地球科学进展 ›› 2024, Vol. 39 ›› Issue (12): 1211 -1226. doi: 10.11867/j.issn.1001-8166.2024.093

综述与评述 上一篇    下一篇

深空DSCOVR对地观测研究进展与展望
宋婉娟1(), 王力1, 许时光1, 黄妮1, 牛铮1,2   
  1. 1.中国科学院空天信息创新研究院,遥感与数字地球全国重点实验室,北京 100101
    2.中国科学院大学,北京 100049
  • 收稿日期:2024-06-18 修回日期:2024-09-14 出版日期:2024-12-10
  • 基金资助:
    中国科学院空天信息创新研究院科学与颠覆性技术项目(E2Z20201)

Progress and Future Perspectives of Earth Observation from Deep Space: The Case of DSCOVR

Wanjuan SONG1(), Li WANG1, Shiguang XU1, Ni HUANG1, Zheng NIU1,2   

  1. 1.Key Laboratory of Remote Sensing and Digital Earth, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-06-18 Revised:2024-09-14 Online:2024-12-10 Published:2025-02-28
  • About author:SONG Wanjuan, research areas include vegetation remote sensing, vegetation structure parameter remote sensing estimation. E-mail: songwj@aircas.ac.cn
  • Supported by:
    the Science and Disruptive Technology Program, the Aerospace Information Research Institute (AIR) of the Chinese Academy of Sciences(E2Z20201)

深空探测作为人类探索宇宙奥秘和推动可持续发展的关键途径,已成为空间技术领域最活跃的战略前沿。经过数十年的发展,该技术已广泛应用于太阳系内各类天体的探测。2015年2月,首个以地球为目标的深空探测卫星——深空气象观测卫星(DSCOVR),在日地拉格朗日1点(L1)成功部署,为地球系统科学研究提供了新的视角和数据,同时也对传统卫星数据研究提出了新的挑战。综合分析了自深空气象观测卫星发射以来,美国国家航空航天局官方网站发布的100余篇相关论文和会议总结,从基础研究、应用研究到特色研究3个层面,对深空对地观测的发展现状、优势、未来发展及科学意义进行了综述。研究发现,深空气象观测卫星融合极轨—静止卫星具有高时频、全球覆盖的优势,可为多源数据联合使用提供基准,在多圈层宏观地球科学现象研究中潜力巨大,未来有望通过革新传感器、优化探测技术、丰富观测点位,实现全时相、全方位和全维度地球观测,助力全面认识地球系统变化规律。

Deep-space exploration, which serves as a pivotal avenue for uncovering the mysteries of the universe and fostering sustainable development, has emerged as the foremost strategic frontier in space technology. After decades of development, this technology has been widely used to explore various celestial bodies in the solar system. In February 2015, the first deep-space exploration satellite targeting Earth, the Deep Space Observatory, was successfully deployed at the Sun-Earth Lagrange Point 1, providing new perspectives and data for the study of Earth system science while also introducing new challenges to traditional satellite data research. This study comprehensively analyzed more than 100 related papers and conference summaries published on the official website of the National Aeronautics and Space Administration since the launch of the Deep Space Observatory. From three perspectives—basic research, applied research, and specialized research—this paper reviews the development status, advantages, and future directions of deep-space Earth observation. The findings reveal that deep-space Earth observations can be integrated with existing satellite-aircraft-ground systems, establishing a benchmark for multisource data fusion to create globally comprehensive, high-temporal-frequency, and multispectral datasets for an integrated Earth observation system. This approach provides temporally consistent, spatially continuous, and spectrally stable global observational data, demonstrating significant potential for studying largescale geophysical phenomena across the atmosphere, biosphere, hydrosphere, and lithosphere. Future advancements in sensor innovation, optimized detection technologies, and diverse observation points are expected to enable continuous, omnidirectional, and multidimensional Earth observations. These advancements will enhance our understanding of Earth's physical, chemical, and biological systems.

