10.
|
13 |
ZHENG D H, WANG X, van der VELDE R, et al. Impact of surface roughness, vegetation opacity and soil permittivity on L-band microwave emission and soil moisture retrieval in the third pole environment[J]. Remote Sensing of Environment, 2018, 209: 633-647.
|
14 |
MONCET J L, LIANG P, GALANTOWICZ J F, et al. Land surface microwave emissivities derived from AMSR-E and MODIS measurements with advanced quality control[J]. Journal of Geophysical Research, 2011, 116(D16). DOI:10.1029/2010JD015429 .
|
15 |
WU Ying, WANG Zhenhui. Advances in the study of land surface emissivity retrieval from passive microwave remote sensing[J]. Remote Sensing for Land & Resources, 2012, 24(4): 1-7.
|
|
吴莹, 王振会. 被动微波遥感反演地表发射率研究进展[J]. 国土资源遥感, 2012, 24(4): 1-7.
|
16 |
CHE Tao, LI Xin. The development and prospect of estimating snow water equivalent using passive microwave remote sensing data[J]. Advances in Earth Science, 2004, 19(2): 204-210.
|
|
车涛, 李新. 被动微波遥感估算雪水当量研究进展与展望[J]. 地球科学进展, 2004, 19(2): 204-210.
|
17 |
ZHANG Tingjun, JIN Rui, GAO Feng. Overview of the satellite remote sensing of frozen ground: passive microwave sensors[J]. Advances in Earth Science, 2009, 24(10): 1 073-1 083.
|
|
张廷军, 晋锐, 高峰. 冻土遥感研究进展: 被动微波遥感[J]. 地球科学进展, 2009, 24(10): 1 073-1 083.
|
18 |
CORDISCO E, PRIGENT C, AIRES F. Snow characterization at a global scale with passive microwave satellite observations[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D19). DOI:10.1029/2005JD006773 .
|
19 |
ZHENG D H, WANG X, van der VELDE R, et al. L-band microwave emission of soil freeze-thaw process in the third pole environment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(9): 5 324-5 338.
|
20 |
WANG Zhenzhan, WANG Wenyu, TONG Xiaolin, et al. Progress in spaceborne passive microwave remote sensing technology and its application[J]. Chinese Journal of Space Science, 2023, 43(6): 986-1 015.
|
|
王振占, 王文煜, 佟晓林, 等. 星载被动微波遥感技术及其应用进展[J]. 空间科学学报, 2023, 43(6): 986-1 015.
|
21 |
SHEN H F, LI X H, CHENG Q, et al. Missing information reconstruction of remote sensing data: a technical review[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(3): 61-85.
|
22 |
DING Lirong, ZHOU Ji, ZHANG Xiaodong, et al. Estimation of all-weather land surface temperature with remote sensing: progress and challenges[J]. National Remote Sensing Bulletin, 2023, 27(7): 1 534-1 553.
|
|
丁利荣, 周纪, 张晓东, 等. 全天候地表温度遥感获取进展与挑战[J]. 遥感学报, 2023, 27(7): 1 534-1 553.
|
23 |
ZHOU Fangcheng, TANG Shihao, HAN Xiuzhen, et al. Research on reconstructing missing remotely sensed land surface temperature data in cloudy sky[J]. Remote Sensing for Land & Resources, 2021, 33(1): 78-85.
|
|
周芳成, 唐世浩, 韩秀珍, 等. 云下遥感地表温度重构方法研究[J]. 国土资源遥感, 2021, 33(1): 78-85.
|
24 |
MO Y P, XU Y M, CHEN H J, et al. A review of reconstructing remotely sensed land surface temperature under cloudy conditions[J]. Remote Sensing, 2021, 13(14). DOI:10.3390/rs13142838 .
|
25 |
HUANG C, DUAN S B, JIANG X G, et al. A physically based algorithm for retrieving land surface temperature under cloudy conditions from AMSR2 passive microwave measurements[J]. International Journal of Remote Sensing, 2019, 40(5/6): 1 828-1 843.
|
26 |
DUAN S B, LI Z L, LENG P. A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data[J]. Remote Sensing of Environment, 2017, 195: 107-117.
