地球科学进展 ›› 2022, Vol. 37 ›› Issue (11): 1194 -1203. doi: 10.11867/j.issn.1001-8166.2022.087

IODP研究 上一篇    下一篇

有孔虫钕同位素的来源及其古海洋学意义
吴琼 1( ), 刘志飞 2, 马瑞芳 3   
  1. 1.河海大学海洋学院, 江苏 南京 210098
    2.同济大学海洋地质国家重点实验室, 上海 200092
    3.中国科学院西北生态环境资源研究院冰冻圈科学国家重点实验室, 甘肃 兰州 730000
  • 收稿日期:2022-10-08 修回日期:2022-10-19 出版日期:2022-11-10
  • 基金资助:
    国家自然科学基金项目“南海中—北部有孔虫钕的迁移行为及其示踪古洋流可行性研究”(42176058)

Sources of Foraminiferal Neodymium Isotopes: Implications for Paleoceanography

Qiong WU 1( ), Zhifei LIU 2, Ruifang MA 3   

  1. 1.College of Oceanography, Hohai University, Nanjing 210098, China
    2.State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
    3.State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2022-10-08 Revised:2022-10-19 Online:2022-11-10 Published:2022-11-16
  • About author:WU Qiong (1985-), female, Anqing City, Anhui Province, Lecturer. Research area includes marine geology. E-mail: qiongwu@hhu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Assessment of foraminiferal Neodymium behavior in the central-northern South China Sea and its implications for past deep-waters hydrology studies”(42176058)

有孔虫钕同位素是重建深层洋流演化的重要替代性指标。钕在有孔虫碳酸钙壳体及其自生组分(如铁锰氧化物)中存在差异性富集。有孔虫自生组分中钕的含量远高于碳酸钙壳体, 是有孔虫钕同位素的主要载体。有孔虫自生组分主要形成于底层海水—沉积物界面,并富集底层海水钕同位素。但在沉积物成岩作用过程中,沉积环境的氧化还原状态发生转变,有可能造成有孔虫自生组分钕同位素发生释放—再吸附的循环变化,并与孔隙水交换,有孔虫自生组分指示的底层海水钕同位素受到影响。因此,在利用有孔虫钕同位素指示古洋流演化时,应同时分析有孔虫和陆源碎屑沉积物的稀土元素分布特征及钕同位素的演变趋势,以排除沉积成岩作用的影响。

Foraminiferal neodymium (Nd) isotopes are powerful proxies for reconstructing past deep-water currents. Nd isotopes were differentially enriched in foraminiferal calcite and associated authigenic phases (i.e., Fe-Mn oxides). The Nd concentration in the authigenic phases was higher than that in foraminiferal calcite, indicating that authigenic phases are the main carriers of foraminiferal Nd. Authigenic phases associated with foraminifera are generally formed at the seawater-sediment interface, from where they begin to adsorb Nd from the bottom water. During the diagenesis of sediments, the redox state of the sedimentary environment can be changed, resulting in the release and re-adsorption cycling of Nd isotopes in authigenic phases and the exchange with pore fluids, which further impacts the bottom water Nd isotope record in foraminiferal authigenic phases. Therefore, when using foraminiferal Nd isotopes to trace past bottom-water mixing, it is necessary to analyze the evolution of parallel rare earth elements and Nd isotopes extracted from foraminifera and detrital fractions to eliminate the influence of diagenesis on foraminiferal Nd isotopes.