中图分类号: 

图1 L1点空间位置和现有卫星分布情况
Aditya-L1:太阳探测器太阳神L1;ACE:先进的成分探测器;SOHO:太阳和日球层探测器;DSCOVR:深空气象观测卫星;图片来源于https://stargazingmumbai.in/lagrange-points-the-parking-lots-in-space;本文对图片进行了修改
Fig. 1 The location of the L1 point and the current satellites orbiting it
Aditya-L1:Solar Observatory Aditya-L1;ACE:Advanced Composition Explorer;SOHO:Solar and Heliospheric Observatory;DSCOVR:Deep Space Climate Observatory; Image source:https://stargazingmumbai.in/lagrange-points-the-parking-lots-in-space; This article has made modifications to the image
图2 地球多色成像相机对地观测示意图
d为距离,dLEO为低轨卫星轨道高度,dGEO为静止卫星轨道高度,dMoon为地月距离,dSun为日地距离,dL1为L1点到地球的距离。图片来源于Deep Space Climate Observatory, Earth Science Instrument Overview Version 1 June 28, 2016. https://asdc.larc.nasa.gov/documents/dscovr/DSCOVR_overview_2016-06-29.pdf
Fig. 2 Earth Polychromatic Imaging CameraEPICEarth observation schematic diagram
Herein, d is for distance, dLEO is the distance between the Low-Earth-Orbit and the Earth, dGEO is for the Geostationary Orbit, dMoon is for the Moon,dSun is for the sun, dL1 is for the L1. Image source: Deep Space Climate Observatory, Earth Science Instrument Overview Version 1 June 28, 2016. https://asdc.larc.nasa.gov/documents/dscovr/DSCOVR_overview_2016-06-29.pdf
表1 DSCOVR EPIC波段分布
Table 1 Spectral bands of DSCOVR EPIC
图3 201812日南美洲大陆映日影像
图片来源于https://epic.gsfc.nasa.gov/science/products/glint
Fig. 3 Sunglint imagery of the South American Continent on January 22018
Image source:https://epic.gsfc.nasa.gov/science/products/glint
图4 202448日 地球多色成像相机日食影像
图片来源于https://earthobservatory.nasa.gov/images/152663/total-solar-eclipse-darkens-north-america)
Fig. 4 Earth Polychromatic Imaging CameraEPICsolar eclipse imagery on April 82024
Image source:https://earthobservatory.nasa.gov/images/152663/total-solar-eclipse-dakens-north-america
图5 大气模式模型可视化精度检验结果100
(a)2015年9月2日EPIC RGB影像;(b)和(c)分别为IFS在21小时和93小时范围内预测的结果
Fig. 5 Visualization accuracy results of atmospheric model100
(a) EPIC RGB image on September 2, 2015; (b) and (c) The prediction results of the IFS within 21 and 93 hours respectively
图6 地球多色成像相机蓝光和近红外波段反射率随时间的变化
数据来源于2016年8月23日EPIC全天观测,图片部分根据参考文献[104]修改
Fig. 6 Temporal variation of Earth Polychromatic Imaging CameraEPICblue and near-infrared reflectance
Data from EPIC all-sky observation on August 23, 2016. Some of the images are modified from reference [104
图7 利用光谱分解的方法进行地球表面分类
(a)原始输入数据,黑、白、灰分别代表海洋、陆地、植被;(b)地球表面分类结果,蓝、红、绿近似对应海洋、陆地、植被
Fig. 7 Global mapping of the surface composition using spectral unmixing method
(a) The input map, the three colors black, gray, and white indicate ocean, land, and vegetation, respectively; (b) The surface classification results of the Earth, the three colors blue, red, and green approximately corresponding to ocean, land, and vegetation, respectively
1 WANG Shuai, LU Bo. Development trend and prospect of world deep space exploration[J]. Space International2015(9): 43-49.
王帅, 卢波. 世界深空探测发展态势及展望[J]. 国际太空2015(9): 43-49.
2 REN Jie, GAO Feng, LI Yi, et al. Benchmarking analysis of deep space exploration between China and world space powers[J]. Dual Use Technologies & Products2016(15): 47-50.
任杰, 高峰, 李意, 等. 中国与世界航天强国深空探测对标分析[J]. 军民两用技术与产品2016(15): 47-50.
3 YU Dengyun, MA Jinan. Progress and prospect of deep space exploration in China[J]. Science and Technology Foresight2022(1): 17-27.
于登云, 马继楠. 中国深空探测进展与展望[J]. 前瞻科技2022(1): 17-27.
4 ZANDALINAS S I, FRITSCHI F B, MITTLER R. Global warming, climate change, and environmental pollution: recipe for a multifactorial stress combination disaster[J]. Trends in Plant Science202126(6): 588-599.
5 MCCULLOCH M T, WINTER A, SHERMAN C E, et al. 300 years of sclerosponge thermometry shows global warming has exceeded 1.5 ℃[J]. Nature Climate Change202414: 171-177.
6 NANDINTSETSEG B, BOLDGIV B, CHANG J F, et al. Risk and vulnerability of Mongolian grasslands under climate change[J]. Environmental Research Letters202116(3). DOI: 10.1088/1748-9326/abdb5b .
7 ROMÁN-PALACIOS C, WIENS J J. Recent responses to climate change reveal the drivers of species extinction and survival[J]. Proceedings of the National Academy of Sciences of the United States of America2020117(8): 4 211-4 217.
8 KEYES A A, MCLAUGHLIN J P, BARNER A K, et al. An ecological network approach to predict ecosystem service vulnerability to species losses[J]. Nature Communications202112(1). DOI: 10.1038/s41467-021-21824-x .
9 MACLEOD M, ARP H P H, TEKMAN M B, et al. The global threat from plastic pollution[J]. Science2021373(6 550): 61-65.
10 TANG F H M, LENZEN M, MCBRATNEY A, et al. Risk of pesticide pollution at the global scale[J]. Nature Geoscience202114: 206-210.