|
27 |
ZHANG X D, ZHOU J, LIANG S L, et al. A practical reanalysis data and thermal infrared remote sensing data merging (RTM) method for reconstruction of a 1-km all-weather land surface temperature[J]. Remote Sensing of Environment, 2021, 260. DOI:10.1016/j.rse.2021.112437 .
|
28 |
GAO F, MASEK J, SCHWALLER M, et al. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): 2 207-2 218.
|
29 |
ROY D P, JU J C, LEWIS P, et al. Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data[J]. Remote Sensing of Environment, 2008, 112(6): 3 112-3 130.
|
30 |
ZHANG X D, ZHOU J, LIANG S L, et al. Estimation of 1-km all-weather remotely sensed land surface temperature based on reconstructed spatial-seamless satellite passive microwave brightness temperature and thermal infrared data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167: 321-344.
|
31 |
TANG W B, XUE D J, LONG Z Y, et al. Near-real-time estimation of 1-km all-weather land surface temperature by integrating satellite passive microwave and thermal infrared observations[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19. DOI:10.1109/LGRS.2021.3067908 .
|
32 |
LIAN Y H, DUAN S B, HUANG C, et al. Generation of spatial-seamless AMSR2 land surface temperature in China during 2012-2020 using a deep neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61. DOI: 10.1109/TGRS.2023.3247806 .
|
33 |
XU S, CHENG J, ZHANG Q. A random forest-based data fusion method for obtaining all-weather land surface temperature with high spatial resolution[J]. Remote Sensing, 2021, 13(11). DOI:10.3390/rs13112211 .
|
34 |
GUENTHER B, XIONG X, SALOMONSON V V, et al. On-orbit performance of the Earth Observing System Moderate Resolution Imaging Spectroradiometer: first year of data[J]. Remote Sensing of Environment, 2002, 83(1/2): 16-30.
|
35 |
WANG L L, QU J J, XIONG X X, et al. A new method for retrieving band 6 of aqua MODIS[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(2): 267-270.
|
36 |
RAKWATIN P, TAKEUCHI W, YASUOKA Y. Restoration of aqua MODIS band 6 using histogram matching and local least squares fitting[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2): 613-627.
|
37 |
YANG Dengke. Influences of different interpolation methods on GPS time series[J]. GNSS World of China, 2019, 44(5): 66-69.
|
|
杨登科. 不同插值方法对GPS时间序列的影响分析[J]. 全球定位系统, 2019, 44(5): 66-69.
|
38 |
CHEN Yanjun, ZHANG Yuhong. Filling algorithm for missing pixels in Landsat-7 SLC-off images using no reference images[J]. Scientia Geographica Sinica, 2021, 41(7): 1 276-1 284.
|
|
陈彦军, 张玉红. 无参考图条件下的Landsat-7 SLC-off图像缺失像素填充算法研究[J]. 地理科学, 2021, 41(7): 1 276-1 284.
|
39 |
JONSSON P, EKLUNDH L. Seasonality extraction by function fitting to time-series of satellite sensor data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8): 1 824-1 832.
|
40 |
BECK P S A, ATZBERGER C, HØGDA K A, et al. Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI[J]. Remote Sensing of Environment, 2006, 100(3): 321-334.
|
41 |
SHAO Y, LUNETTA R S, WHEELER B, et al. An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data[J]. Remote Sensing of Environment, 2016, 174: 258-265.
|
42 |
YANG Y P, LUO J C, HUANG Q T, et al. Weighted double-logistic function fitting method for reconstructing the high-quality sentinel-2 NDVI time series data set[J]. Remote Sensing, 2019, 11(20). DOI:10.3390/rs11202342 .
|
43 |
XIE C J, HUANG C, ZHANG D Q, et al. BiLSTM-I: a deep learning-based long interval gap-filling method for meteorological observation data[J]. International Journal of Environmental Research and Public Health, 2021, 18(19). DOI:10.3390/ijerph181910321 .
|
44 |
LIGUORI A, MARKOVIC R, FRISCH J, et al. A gap-filling method for room temperature data based on autoencoder neural networks[C]// Proceedings of building simulation 2021: 17th conference of IBPSA. KU Leuven, 2021, 17: 2 427-2 434.
