地球科学进展 ›› 2022, Vol. 37 ›› Issue (11): 1181 -1193. doi: 10.11867/j.issn.1001-8166.2022.056

研究论文 上一篇    下一篇

中帕米尔甘多冰川跃动遥感监测
王振峰 1 , 2( ), 蒋宗立 2( ), 刘时银 3, 马致远 2, 张震 4   
  1. 1.湖南科技大学测绘遥感信息工程湖南省重点实验室,湖南 湘潭 411201
    2.湖南科技大学 地球科学与空间信息工程学院,湖南 湘潭 411201
    3.云南大学国际河流与生态安全研究院,云南 昆明 650091
    4.安徽理工大学空间信息与测绘工程学院,安徽 淮南 232001
  • 收稿日期:2022-04-09 修回日期:2022-08-02 出版日期:2022-11-10
  • 通讯作者: 蒋宗立 E-mail:1783792308@qq.com;jiangzongli@hnust.edu.cn
  • 基金资助:
    国家自然科学基金项目“亚洲高山区跃动冰川时空差异及与常态运动冰川对比研究”(42071085);“科其喀尔冰川动力变化遥感监测及其对气候变化响应研究”(41471067)

Remote Sensing Monitoring of Recent Surging of the Gando Glacier, Central Pamir

Zhenfeng WANG 1 , 2( ), Zongli JIANG 2( ), Shiyin LIU 3, Zhiyuan MA 2, Zhen ZHANG 4   

  1. 1.Hunan Provincial Key Laboratory of Geo-Information Engineering in Surveying, Mapping and Remote Sensing, Hunan University of Science and Technology, Xiangtan Hunan 411201, China
    2.School of Earth Sciences and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan Hunan 411201, China
    3.Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650091, China
    4.School of Geomatics, Anhui University of Science and Technology, Huainan Anhui 232001, China
  • Received:2022-04-09 Revised:2022-08-02 Online:2022-11-10 Published:2022-11-16
  • Contact: Zongli JIANG E-mail:1783792308@qq.com;jiangzongli@hnust.edu.cn
  • About author:WANG Zhenfeng (1999-), male, Huaxian County, Henan Province, Master student. Research areas include monitoring of glacier surge by remote sensing. E-mail: 1783792308@qq.com
  • Supported by:
    the National Natural Science Foundation of China “The spatial and temporal heterogeneity of the surge-type glaciers and the differences with the normal glaciers in High Mountain Asia”(42071085);“Research on monitoring Koxkar glacier dynamics change by remote sensing and its response to climate change”(41471067)

帕米尔地区发育了大量的跃动冰川,目前对帕米尔跃动冰川的研究主要针对冰川跃动编目,详细的跃动特征描述及控制机理研究仍然缺乏。利用Landsat、Sentinel-1A和TerraSAR-X/TanDEM-X等多源遥感数据获取了甘多冰川表面流速、高程以及表面形态的详细变化。结果表明:甘多冰川南分支在2014年11月之前已开始缓慢加速,随后逐渐向下游推进。经历了4年缓慢加速期后于2018年夏季进入快速运动期,在快速运动期间,最高流速达4.6 m/d,大量的冰川物质从上游迅速向下游迁移,致使南分支末端及冰舌中上游的厚度大幅增加,最大增厚约120 m,南分支中上游(积蓄区)的高程显著降低,最大减薄约60 m。到2021年冬季,南分支流速开始大幅下降。根据南分支表面流速和高程变化的特征,认为南分支的跃动受热控制的可能性较大。此外,还发现甘多冰川的主干曾在2010—2011年发生跃动,且主干受冰下水文控制的可能性较大。结合现有的资料与数据,推断主干跃动的重现期约为19 a,南分支跃动的重现期约为30 a。