11 ALONSO B, VALLADARES F. International efforts on global change research[M]// Earth observation of global change. Dordrecht: Springer Netherlands, 2007: 1-21.
12 STEFFEN W, RICHARDSON K, ROCKSTRÖM J, et al. The emergence and evolution of Earth system science[J]. Nature Reviews Earth & Environment20201: 54-63.
13 GUO Huadong. Earth system observation from space: from scientific satellite to moonbased platform[J]. National Remote Sensing Bulletin201620(5): 716-723.
郭华东. 地球系统空间观测: 从科学卫星到月基平台[J]. 遥感学报201620(5): 716-723.
14 MARSHAK A, HERMAN J, SZABO A, et al. Earth observations from DSCOVR/EPIC instrument[J]. Bulletin of the American Meteorological Society201899(9): 1 829-1 850.
15 VALERO F P J, MARSHAK A, MINNIS P. Lagrange point missions: the key to next generation integrated Earth observations. DSCOVR innovation[J]. Frontiers in Remote Sensing2021, 2. DOI: 10.3389/frsen.2021.745938 .
16 SONG W J, KNYAZIKHIN Y, WEN G Y, et al. Implications of whole-disc DSCOVR EPIC spectral observations for estimating Earth’s spectral reflectivity based on low-Earth-orbiting and geostationary observations[J]. Remote Sensing201810(10). DOI: 10.3390/rs10101594 .
17 MARSHAK A, LYAPUSTIN A, SCHUSTER G L, et al. Editorial: DSCOVR EPIC/NISTAR: 5 years of observing Earth from the first Lagrangian point[J]. Frontiers in Remote Sensing2022, 3. DOI: 10.3389/frsen.2022.963660 .
18 BLANK K, HUANG L K, HERMAN J, et al. Earth polychromatic imaging camera geolocation: strategies to reduce uncertainty[J]. Frontiers in Remote Sensing2021, 2. DOI: 10.3389/frsen.2021.715296 .
19 GARCÍA V M, SASI S, EFREMENKO D S, et al. Improvement of EPIC/DSCOVR image registration by means of automatic coastline detection[J]. Remote Sensing201911(15). DOI: 10.3390/rs11151747 .
20 CEDE A, HUANG L K, MCCAULEY G, et al. Raw EPIC data calibration[J]. Frontiers in Remote Sensing2021, 2. DOI: 10.3389/frsen.2021.702275 .
21 HERMAN J, HUANG L, MCPETERS R, et al. Synoptic ozone, cloud reflectivity, and erythemal irradiance from sunrise to sunset for the whole Earth as viewed by the DSCOVR spacecraft from the Earth-Sun Lagrange 1 orbit[J]. Atmospheric Measurement Techniques201811(1): 177-194.
22 GEOGDZHAYEV I V, MARSHAK A. Calibration of the DSCOVR EPIC visible and NIR channels using MODIS Terra and Aqua data and EPIC lunar observations[J]. Atmospheric Measurement Techniques201811(1): 359-368.
23 DOELLING D, HANEY C, BHATT R, et al. The inter-calibration of the DSCOVR EPIC imager with Aqua-MODIS and NPP-VIIRS[J]. Remote Sensing201911(13). DOI: 10.3390/rs11131609 .
24 GEOGDZHAYEV I V, MARSHAK A, ALEXANDROV M. Calibration of the DSCOVR EPIC visible and NIR channels using multiple LEO radiometers[J]. Frontiers in Remote Sensing2021, 2. DOI: 10.3389/frsen.2021.671933 .
25 HANEY C, DOELLING D R, SU W Y, et al. Radiometric stability assessment of the DSCOVR EPIC visible bands using MODIS, VIIRS, and invariant targets as independent references[J]. Frontiers in Remote Sensing2022, 2. DOI:10.3389/frsen.2021.765913 .
26 ZHOU Y P, ZHAI P W, YANG Y K. Evaluation of EPIC oxygen bands stability with radiative transfer simulations over the south pole[J]. Journal of Quantitative Spectroscopy and Radiative Transfer2023, 310. DOI: 10.1016/j.jqsrt.2023.108737 .
27 LYAPUSTIN A, WANG Y, GO S, et al. Atmospheric correction of DSCOVR EPIC: version 2 MAIAC algorithm[J]. Frontiers in Remote Sensing2021, 2. DOI: 10.3389/frsen.2021.748362 .
28 GO S, LYAPUSTIN A, SCHUSTER G L, et al. Inferring iron-oxide species content in atmospheric mineral dust from DSCOVR EPIC observations[J]. Atmospheric Chemistry and Physics202222(2): 1 395-1 423.
29 SASI S, NATRAJ V, GARCÍA V M, et al. Model selection in atmospheric remote sensing with an application to aerosol retrieval from DSCOVR/EPIC, part 1: theory[J]. Remote Sensing202012(22). DOI: 10.3390/rs12223724 .