|
45 |
GOLYANDINA N, NEKRUTKIN V, ZHIGLJAVSKY A. Analysis of time series structure: SSA and related techniques[M]. New York: Chapman and Hall/CRC, 2001.
|
46 |
KONDRASHOV D, GHIL M. Spatio-temporal filling of missing points in geophysical data sets[J]. Nonlinear Processes in Geophysics, 2006, 13(2): 151-159.
|
47 |
KONDRASHOV D, SHPRITS Y, GHIL M. Gap filling of solar wind data by singular spectrum analysis[J]. Geophysical Research Letters, 2010, 37(15). DOI:10.1029/2010GL044138 .
|
48 |
GHAFARIAN M H R, ROUSTA I, OLAFSSON H, et al. Gap-filling of MODIS time series Land Surface Temperature (LST) products using Singular Spectrum Analysis (SSA)[J]. Atmosphere, 2018, 9(9). DOI:10.3390/atmos9090334 .
|
49 |
OLIVER M A, WEBSTER R. Kriging: a method of interpolation for geographical information systems[J]. International Journal of Geographical Information Systems, 1990, 4(3): 313-332.
|
50 |
ZHANG C, LI W, TRAVIS D. Gaps-fill of SLC-off Landsat ETM+ satellite image using a geostatistical approach[J]. International Journal of Remote Sensing, 2007, 28(22): 5 103-5 122.
|
51 |
CHEN F W, LIU C W. Estimation of the spatial rainfall distribution using Inverse Distance Weighting (IDW) in the middle of Taiwan[J]. Paddy and Water Environment, 2012, 10(3): 209-222.
|
52 |
SHENG Zheng, SHI Hanqing, DING Youzhuan. Missing satellite-based sea surface temperature data reconstructed by DINEOF method[J]. Advances in Marine Science, 2009, 27(2): 243-249.
|
|
盛峥, 石汉青, 丁又专. 利用DINEOF方法重构缺测的卫星遥感海温数据[J]. 海洋科学进展, 2009, 27(2): 243-249.
|
53 |
FAN Zide, GONG Jianya, LIU Bo, et al. A space-time interpolation method of missing data based on spatiotemporal heterogeneity[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4): 458-465.
|
|
樊子德, 龚健雅, 刘博, 等. 顾及时空异质性的缺失数据时空插值方法[J]. 测绘学报, 2016, 45(4): 458-465.
|
54 |
YANG J, HU M G. Filling the missing data gaps of daily MODIS AOD using spatiotemporal interpolation[J]. Science of the Total Environment, 2018, 633: 677-683.
|
55 |
POGGIO L, GIMONA A, BROWN I. Spatio-temporal MODIS EVI gap filling under cloud cover: an example in Scotland[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 72: 56-72.
|
56 |
WANG G J, GARCIA D, LIU Y, et al. A three-dimensional gap filling method for large geophysical datasets: application to global satellite soil moisture observations[J]. Environmental Modelling & Software, 2012, 30: 139-142.
|
57 |
ZHANG Q, YUAN Q Q, LI J, et al. Generating Seamless Global Daily AMSR2 Soil Moisture (SGD-SM) long-term products for the years 2013-2019[J]. Earth System Science Data, 2021, 13(3): 1 385-1 401.
|
58 |
WU P H, SU Y, DUAN S B, et al. A two-step deep learning framework for mapping gapless all-weather land surface temperature using thermal infrared and passive microwave data[J]. Remote Sensing of Environment, 2022, 277. DOI:10.1016/j.rse.2022.113070 .
|
59 |
HUANG X H, LI C, YANG T, et al. Seamless reconstruction of AMSR-E land surface temperature swath gaps for China’s landmass[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61. DOI: 10.1109/TGRS.2023.3335820 .
|
60 |
GERBER F, de JONG R, SCHAEPMAN M E, et al. Predicting missing values in spatio-temporal remote sensing data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(5): 2 841-2 853.
|
61 |
ZHANG Q, YUAN Q Q, ZENG C, et al. Missing data reconstruction in remote sensing image with a unified spatial-temporal-spectral deep convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4 274-4 288.
|
62 |
SHAO M W, WANG C, ZUO W M, et al. Efficient pyramidal GAN for versatile missing data reconstruction in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60. DOI: 10.1109/TGRS.2022.3188913 .
|