中图分类号: 

图1 大洋底层水和晚全新世海洋沉积物有孔虫Nd同位素值分布
(a)底层水Nd同位素分布,大西洋Nd同位素值最低,太平洋Nd同位素值最高,印度洋Nd同位素值介于大西洋和太平洋之间;(b)晚全新世有孔虫Nd同位素分布,与底层海水Nd同位素相近;数据来自参考文献[ 20 34
Fig. 1 Nd isotopes distributions in bottom water and late Holocene sedimentary foraminifera
(a) Nd isotopes distributions in bottom water showing the lowest εNd in the Atlantic Ocean and the highest εNd in the Pacific Ocean, εNd in Indian Ocean is between the Atlantic and Pacific Ocean;(b) Nd isotopes extracted from late Holocene foraminifera, showing that foraminiferal εNd is similar to it in bottom water. Data were collected from references [20,34]
图2 现生有孔虫和沉积物有孔虫中NdMn的元素含量分布图
有孔虫Nd和Mn的含量变化具有线性相关的特点;沉积物有孔虫中Nd和Mn的含量比现生有孔虫至少高1个数量级;数据来自参考文献[ 24 29 42 - 43
Fig. 2 The distributions of Nd and Mn concentrations in living and sedimentary foraminifera
The distribution of Nd concentration in foraminfiera is linearly related to Mn concentrations; both the Nd and Mn concentration in sedimentary foraminifera are at least an order of magnitude higher than those found in living foraminifera. Data were collected from references [24,29,42-43]
图3 浮游有孔虫元素丰度图(据参考文献44修改)
(a) 扫描电镜(SEM)下浮游有孔虫片段图;(b)~(d) NanoSIMS测试获取的铁(Fe)、Mn和Nd元素丰度分布图;白色区域元素丰度最高,黄色等暖色区域元素丰度较高
Fig. 3 Elemental distribution in planktonic foraminiferamodified after reference 44 ])
(a) SEM image of a fragment of planktonic foraminifera; (b)~(d) Mapping of Fe, Mn and Nd by NanoSIMS. White color indicates the maximum intensity and warmer yellow colors correspond to higher intensities
图4 后太古代页岩(PAAS)标准化后的海水、孔隙水和有孔虫稀土元素分布模式
数据来自参考文献[ 41 43 47 - 48
Fig. 4 Post-Archean Australian Shale normalized rare earth element of distribution in seawaterpore water and sedimentary foraminifera
Data were collected from references [41,43,47-48]
图5 东太平洋海水和孔隙水的Nd含量和Nd同位素值
(a)上图为海水中Nd的含量,下图为孔隙水中Nd的含量;(b)上图为海水中的Nd同位素值,下图为孔隙水中的Nd同位素值;HH200、HH500、HH1000和HH3000代表东太平洋孔隙水站位;数据来自参考文献[ 40 - 41
Fig. 5 Nd concentrations and εNd values in seawater and pore water from the eastern Pacific Ocean
(a) The upper and lower panel show Nd concentration in seawater and pore water, respectively; (b) The upper and lower panel show εNd values in seawater and pore water, respectively. HH200, HH500, HH1000, and HH3000 standard for pore water stations located in the eastern Pacific Ocean. Data were collected from references [40-41]
1 BROECKER W S, DENTON G H. The role of ocean-atmosphere reorganizations in glacial cycles[J]. Geochimica et Cosmochimica Acta, 1989, 53(10): 2 465-2 501.
2 CLARK P U, PISIAS N G, STOCKER T F, et al. The role of the thermohaline circulation in abrupt climate change[J]. Nature, 2002, 415(6 874): 863-869.
3 RAHMSTORF S. Ocean circulation and climate during the past 120, 000 years[J]. Nature, 2002, 419(6 903): 207-214.
4 JACOBSEN S B, WASSERBURG G J. Sm-Nd isotopic evolution of chondrites[J]. Earth and Planetary Science Letters, 1980, 50(1): 139-155.
5 TACHIKAWA K, JEANDEL C, ROY-BARMAN M. A new approach to the Nd residence time in the ocean: the role of atmospheric inputs[J]. Earth and Planetary Science Letters, 1999, 170(4): 433-446.
6 RUTBERG R L, HEMMING S R, GOLDSTEIN S L. Reduced North Atlantic deep water flux to the glacial Southern Ocean inferred from neodymium isotope ratios[J]. Nature, 2000, 405(6 789): 935-938.