30 GAO B C, LI R R, YANG Y K. Remote sensing of daytime water leaving reflectances of oceans and large inland lakes from EPIC onboard the DSCOVR spacecraft at Lagrange-1 point[J]. Sensors201919(5). DOI: 10.3390/s19051243 .
31 VASILKOV A, LYAPUSTIN A, MITCHELL B G, et al. UV reflectance of the ocean from DSCOVR/EPIC: comparisons with a theoretical model and Aura/OMI observations[J]. Journal of Atmospheric and Oceanic Technology201936(11): 2 087-2 099.
32 MARSHAK A, VÁRNAI T, KOSTINSKI A. Terrestrial glint seen from deep space: oriented ice crystals detected from the Lagrangian point[J]. Geophysical Research Letters201744(10): 5 197-5 202.
33 MARSHAK A, DELGADO-BONAL A, KNYAZIKHIN Y. Effect of scattering angle on Earth reflectance[J]. Frontiers in Remote Sensing2021, 2. DOI: 10.3389/frsen.2021.719610 .
34 NI X N, KNYAZIKHIN Y, SUN Y H, et al. Vegetation angular signatures of equatorial forests from DSCOVR EPIC and Terra MISR observations[J]. Frontiers in Remote Sensing2021, 2. DOI: 10.3389/frsen.2021.766805 .
35 HAO D L, ASRAR G R, ZENG Y L, et al. Estimating hourly land surface downward shortwave and photosynthetically active radiation from DSCOVR/EPIC observations[J]. Remote Sensing of Environment2019, 232. DOI: 10.1016/j.rse.2019.111320 .
36 FROUIN R, TAN J, COMPIÈGNE M, et al. The NASA EPIC/DSCOVR ocean PAR product[J]. Frontiers in Remote Sensing2022, 3. DOI: 10.3389/frsen.2022.833340 .
37 FELDMAN D R, SU W, MINNIS P. Subdiurnal to interannual frequency analysis of observed and modeled reflected shortwave radiation from Earth[J]. Geophysical Research Letters202148(4). DOI: 10.1029/2020GL089221 .
38 LIM Y K, WU D L, KIM K M, et al. An investigation on seasonal and diurnal cycles of TOA shortwave radiations from DSCOVR/EPIC, CERES, MERRA-2, and ERA5[J]. Remote Sensing202113(22). DOI: 10.3390/rs13224595 .
39 YANG X Y, BRIGHT J M, GUEYMARD C A, et al. Worldwide validation of an Earth Polychromatic Imaging Camera (EPIC) derived radiation product and comparison with recent reanalyses[J]. Solar Energy2022243: 421-430.
40 SU W Y, LIANG L S, DUDA D P, et al. Global daytime mean shortwave flux consistency under varying EPIC viewing geometries[J]. Frontiers in Remote Sensing2021, 2. DOI: 10.3389/frsen.2021.747859 .
41 SU W Y, MINNIS P, LIANG L S, et al. Determining the daytime Earth radiative flux from National Institute of Standards and Technology Advanced Radiometer (NISTAR) measurements[J]. Atmospheric Measurement Techniques202013(2): 429-443.
42 SU W Y, LIANG L S, DOELLING D R, et al. Determining the shortwave radiative flux from Earth polychromatic imaging camera[J]. Journal of Geophysical Research: Atmospheres2018123(20): 11 479-11 491.
43 TIAN Q Y, LIU Q, GUANG J, et al. The estimation of surface albedo from DSCOVR EPIC[J]. Remote Sensing202012(11). DOI: 10.3390/rs12111897 .
44 PENTTILÄ A, MUINONEN K, IHALAINEN O, et al. Temporal variation of the shortwave spherical albedo of the Earth[J]. Frontiers in Remote Sensing2022, 3. DOI: 10.3389/frsen.2022.790723 .
45 CARLSON B E, LACIS A A, RUSSELL G L, et al. Unique observational constraints on the seasonal and longitudinal variability of the Earth’s planetary albedo and cloud distribution inferred from EPIC measurements[J]. Frontiers in Remote Sensing2022, 2. DOI: 10.3389/frsen.2021.788525 .
46 MARSHAK A, KNYAZIKHIN Y. The spectral invariant approximation within canopy radiative transfer to support the use of the EPIC/DSCOVR oxygen B-band for monitoring vegetation[J]. Journal of Quantitative Spectroscopy and Radiative Transfer2017191: 7-12.
47 HOLDAWAY D, YANG Y K. Study of the effect of temporal sampling frequency on DSCOVR observations using the GEOS-5 nature run results (part I): Earth’s radiation budget[J]. Remote Sensing20168(2). DOI: 10.3390/rs8020098 .
48 DELGADO-BONAL A, MARSHAK A, YANG Y, et al. Cloud height daytime variability from DSCOVR/EPIC and GOES-R/ABI observations[J]. Frontiers in Remote Sensing2022, 3. DOI: 10.3389/frsen.2022.780243 .