Pamir hosts numerous surge-type glaciers. Currently, research on surge-type glaciers in this area is mainly focused on the inventorying and reporting of glacier surges, but a detailed description of surge characteristics and control mechanisms is still lacking. Landsat, Sentinel-1A, TerraSAR-X/TanDEM-X, and other multi-source remote sensing data were used to monitor detailed changes in surface velocity, elevation, and surface morphology during the surge process of the southern tributary of the Gando glacier. The results show that the southern tributary of the Gando glacier began to accelerate slowly prior to November 2014 and then gradually pushed downstream. After a four-year slow acceleration period, it entered a rapid movement period in the summer of 2018. During the rapid movement period, the maximum velocity reached 4.6 m/d, and a large amount of glacial material quickly migrated from the upstream to the downstream, resulting in a significant increase in thickness at the end of the southern tributary and the middle and upper reaches of the glacier tongue, with a maximum thickening of approximately 120 m, a significant decrease in the elevation of the middle and upper reaches of the southern tributary (accumulation area), and a maximum thinning of approximately 60 m. By the winter of 2021, the flow velocity in the southern tributary began to decrease significantly. According to the characteristics of surface velocity and elevation changes of the southern tributary, the surge thermal control of the southern tributary is more likely. In addition, we found that the trunk of the Gando glacier surged from 2010 to 2011 and may be mainly controlled by subglacial hydrology. Combined with the existing data, we infer that the surge-cycle duration is approximately 19 years and that of the southern tributary is approximately 30 years.

中图分类号: 