7 COLIN C, FRANK N, COPARD K, et al. Neodymium isotopic composition of deep-sea corals from the NE Atlantic: implications for past hydrological changes during the Holocene[J]. Quaternary Science Reviews, 2010, 29(19/20): 2 509-2 517.
8 FRANK M, WHITELEY N, van de FLIERDT T, et al. Nd and Pb isotope evolution of deep water masses in the eastern Indian Ocean during the past 33 Myr[J]. Chemical Geology, 2006, 226(3/4): 264-279.
9 KLEVENZ V, VANCE D, SCHMIDT D N, et al. Neodymium isotopes in benthic foraminifera: core-top systematics and a down-core record from the Neogene south Atlantic[J]. Earth and Planetary Science Letters, 2008, 265(3/4): 571-587.
10 ROBERTS N L, PIOTROWSKI A M, MCMANUS J F, et al. Synchronous deglacial overturning and water mass source changes[J]. Science, 2010, 327(5 961): 75-78.
11 SCHER H D, WHITTAKER J M, WILLIAMS S E, et al. Onset of Antarctic Circumpolar Current 30 million years ago as Tasmanian Gateway aligned with westerlies[J]. Nature, 2015, 523(7 562): 580-583.
12 HU R, PIOTROWSKI A M, BOSTOCK H C, et al. Variability of neodymium isotopes associated with planktonic foraminifera in the Pacific Ocean during the Holocene and last glacial maximum[J]. Earth and Planetary Science Letters, 2016, 447: 130-138.
13 HU R, PIOTROWSKI A M. Neodymium isotope evidence for glacial-interglacial variability of deepwater transit time in the Pacific Ocean[J]. Nature Communications, 2018, 9: 4709.
14 LING H F, BURTON K W, O’NIONS R K, et al. Evolution of Nd and Pb isotopes in central Pacific seawater from ferromanganese crusts[J]. Earth and Planetary Science Letters, 1997, 146(1/2): 1-12.
15 PIOTROWSKI A M, GALY A, NICHOLL J A L, et al. Reconstructing deglacial north and south Atlantic deep water sourcing using foraminiferal Nd isotopes[J]. Earth and Planetary Science Letters, 2012, 357/358: 289-297.
16 PENA L D, GOLDSTEIN S L, HEMMING S R, et al. Rapid changes in meridional advection of Southern Ocean intermediate waters to the tropical Pacific during the last 30 kyr[J]. Earth and Planetary Science Letters, 2013, 368: 20-32.
17 FAN Weijia, HAN Xiqiu, QIU Zhongyan, et al. Evolution of the Pacific meridional overturning circulation during the PlioPleistocene transition: Nd isotope records from the Fe-Mn crust[J]. Haiyang Xuebao, 2021, 43(12): 50-59.
范维佳, 韩喜球, 邱中炎, 等. 上新世/更新世之交太平洋经向翻转流演化——海山结壳Nd同位素记录[J]. 海洋学报, 2021, 43(12): 50-59.
18 YU Z J, COLIN C, MA R F, et al. Antarctic Intermediate Water penetration into the northern Indian Ocean during the Last Deglaciation[J]. Earth and Planetary Science Letters, 2018, 500: 67-75.
19 WU J W, PAHNKE K, BÖNING P, et al. Divergent Mediterranean seawater circulation during Holocene sapropel formation—reconstructed using Nd isotopes in fish debris and foraminifera[J]. Earth and Planetary Science Letters, 2019, 511: 141-153.
20 TACHIKAWA K, ARSOUZE T, BAYON G, et al. The large-scale evolution of neodymium isotopic composition in the global modern and Holocene Ocean revealed from seawater and archive data[J]. Chemical Geology, 2017, 457: 131-148.
21 MA X L, TIAN J, MA W T, et al. Changes of deep Pacific overturning circulation and carbonate chemistry during middle Miocene East Antarctic ice sheet expansion[J]. Earth and Planetary Science Letters, 2018, 484: 253-263.