49 DELGADO-BONAL A, MARSHAK A, YANG Y, et al. Global daytime variability of clouds from DSCOVR/EPIC observations[J]. Geophysical Research Letters202148(4). DOI: 10.1029/2020GL091511 .
50 XU X G, WANG J, WANG Y, et al. Detecting layer height of smoke aerosols over vegetated land and water surfaces via oxygen absorption bands: hourly results from EPIC/DSCOVR in deep space[J]. Atmospheric Measurement Techniques201912(6): 3 269-3 288.
51 XU X G, WANG J, WANG Y, et al. Passive remote sensing of altitude and optical depth of dust plumes using the oxygen A and B bands: first results from EPIC/DSCOVR at Lagrange-1 point[J]. Geophysical Research Letters201744(14): 7 544-7 554.
52 GUI L, TAO M H, XU L N, et al. Performance of DSCOVR/EPIC diurnal aerosol products over China: ground validation and intercomparison[J]. Atmospheric Research2024, 301. DOI: 10.1016/j.atmosres.2024.107268 .
53 FISHER B L, KROTKOV N A, BHARTIA P K, et al. A new discrete wavelength backscattered ultraviolet algorithm for consistent volcanic SO2 retrievals from multiple satellite missions[J]. Atmospheric Measurement Techniques201912(9): 5 137-5 153.
54 SUN J, VEEFKIND P, NANDA S, et al. The role of aerosol layer height in quantifying aerosol absorption from ultraviolet satellite observations[J]. Atmospheric Measurement Techniques201912(12): 6 319-6 340.
55 TORRES O, BHARTIA P K, TAHA G, et al. Stratospheric injection of massive smoke plume from Canadian boreal fires in 2017 as seen by DSCOVR-EPIC, CALIOP, and OMPS-LP observations[J]. Journal of Geophysical Research: Atmospheres2020125(10). DOI: 10.1029/2020JD032579 .
56 LU Z D, WANG J, XU X G, et al. Hourly mapping of the layer height of thick smoke plumes over the western U.S. in 2020 severe fire season[J]. Frontiers in Remote Sensing2021, 2. DOI: 10.3389/frsen.2021.766628 .
57 YANG Y K, MEYER K, WIND G, et al. Cloud products from the Earth Polychromatic Imaging Camera (EPIC): algorithms and initial evaluation[J]. Atmospheric Measurement Techniques201912(3): 2 019-2 031.
58 MEYER K, YANG Y K, PLATNICK S. Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC)[J]. Atmospheric Measurement Techniques20169(4): 1 785-1 797.
59 VÍCTOR M G, SASI S, EFREMENKO D S, et al. Linearized radiative transfer models for retrieval of cloud parameters from EPIC/DSCOVR measurements[J]. Journal of Quantitative Spectroscopy and Radiative Transfer2018213: 241-251.
60 DAVIS A B, FERLAY N, LIBOIS Q, et al. Cloud information content in EPIC/DSCOVR’s oxygen A- and B-band channels: a physics-based approach[J]. Journal of Quantitative Spectroscopy and Radiative Transfer2018220: 84-96.
61 YIN B S, MIN Q L, MORGAN E, et al. Cloud-top pressure retrieval with DSCOVR EPIC oxygen A- and B-band observations[J]. Atmospheric Measurement Techniques202013(10): 5 259-5 275.
62 ZHOU Y P, YANG Y K, GAO M, et al. Cloud detection over snow and ice with oxygen A- and B-band observations from the Earth Polychromatic Imaging Camera (EPIC)[J]. Atmospheric Measurement Techniques202013(3): 1 575-1 591.
63 ZHOU Y P, YANG Y K, ZHAI P W, et al. Cloud detection over sunglint regions with observations from the Earth polychromatic imaging camera[J]. Frontiers in Remote Sensing2021, 2. DOI: 10.3389/frsen.2021.690010 .
64 GAO M, ZHAI P W, YANG Y K, et al. Cloud remote sensing with EPIC/DSCOVR observations: a sensitivity study with radiative transfer simulations[J]. Journal of Quantitative Spectroscopy and Radiative Transfer2019230: 56-60.
65 HERMAN J, CEDE A, HUANG L, et al. Global distribution and 14-year changes in erythemal irradiance, UV atmospheric transmission, and total column ozone for 2005-2018 estimated from OMI and EPIC observations[J]. Atmospheric Chemistry and Physics202020(14): 8 351-8 380.
66 YANG K, LIU X. Ozone profile climatology for remote sensing retrieval algorithms[J]. Atmospheric Measurement Techniques201912(9): 4 745-4 778.
67 HUANG X Z, YANG K. Algorithm theoretical basis for ozone and sulfur dioxide retrievals from DSCOVR EPIC[J]. Atmospheric Measurement Techniques202215(20): 5 877-5 915.