图1 甘多冰川位置和范围
冰川边界来源于GI-3编目 24 ,背景为2015年7月16日的Landsat 8 OLI影像,RGB(654组合)
Fig. 1 Location and extent of the Gando Glacier
Glacier outline originates from GI-3 Inventory 24 with Landsat 8 OLI image on July 16, 2015, composed by band 6, 5 and 4 (RGB)
表1 使用的数据集
Table 1 Datasets used in this study
图2 非冰川区高程变化
Fig. 2 Elevation change in non-glacier area
图3 非冰川区流速误差分布
Fig. 3 Distribution of velocity errors in non-glacier area
图4 甘多冰川主干跃动前后表面高程变化
(a) 跃动前,2000—2009年; (b) 跃动后,2009—2012年
Fig. 4 Surface elevation changes of the Gando Glacier trunk before and after surge
(a) Before surge, 2000-2009; (b) After surge, 2009-2012
图5 甘多冰川南分支表面高程变化
(a)2000—2014年;(b)2014—2017年;(c)2017—2020年;(d)南分支跃动前后沿主流线表面高程变化
Fig. 5 Surface elevation changes of the southern tributary of Gando Glacier surface elevation changes
(a) 2000-2014; (b) 2014-2017; (c) 2017-2020; (d) Along the central flow line of the southern tributary before and after the surge
图6 20032011年沿甘多冰川主干主流线的表面流速变化
Fig. 6 Surface velocities variation along the central flow line of Gando Glacier trunk during 2003-2011
图7 20142022年沿南分支主流线的表面流速变化
Fig. 7 Surface velocities variation along the central flow line of the southern tributary of Gando Glacier during 2014-2022
图8 甘多冰川20142022年表面流速变化图
Fig. 8 Surface velocity maps of Gando Glacier during 2014-2022
图9 冰川主干冰面形态变化
背景均为Landsat 5 TM影像,RGB(543组合)
Fig. 9 Surface geometry changes of Glacier trunk
Background imagery is Landsat 5, composed by band 5,4 and 3 (RGB)
图10 甘多冰川南分支末端变化
(a)南分支跃动前,背景影像是2014-08-30的Landsat 8 OLI影像;(b)南分支跃动后,背景影像时间为2021-08-17,RGB(654组合)
Fig. 10 Changes of the southern tributary terminus of the Gando Glacier
(a) Before the southern tributary surge, the background imagery is Landsat 8 OLI image on Augest 30, 2014; (b) After the southern tributary surge, the background imagery is Landsat 8 OLI image on Augest 17, 2021, composed by band 6, 5 and 4 (RGB)
1 MEIER M F, POST A. What are glacier surges?[J]. Canadian Journal of Earth Sciences, 1969, 6(4): 807-817.
2 COPLAND L, SYLVESTRE T, BISHOP M P, et al. Expanded and recently increased glacier surging in the Karakoram[J]. Arctic, Antarctic, and Alpine Research, 2011, 43(4): 503-516.
3 FU X Y, ZHOU J M. Recent surge behavior of Walsh glacier revealed by remote sensing data[J]. Sensors (Basel, Switzerland), 2020, 20(3): 716.
4 YAN J, LV M Y, RUAN Z X, et al. Evolution of surge-type glaciers in the Yangtze River headwater using multi-source remote sensing data[J]. Remote Sensing, 2019, 11(24): 2991.
5 SHANGGUAN D H, LIU S Y, DING Y J, et al. Characterizing the May 2015 Karayaylak Glacier surge in the eastern Pamir Plateau using remote sensing[J]. Journal of Glaciology, 2016, 62(235): 944-953.
6 KÄÄB A, LEINSS S, GILBERT A, et al. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability[J]. Nature Geoscience, 2018, 11(2): 114-120.
7 KAMB B. Glacier surge mechanism based on linked cavity configuration of the basal water conduit system[J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B9): 9 083-9 100.
8 LINGLE C S, FATLAND D R. Does englacial water storage drive temperate glacier surges?[J]. Annals of Glaciology, 2003, 36:14-20.
9 MURRAY T, STUART G W, MILLER P J, et al. Glacier surge propagation by thermal evolution at the bed[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B6): 13 491-13 507.
10 MURRAY T, STROZZI T, LUCKMAN A, et al. Is there a single surge mechanism? Contrasts in dynamics between glacier surges in Svalbard and other regions[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B5): 2237.
11 YDE J C, KNUDSEN N T, STEFFENSEN J P, et al. Stable oxygen isotope variability in two contrasting glacier river catchments in Greenland[J]. Hydrology and Earth System Sciences, 2016, 20(3): 1 197-1 210.
12 KOTLYAKOV V M, OSIPOVA G B, TSVETKOV D G. Monitoring surging glaciers of the Pamirs, central Asia, from space[J]. Annals of Glaciology, 2008, 48: 125-134.
13 CHUDLEY T, WILLIS I. Glacier surges in the north-west West Kunlun Shan inferred from 1972 to 2017 Landsat imagery[J]. Journal of Glaciology, 2018, 65(249): 1-12.
14 KAMB B, RAYMOND C F, HARRISON W D, et al. Glacier surge mechanism: 1982-1983 surge of variegated glacier, Alaska[J]. Science, 1985, 227(4 686): 469-479.
15 CLARKE G K C, COLLINS S G, THOMPSON D E. Flow, thermal structure, and subglacial conditions of a surge-type glacier[J]. Canadian Journal of Earth Sciences, 1984, 21(2): 232-240.
16 ZHANG Zhen, LIU Shiyin, WEI Junfeng, et al. Monitoring a glacier surge in the Kungey Mountain, eastern Pamir Plateau using remote sensing[J]. Progress in Geography, 2018, 37(11): 1 545-1 554.
张震, 刘时银, 魏俊锋,等.东帕米尔高原昆盖山跃动冰川遥感监测研究[J]. 地理科学进展, 2018, 37(11): 1 545-1 554.