22 ZHANG P, XU J, BEIL S, et al. Variability in Indonesian throughflow upper hydrology in response to precession‐induced tropical climate processes over the past 120 kyr[J]. Journal of Geophysical Research: Oceans, 2021, 126(8). DOI:10.1029/2020JC017014 .
23 PALMER M R. Rare Earth Elements in foraminifera tests[J]. Earth and Planetary Science Letters, 1985, 73(2/3/4): 285-298.
24 ROBERTS N L, PIOTROWSKI A M, ELDERFIELD H, et al. Rare Earth Element association with foraminifera[J]. Geochimica et Cosmochimica Acta, 2012, 94: 57-71.
25 MA R F, SÉPULCRE S, LICARI L, et al. Changes in productivity and intermediate circulation in the northern Indian Ocean since the last deglaciation: new insights from benthic foraminiferal Cd/thinsp; Ca records and benthic assemblage analyses[J]. 2022, 18:1 757-1 774.
26 WILSON D J, PIOTROWSKI A M, GALY A, et al. A boundary exchange influence on deglacial neodymium isotope records from the deep western Indian Ocean[J]. Earth and Planetary Science Letters, 2012, 341/342/343/344: 35-47.
27 WILSON D J, PIOTROWSKI A M, GALY A, et al. Reactivity of neodymium carriers in deep sea sediments: implications for boundary exchange and paleoceanography[J]. Geochimica et Cosmochimica Acta, 2013, 109: 197-221.
28 WU Q, COLIN C, LIU Z F, et al. Foraminiferal εNd in the deep north-western subtropical Pacific Ocean: tracing changes in weathering input over the last 30, 000 years[J]. Chemical Geology, 2017, 470: 55-66.
29 MARTÍNEZ-BOTÍ M A, VANCE D, MORTYN P G. Nd/Ca ratios in plankton-towed and core top foraminifera: confirmation of the water column acquisition of Nd[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(8). DOI:10.1029/2009GC002701 .
30 KRAFT S, FRANK M, HATHORNE E C, et al. Assessment of seawater Nd isotope signatures extracted from foraminiferal shells and authigenic phases of Gulf of Guinea sediments[J]. Geochimica et Cosmochimica Acta, 2013, 121: 414-435.
31 JEANDEL C, ARSOUZE T, LACAN F, et al. Isotopic Nd compositions and concentrations of the lithogenic inputs into the ocean: a compilation, with an emphasis on the margins[J]. Chemical Geology, 2007, 239(1/2): 156-164.
32 LACAN F, TACHIKAWA K, JEANDEL C. Neodymium isotopic composition of the oceans: a compilation of seawater data[J]. Chemical Geology, 2012, 300/301: 177-184.
33 van de FLIERDT T, GRIFFITHS A M, LAMBELET M, et al. Neodymium in the oceans: a global database, a regional comparison and implications for palaeoceanographic research[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374(2 081): 20150293.
34 DU J H, HALEY B A, MIX A C. Evolution of the global overturning circulation since the Last Glacial Maximum based on marine authigenic neodymium isotopes[J]. Quaternary Science Reviews, 2020, 241: 106396.
35 ZHAO N, OPPO D W, HUANG K F, et al. Glacial-interglacial Nd isotope variability of North Atlantic Deep Water modulated by North American ice sheet[J]. Nature Communications, 2019, 10: 5773.
36 NOBLE T L, PIOTROWSKI A M, MCCAVE I N. Neodymium isotopic composition of intermediate and deep waters in the glacial southwest Pacific[J]. Earth and Planetary Science Letters, 2013, 384: 27-36.
37 PEARCE C R, JONES M T, OELKERS E H, et al. The effect of particulate dissolution on the neodymium (Nd) isotope and Rare Earth Element (REE) composition of seawater[J]. Earth and Planetary Science Letters, 2013, 369/370: 138-147.