68 KRAMAROVA N A, ZIEMKE J R, HUANG L K, et al. Evaluation of version 3 total and tropospheric ozone columns from Earth polychromatic imaging camera on deep space climate observatory for studying regional scale ozone variations[J]. Frontiers in Remote Sensing2021, 2. DOI: 10.3389/frsen.2021.734071 .
69 YANG B, KNYAZIKHIN Y, MÕTTUS M, et al. Estimation of leaf area index and its sunlit portion from DSCOVR EPIC data: theoretical basis[J]. Remote Sensing of Environment2017198: 69-84.
70 PISEK J, ARNDT S K, ERB A, et al. Exploring the potential of DSCOVR EPIC data to retrieve clumping index in Australian terrestrial ecosystem research network observing sites[J]. Frontiers in Remote Sensing2021, 2. DOI: 10.3389/frsen.2021.652436 .
71 SONG W J, MU X H, MCVICAR T R, et al. Global quasi-daily fractional vegetation cover estimated from the DSCOVR EPIC directional hotspot dataset[J]. Remote Sensing of Environment2022, 269. DOI: 10.1016/j.rse.2021.112835 .
72 QIN W H, GOEL N S, WANG B Q. The hotspot effect in heterogeneous vegetation canopies and performances of various hotspot models[J]. Remote Sensing Reviews199614(4): 283-332.
73 KNYAZIKHIN Y, MYNENI R B. DSCOVR EPIC vegetation Earth system data record: science data product guide version 2[R]. USA: NASA Langley ASDC, 2021.
74 KNYAZIKHIN Y, SONG W J, YANG B, et al. DSCOVR EPIC vegetation Earth system data record: science data product guide maturity level: provisional[R]. USA: NASA Langley ASDC, 2018.
75 SMOLANDER S, STENBERG P. A method to account for shoot scale clumping in coniferous canopy reflectance models[J]. Remote Sensing of Environment200388(4): 363-373.
76 SMOLANDER S, STENBERG P. Simple parameterizations of the radiation budget of uniform broadleaved and coniferous canopies[J]. Remote Sensing of Environment200594(3): 355-363.
77 BONAN G B, LEVIS S, SITCH S, et al. A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics[J]. Global Change Biology20039(11): 1 543-1 566.
78 DAI Y J, DICKINSON R E, WANG Y P. A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance[J]. Journal of Climate200417(12): 2 281-2 299.
79 MERCADO L M, BELLOUIN N, SITCH S, et al. Impact of changes in diffuse radiation on the global land carbon sink[J]. Nature2009458: 1 014-1 017.
80 HE M Z, JU W M, ZHOU Y L, et al. Development of a two-leaf light use efficiency model for improving the calculation of terrestrial gross primary productivity[J]. Agricultural and Forest Meteorology2013173: 28-39.
81 KNYAZIKHIN Y, SCHULL M A, STENBERG P, et al. Hyperspectral remote sensing of foliar nitrogen content[J]. Proceedings of the National Academy of Sciences of the United States of America2013110(3): E185-E192.
82 STENBERG P, MÕTTUS M, RAUTIAINEN M. Photon recollision probability in modelling the radiation regime of canopies: a review[J]. Remote Sensing of Environment2016183: 98-108.
83 LEWIS P, DISNEY M. Spectral invariants and scattering across multiple scales from within-leaf to canopy[J]. Remote Sensing of Environment2007109(2): 196-206.
84 SUN Y H, KNYAZIKHIN Y, SHE X J, et al. Seasonal and long-term variations in leaf area of Congolese rainforest[J]. Remote Sensing of Environment2022, 268. DOI: 10.1016/j.rse.2021.112762 .
85 WEBER M, HAO D L, ASRAR G R, et al. Exploring the use of DSCOVR/EPIC satellite observations to monitor vegetation phenology[J]. Remote Sensing202012(15). DOI: 10.3390/rs12152384 .
86 ZHANG Z Y, ZHANG Y G, ZHANG Y, et al. The potential of satellite FPAR product for GPP estimation: an indirect evaluation using solar-induced chlorophyll fluorescence[J]. Remote Sensing of Environment2020, 240. DOI: 10.1016/j.rse.2020.111686 .
87 PISEK J, ODERA C A, KAHA M, et al. First validation of Earth Reflector Type Index (p) parameter from DSCOVR EPIC VESDR data product using terrestrial ecosystem research network observing sites in Australia[J]. Remote Sensing of Environment2023, 288. DOI: 10.1016/j.rse.2023.113511 .
88 CARN S A, KROTKOV N A, FISHER B L, et al. First observations of volcanic eruption clouds from the L1 Earth-Sun Lagrange point by DSCOVR/EPIC[J]. Geophysical Research Letters201845(20): 11 456-11 464.
89 CARN S A, CLARISSE L, PRATA A J. Multi-decadal satellite measurements of global volcanic degassing[J]. Journal of Volcanology and Geothermal Research2016311: 99-134.