17 WENDT A, MAYER C, LAMBRECHT A, et al. A glacier surge of bivachny glacier, Pamir Mountains, observed by a time series of high-resolution digital elevation models and glacier velocities[J]. Remote Sensing, 2017, 9(4): 388.
18 QUINCEY D J, GLASSER N F, COOK S J, et al. Heterogeneity in karakoram glacier surges[J]. Journal of Geophysical Research: Earth Surface, 2015, 120(7): 1 288-1 300.
19 QUINCEY D J, BRAUN M, GLASSER N F, et al. Karakoram glacier surge dynamics[J]. Geophysical Research Letters, 2011, 38(18): L18504.
20 DUNSE T, SCHELLENBERGER T, HAGEN J O, et al. Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt[J]. The Cryosphere, 2015, 9(1): 197-215.
21 BENN D I, FOWLER A C, HEWITT I, et al. A general theory of glacier surges[J]. Journal of Glaciology, 2019, 65(253): 701-716.
22 LI Zhijie, WANG Ninglian, HOU Shanshan. Monitoring recent surging of the North Kyzkurgan Glacier in central Pamir by remote sensing[J]. Journal of Glaciology and Geocryology, 2021, 43(5): 1 267-1 276.
李志杰, 王宁练, 侯姗姗. 帕米尔中部North Kyzkurgan冰川跃动变化遥感监测[J]. 冰川冻土, 2021, 43(5): 1 267-1 276.
23 ZHANG Z, TAO P J, LIU S Y, et al. What controls the surging of Karayaylak glacier in eastern Pamir?New insights from remote sensing data[J]. Journal of Hydrology, 2022, 607: 127577.
24 GOERLICH F, BOLCH T, PAUL F. More dynamic than expected: an updated survey of surging glaciers in the Pamir[J]. Earth System Science Data, 2020, 12(4):3 161-3 176.
25 ZHANG Z, LIU S, WEI J, et al. Monitoring recent surging of the Karayaylak Glacier in Pamir by remote sensing[J]. Journal of Glaciology and Geocryology, 2016, 38(1): 11-20.
26 GUO L, LI J, WU L X, et al. Investigating the recent surge in the monomah glacier, central Kunlun Mountain range with multiple sources of remote sensing data[J]. Remote Sensing, 2020, 12(6): 966.
27 SUN Y F, JIANG L M, LIU L, et al. Mapping glacier elevations and their changes in the western Qilian Mountains, northern Tibetan Plateau, by bistatic InSAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(1): 68-78.
28 WU K P, LIU S Y, JIANG Z L, et al. Glacier mass balance over the central Nyainqentanglha Range during recent decades derived from remote-sensing data[J]. Journal of Glaciology, 2019, 65(251): 422-439.
29 WU K P, LIU S Y, JIANG Z L, et al. Surging dynamics of glaciers in the Hunza valley under an equilibrium mass state since 1990[J]. Remote Sensing, 2020, 12(18): 2922.
30 LIN H, LI G, CUO L, et al. A decreasing glacier mass balance gradient from the edge of the Upper Tarim Basin to the Karakoram during 2000-2014[J]. Scientific Reports, 2017, 7(1): 6712.
31 GARDELLE J, BERTHIER E, ARNAUD Y, et al. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011[J]. The Cryosphere, 2013, 7(4): 1 263-1 286.
32 JIANG Z L, WU K P, LIU S Y, et al. Surging dynamics of south rimo glacier, eastern Karakoram[J]. Environmental Research Letters, 2021, 16(11): 114044.
33 WU K P, LIU S Y, JIANG Z L, et al. Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories[J]. The Cryosphere, 2018, 12(1): 103-121.
34 BOLCH T, PIECZONKA T, BENN D I. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery[J]. The Cryosphere, 2011, 5(2): 349-358.
35 WU K, LIU S, JIANG Z, et al. Glacier mass balance over the central Nyainqentanglha Range during recent decades derived from remote-sensing data[J]. Journal of Glaciology, 2019,65(251): 422-439.
36 ROUND V, LEINSS S, HUSS M, et al. Surge dynamics and lake outbursts of Kyagar Glacier, Karakoram[J]. The Cryosphere, 2017, 11(2): 723-739.
37 PRITCHARD H, MURRAY T, STROZZI T, et al. Surge-related topographic change of the Glacier Sortebræ, East Greenland, derived from synthetic aperture radar interferometry[J]. Journal of Glaciology, 2003, 49(166): 381-390.
38 CUFFEY K M, PATERSON W. The physics of 4th[M]. USA: Academic Press, 2010:421-472.
39 ZHANG Z, LIU S, WEI J, et al. Monitoring a glacier surge in the Kungey Mountain, eastern Pamir Plateau using remote sensing[J]. Progress in Geography, 2018, 37(11): 1 545-1 554.
40 KOTLYAKOV V M, CHERNOVA L P, KHROMOVA T E, et al. Unique surges of Medvezhy Glacier[J]. Doklady Earth Sciences. 2018, 483(2): 1 547-1 552.
41 KOTLYAKOV V M, OSIPOVA G B, TSVETKOV D G. Fluctuations of unstable mountain glaciers: scale and character[J]. Annals of Glaciology, 1997, 24:338-343.
[1] 陈泽青,刘诚,胡启后,洪茜茜,刘浩然,邢成志,苏文静. 大气成分的遥感监测方法与应用[J]. 地球科学进展, 2019, 34(3): 255-264.
[2] 吴珊珊, 姚治君, 姜丽光, 刘兆飞. 现代冰川体积变化研究方法综述[J]. 地球科学进展, 2015, 30(2): 237-246.
[3] 胡光印,董治宝,魏振海,逯军峰,颜长珍. 近30a来若尔盖盆地沙漠化时空演变过程及成因分析[J]. 地球科学进展, 2009, 24(8): 908-916.
[4] 周冠华,唐军武,田国良,李京,柳钦火. 内陆水质遥感不确定性:问题综述[J]. 地球科学进展, 2009, 24(2): 150-158.
[5] 郭铌,管晓丹. 植被状况指数的改进及在西北干旱监测中的应用[J]. 地球科学进展, 2007, 22(11): 1160-1176.
[6] 武永峰;何春阳;马瑛;李京;张业利. 基于计算机模拟的植物返青期遥感监测方法比较研究[J]. 地球科学进展, 2005, 20(7): 724-731.
阅读次数
全文


摘要