38 HALEY B A, KLINKHAMMER G P, MCMANUS J. Rare Earth Elements in pore waters of marine sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1 265-1 279.
39 HALEY B A, DU J H, ABBOTT A N, et al. The impact of benthic processes on Rare Earth Element and neodymium isotope distributions in the oceans[J]. Frontiers in Marine Science, 2017, 4: 426.
40 ABBOTT A N, HALEY B A, MCMANUS J. Bottoms up: sedimentary control of the deep North Pacific Ocean’s εNd signature[J]. Geology, 2015, 43(11): 1035.
41 ABBOTT A N, HALEY B A, MCMANUS J, et al. The sedimentary flux of dissolved Rare Earth Elements to the ocean[J]. Geochimica et Cosmochimica Acta, 2015, 154: 186-200.
42 POMIÈS C, DAVIES G R, CONAN S M H. Neodymium in modern foraminifera from the Indian Ocean: implications for the use of foraminiferal Nd isotope compositions in paleo-oceanography[J]. Earth and Planetary Science Letters, 2002, 203(3/4): 1 031-1 045.
43 WU Q, COLIN C, LIU Z F, et al. New insights into hydrological exchange between the South China Sea and the western Pacific Ocean based on the Nd isotopic composition of seawater[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 25-40.
44 TACHIKAWA K, TOYOFUKU T, BASILE-DOELSCH I, et al. Microscale neodymium distribution in sedimentary planktonic foraminiferal tests and associated mineral phases[J]. Geochimica et Cosmochimica Acta, 2013, 100: 11-23.
45 SKINNER L C, SADEKOV A, BRANDON M, et al. Rare Earth Elements in early-diagenetic foraminifer ‘coatings’: pore-water controls and potential palaeoceanographic applications[J]. Geochimica et Cosmochimica Acta, 2019, 245: 118-132.
46 GUO X Y, XU B C, BURNETT W C, et al. A potential proxy for seasonal hypoxia: LA-ICP-MS Mn/Ca ratios in benthic foraminifera from the Yangtze River estuary[J]. Geochimica et Cosmochimica Acta, 2019, 245: 290-303.
47 OSBORNE A H, HATHORNE E C, SCHIJF J, et al. The potential of sedimentary foraminiferal Rare Earth Element patterns to trace water masses in the past[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(4): 1 550-1 568.
48 DENG Y N, REN J B, GUO Q J, et al. Rare Earth Element geochemistry characteristics of seawater and porewater from deep sea in western Pacific[J]. Scientific Reports, 2017, 7: 16539.
49 ELDERFIELD H, SHOLKOVITZ E R. Rare Earth Elements in the pore waters of reducing nearshore sediments[J]. Earth and Planetary Science Letters, 1987, 82(3/4): 280-288
50 ABBOTT A N, HALEY B A, MCMANUS J. The impact of sedimentary coatings on the diagenetic Nd flux[J]. Earth and Planetary Science Letters, 2016, 449: 217-227.
51 DENG Y N, GUO Q J, LIU C Q, et al. Early diagenetic control on the enrichment and fractionation of Rare Earth Elements in deep-sea sediments[J]. Science Advances, 2022, 8(25). DOI:10.1126/sciady.abn5466 .
52 DENG Yinan, REN Jiangbo, GUO Qingjun, et al. Trace elements geochemistry characteristics of seawater and porewater in deep-water basin, western Pacific[J]. Earth Science, 2019, 44(9): 3 101-3 114.
邓义楠, 任江波, 郭庆军, 等. 西太平洋深水盆地海水及孔隙水的微量元素地球化学特征[J]. 地球科学, 2019, 44(9): 3 101-3 114.
53 SHOLKOVITZ E R, PIEPGRAS D J, JACOBSEN S B. The pore water chemistry of Rare Earth Elements in Buzzards Bay sediments[J]. Geochimica et Cosmochimica Acta, 1989, 53(11): 2 847-2 856.