90 LU Z D, WANG J, CHEN X, et al. First mapping of monthly and diurnal climatology of Saharan dust layer height over the Atlantic Ocean from EPIC/DSCOVR in deep space[J]. Geophysical Research Letters202350(5). DOI: 10.1029/2022GL102552 .
91 VÁRNAI T, KOSTINSKI A B, MARSHAK A. Deep space observations of Sun glints from marine ice clouds[J]. IEEE Geoscience and Remote Sensing Letters202017(5): 735-739.
92 LI J Z, FAN S T, KOPPARLA P, et al. Study of terrestrial glints based on DSCOVR observations[J]. Earth and Space Science20196(1): 166-173.
93 KOSTINSKI A, MARSHAK A, VÁRNAI T. Deep space observations of terrestrial glitter[J]. Earth and Space Science20218(2). DOI: 10.1029/2020EA001521 .
94 VÁRNAI T, MARSHAK A, KOSTINSKI A B. Deep space observations of cloud glints: spectral and seasonal dependence[J]. IEEE Geoscience and Remote Sensing Letters2020, 19. DOI: 10.1109/LGRS.2020.3040144 .
95 VÁRNAI T, MARSHAK A, KOSTINSKI A. Operational detection of Sun glints in DSCOVR EPIC images[J]. Frontiers in Remote Sensing2021, 2. DOI: 10.3389/frsen.2021.777806 .
96 HERMAN J, WEN G Y, MARSHAK A, et al. Reduction in 317-780 nm radiance reflected from the sunlit Earth during the eclipse of 21 August 2017[J]. Atmospheric Measurement Techniques201811(7): 4 373-4 388.
97 WEN G Y, MARSHAK A, HERMAN J, et al. Reduction of spectral radiance reflectance during the annular solar eclipse of 21 June 2020 observed by EPIC[J]. Frontiers in Remote Sensing2022, 3. DOI: 10.3389/frsen.2022.777314 .
98 WEN G Y, MARSHAK A, TSAY S C, et al. Changes in the surface broadband shortwave radiation budget during the 2017 eclipse[J]. Atmospheric Chemistry and Physics202020(17): 10 477-10 491.
99 ALBERS S, SALEEBY S M, KREIDENWEIS S, et al. A fast visible-wavelength 3D radiative transfer model for numerical weather prediction visualization and forward modeling[J]. Atmospheric Measurement Techniques202013(6): 3 235-3 261.
100 LOPEZ P. Forecasting the past: views of Earth from the Moon and beyond[J]. Bulletin of the American Meteorological Society101(7): E1190-E1200.
101 CARLSON B, LACIS A, COLOSE C, et al. Spectral signature of the biosphere: NISTAR finds it in our solar system from the Lagrangian L-1 point[J]. Geophysical Research Letters201946(17/18): 10 679-10 686.
102 LACIS A A, CARLSON B E, RUSSELL G L, et al. Unique NISTAR-based climate GCM diagnostics of the Earth’s planetary albedo and spectral absorption through longitudinal data slicing[J]. Frontiers in Remote Sensing2022, 3. DOI: 10.3389/frsen.2022.766917 .
103 YANG W D, MARSHAK A, VÁRNAI T, et al. EPIC spectral observations of variability in Earth’s global reflectance[J]. Remote Sensing201810(2). DOI: 10.3390/rs10020254 .
104 WEN G Y, MARSHAK A, SONG W J, et al. A relationship between blue and near-IR global spectral reflectance and the response of global average reflectance to change in cloud cover observed from EPIC[J]. Earth and Space Science20196(8): 1 416-1 429.
105 JIANG J H, ZHAI A J, HERMAN J, et al. Using deep space climate observatory measurements to study the Earth as an exoplanet[J]. The Astronomical Journal2018156(1). DOI: 10.3847/1538-3881/aac6e .
106 GU L X, ZENG Z C, FAN S T, et al. Earth as a proxy exoplanet: simulating DSCOVR/EPIC observations using the Earth spectrum simulator[J]. The Astronomical Journal2022163(6). DOI: 10.3847/1538-3881/ac5e2e .
107 GU L X, FAN S T, LI J Z, et al. Earth as a proxy exoplanet: deconstructing and reconstructing spectrophotometric light curves[J]. The Astronomical Journal2021161(3). DOI: 10.3847/1538-3881/abd54a .
108 AIZAWA M, KAWAHARA H, FAN S T. Global mapping of an exo-Earth using sparse modeling[J]. The Astrophysical Journal2020896(1). DOI: 10.3847/1538-4357/ab8d30 .
109 FAN S T, LI C, LI J Z, et al. Earth as an exoplanet: a two-dimensional alien map[J]. The Astrophysical Journal Letters2019882(1). DOI: 10.3847/2041-8213/ab3a49 .
110 KAWAHARA H. Global mapping of the surface composition on an exo-Earth using color variability[J]. The Astrophysical Journal2020894(1). DOI: 10.3847/1538-4357/ab87a1 .