54 SOYOL-ERDENE T O, HUH Y. Rare Earth Element cycling in the pore waters of the Bering Sea Slope (IODP Exp. 323)[J]. Chemical Geology, 2013, 358: 75-89.
55 OSBORNE A H, HALEY B A, HATHORNE E C, et al. Neodymium isotopes and concentrations in Caribbean seawater: tracing water mass mixing and continental input in a semi-enclosed ocean basin[J]. Earth and Planetary Science Letters, 2014, 406: 174-186.
56 BLASER P, PÖPPELMEIER F, SCHULZ H, et al. The resilience and sensitivity of northeast Atlantic deep water εNd to overprinting by detrital fluxes over the past 30, 000 years[J]. Geochimica et Cosmochimica Acta, 2019, 245: 79-97.
57 BLASER P, GUTJAHR M, PÖPPELMEIER F, et al. Labrador Sea bottom water provenance and REE exchange during the past 35, 000 years[J]. Earth and Planetary Science Letters, 2020, 542: 116299.
58 DU J H, HALEY B A, MIX A C. Neodymium isotopes in authigenic phases, bottom waters and detrital sediments in the Gulf of Alaska and their implications for paleo-circulation reconstruction[J]. Geochimica et Cosmochimica Acta, 2016, 193: 14-35.
[1] 丁奕凡, 田军. 晚中新世以来印度尼西亚海道及印度尼西亚贯穿流的协同演化及其气候效应研究进展[J]. 地球科学进展, 2022, 37(11): 1165-1180.
[2] 高俊峰,苏强. 群落物种多度的分形模型和一般性分布规律的验证与探讨[J]. 地球科学进展, 2021, 36(6): 625-631.
[3] 张涵, 许博超, 郭肖伊, 张晓洁, 于志刚. 活体底栖有孔虫鉴别方法及其应用[J]. 地球科学进展, 2021, 36(12): 1247-1257.
[4] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[5] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[6] 王萍, 谭先锋, 陈浩, 王佳, 梁迈, 罗龙, 冉天. 早志留世埃隆期上扬子海洋生物礁发育过程及制约机制——以渝南—黔北地区石牛栏组为例[J]. 地球科学进展, 2018, 33(6): 623-640.
[7] 徐昭萌, 刘素美. 底栖有孔虫体内储存硝酸盐和反硝化研究进展[J]. 地球科学进展, 2017, 32(9): 949-958.
[8] 蔡郁文, 王华建, 王晓梅, 何坤, 张水昌, 吴朝东. 铀在海相烃源岩中富集的条件及主控因素[J]. 地球科学进展, 2017, 32(2): 199-208.
[9] 吕璇, 刘志飞. 大洋红层的分布、组成及其科学研究意义综述[J]. 地球科学进展, 2017, 32(12): 1307-1318.
[10] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[11] 李悦, 王汝建, 李文宝. 利用有孔虫氧同位素重建古海平面变化的研究进展[J]. 地球科学进展, 2016, 31(3): 310-319.
[12] 吴能友, 张必东, 邬黛黛. 海洋钙同位素分馏机制及其古海洋学应用[J]. 地球科学进展, 2015, 30(4): 433-444.
[13] 黄思静, 李小宁, 武文慧, 张萌, 胡作维, 刘四兵, 黄可可, 钟怡江. 显生宙海相碳酸盐高 δ 13C时期的古海洋学[J]. 地球科学进展, 2015, 30(11): 1185-1197.
[14] 崔豪,周炼,李超,彭兴芳,金承胜,石炜,张子虎,罗根明,谢树成. Fe-Mo同位素与古海洋化学演化[J]. 地球科学进展, 2013, 28(9): 1049-1056.
[15] 常凤鸣,李铁刚. 西太平洋暖池区古海洋学研究[J]. 地球科学进展, 2013, 28(8): 847-858.
阅读次数
全文


摘要