111 KAWAHARA H, MASUDA K. Bayesian dynamic mapping of an exo-Earth from photometric variability[J]. The Astrophysical Journal2020900(1). DOI: 10.3847/1538-4357/aba95e .
112 TEINTURIER L, VIEIRA N, JACQUET E, et al. Mapping the surface of partially cloudy exoplanets is hard[J]. Monthly Notices of the Royal Astronomical Society2022511(1): 440-447.
113 DAVIS A B, YANG Y K, MARSHAK A. EPIC/DSCOVR as a pathfinder in cloud remote sensing using differential oxygen absorption spectroscopy[J]. Frontiers in Remote Sensing2022, 3. DOI: 10.3389/frsen.2022.796273 .
114 GORKAVYI N, KROTKOV N, MARSHAK A. Earth observations from the Moon’s surface: dependence on lunar libration[J]. Atmospheric Measurement Techniques202316(6): 1 527-1 537.
115 GORKAVYI N, CARN S, DELAND M, et al. Earth imaging from the surface of the Moon with a DSCOVR/EPIC-type camera[J]. Frontiers in Remote Sensing2021, 2. DOI: 10.3389/frsen.2021.724074 .
116 SHANG H L, DING Y X, GUO H D, et al. Simulation of Earth’s outward radiative flux and its radiance in Moon-based view[J]. Remote Sensing202113(13). DOI: 10.3390/rs13132535 .
[1] 范亚伟, 杜鹤强, 杨胜飞, 颜长珍, 刘秀帆, 刘欣雷. 沙尘气溶胶数值模式与资料同化的研究进展、问题与展望[J]. 地球科学进展, 2024, 39(8): 813-822.
[2] 么嘉棋, 常奂宇, 王梦然, 陈敏, 莫凡, 徐南, 温振, 曹永强. 新一代水文水资源监测卫星SWOT数据特征、应用与展望[J]. 地球科学进展, 2024, 39(4): 374-390.
[3] 王思杰, 林金泰, 孔浩, 张宇航, 徐呈浩, 李春锦, 任芳萱. 基于卫星遥感的氮氧化物排放快速反演方法比较[J]. 地球科学进展, 2024, 39(3): 269-278.
[4] 张斌, 卫丹琪, 丁乙, 姜洪涛, 尹剑. 基于夜间灯光和土地利用的珠江流域城市碳排放估算及其时空动态特征研究[J]. 地球科学进展, 2024, 39(3): 317-328.
[5] 许健, 张卓, 饶兰兰, 王雅鹏, 闫欢欢, 胡斯勒图, 石崇, 刘嵩, 格根塔娜, 王文煜, 石恩涛, 姚舜, 朱军, 王咏梅, 董晓龙, 施建成. 对流层臭氧卫星遥感反演综述[J]. 地球科学进展, 2024, 39(1): 56-70.
[6] 段梦伟, 李如仁, 刘东, 蒋昕桐, 仇志强, 李柯妤. 河流水体悬浮泥沙遥感研究进展与展望[J]. 地球科学进展, 2023, 38(7): 675-687.
[7] 黄春林, 侯金亮, 李维德, 顾娟, 张莹, 韩伟孝, 王维真, 温小虎, 朱高峰. 深度学习融合遥感大数据的陆地水文数据同化:进展与关键科学问题[J]. 地球科学进展, 2023, 38(5): 441-452.
[8] 农子琪, 黄鹏宇, 徐寒列, 胡秀清, 闵敏. 夜间星载微光成像仪在大气、海洋和环境领域的应用研究进展[J]. 地球科学进展, 2023, 38(5): 533-550.
[9] 王耀杰, 仲雷, 陈明星, 袁仁民, 吴晓庆, 邱学兴, 葛楠, 程美琳, 栗培真. 基于Landsat 8 OLI/TIRS的合肥市人为热通量遥感估算研究[J]. 地球科学进展, 2022, 37(7): 756-770.
[10] 屈猛, 赵羲, 庞小平, 雷瑞波. 北极冰间水道区域的物理过程和遥感观测研究进展[J]. 地球科学进展, 2022, 37(4): 382-391.
[11] 李一民, 谭振宇, 杨辰, 何峰, 孟迪, 罗菊花, 段洪涛. 基于多源卫星的滇池藻华提取机器学习算法研究[J]. 地球科学进展, 2022, 37(11): 1141-1156.
[12] 王振峰, 蒋宗立, 刘时银, 马致远, 张震. 中帕米尔甘多冰川跃动遥感监测[J]. 地球科学进展, 2022, 37(11): 1181-1193.
[13] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[14] 方红亮, 车涛, 晋锐, 李爱农, 李新, 李增元, 刘绍民, 马明国, 肖青, 张永光. 建设中国陆表遥感产品真实性检验基准台站网络的思考[J]. 地球科学进展, 2021, 36(12): 1215-1223.
[15] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
阅读次数
全文


摘要