地球科学进展 ›› 2024, Vol. 39 ›› Issue (9): 877 -888. doi: 10.11867/j.issn.1001-8166.2024.065

综述与评述    下一篇

气候和下垫面变化下骤旱形成演变机制研究进展
袁星 1( ), 周诗玙 2 , 3, 马凤 2 , 3, 王钰淼 2 , 3, 郝奕 2 , 3, 梁妙玲 4, 陈李楠 2 , 3   
  1. 1.中国科学院大气物理研究所 地球系统数值模拟与应用重点实验室,北京 100029
    2.南京信息工程大学 水文与水资源工程学院,江苏 南京 210044
    3.南京信息工程大学 水利部水文气象灾害机理与预警重点 实验室(筹),江苏 南京 210044
    4.中国气象局地球系统数值预报中心,北京 100081
  • 收稿日期:2024-06-19 修回日期:2024-08-04 出版日期:2024-09-10
  • 基金资助:
    国家自然科学基金项目(42330604)

Review on the Formation and Evolution Mechanisms of Flash Droughts Under Climate and Land Cover Change

Xing YUAN 1( ), Shiyu ZHOU 2 , 3, Feng MA 2 , 3, Yumiao WANG 2 , 3, Yi HAO 2 , 3, Miaoling LIANG 4, Linan CHEN 2 , 3   

  1. 1.Key Laboratory of Earth System Numerical Modeling and Application, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
    2.School of Hydrology and Water Resources, Nanjing University of Information Science & Technology, Nanjing 210044, China
    3.Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources, Nanjing University of Information Science & Technology, Nanjing 210044, China
    4.Earth System Modeling and Prediction Centre (CEMC), China Meteorological Administration, Beijing 100081, China
  • Received:2024-06-19 Revised:2024-08-04 Online:2024-09-10 Published:2024-11-22
  • About author:YUAN Xing, research areas include global change and extreme events, land surface-hydrology coupled modeling, and hydroclimate prediction. E-mail: xyuan2@mail.iap.ac.cn
  • Supported by:
    the National Natural Science Foundation of China(42330604)

近年来以快速暴发为主要特征的骤发干旱(骤旱)在全球范围内频繁发生,给社会经济和生态环境造成了严重影响。通过回顾骤旱形成与演变机制的研究进展,发现骤旱形成的主要原因是高强度降水亏缺,而蒸散发增加使得干旱暴发加速,进而触发骤旱。这些气象要素异常与海温异常模态(如厄尔尼诺—南方涛动、北大西洋三极子、印度洋偶极子等)及其相关的大气环流异常密切相关,同时局地和非局地陆面异常在骤旱暴发与维持过程中的作用也不容忽视。加之气候和下垫面变化协同影响海—陆—气耦合过程,使得骤旱发生发展过程更为复杂,演变趋势存在较大不确定性。因此,未来研究亟须在骤旱暴发与维持的大尺度环流背景以及关键陆面和海洋信号的影响、骤旱—植被相互作用、骤旱演变对环境变化的响应机制等方面取得突破。

In recent years, flash droughts with rapid onset have occurred frequently worldwide, severely impacting society, economy, and the ecological environment. Major progress in the formation and evolution mechanisms of flash droughts has been reviewed. Concludingly, intense precipitation deficits cause flash droughts, whereas increased evapotranspiration accelerates drought onset, further triggering flash droughts. These abnormal meteorological factors are closely associated with sea surface temperature anomalies (such as the El Ni?o-Southern Oscillation, North Atlantic Tripole, and Indian Ocean Dipole) and their related atmospheric circulation anomalies. In addition, the roles of local and non-local land surface anomalies in the onset and maintenance of flash droughts are important. Moreover, the synergistic effects of climate and land-use change on land-atmosphere-ocean coupling processes make the development of flash droughts more complex and add considerable uncertainty to evolutionary trends. Therefore, future research needs to achieve breakthroughs in several areas, including the large-scale atmospheric circulation background of flash drought onset and maintenance, modulating roles of key land and ocean signals, flash drought-vegetation interactions, and response mechanisms of the variation of flash droughts to climate warming and land cover changes.

中图分类号: 

图1 陆—气耦合过程影响干旱的示意图
(a)局地陆—气耦合过程的影响;(b)非局地陆—气耦合过程的影响
Fig. 1 Schematic diagram of the impacts of land-atmosphere coupling process on drought
(a) The impact of local land-atmosphere coupling process;(b) The impact of non-local land-atmosphere coupling process
图2 骤旱研究综合分析框架
Fig. 2 Comprehensive analytical framework for flash drought research
图3 海—陆—气耦合过程对骤旱暴发的影响机制示意图
Fig. 3 Schematic diagram of the impacts of land-sea-atmosphere coupling processes on the flash drought
图4 气候增暖及下垫面变化对骤旱演变的影响机制示意图
主要影响机制包括灰色下降箭头表示增温通过改变降水变率影响干旱过程;红色下降箭头表示增温引起大气蒸发需求改变影响干旱过程;灰色上升箭头表示CO 2施肥效应;右侧浅蓝色上升和下降箭头表示灌溉对干旱的影响
Fig. 4 Schematic diagram of the impact of climate warming and land use change on flash drought change
The primary mechanisms of influences including gray downward arrows that represent the impact of warming on drought processes through alterations in precipitation variability; Red downward arrows that denote the effects of warming on drought by changing atmospheric evaporative demand; Gray upward arrows that illustrate the CO 2 fertilization effect; and light blue upward and downward arrows on the right that indicate the impact of irrigation on drought
1 YUAN Xing, WANG Yumiao, ZHANG Miao, et al. A few thoughts on the study of flash drought[J]. Transactions of Atmospheric Sciences, 2020, 43(6): 1 086-1 095.
袁星, 王钰淼, 张苗, 等. 关于骤旱研究的一些思考[J]. 大气科学学报, 2020, 43(6): 1 086-1 095.
2 YUAN X, MA Z G, PAN M, et al. Microwave remote sensing of short-term droughts during crop growing seasons[J]. Geophysical Research Letters, 2015, 42(11): 4 394-4 401.
3 OTKIN J A, SVOBODA M, HUNT E D, et al. Flash droughts: a review and assessment of the challenges imposed by rapid-onset droughts in the United States[J]. Bulletin of the American Meteorological Society, 2018, 99(5): 911-919.
4 ZHANG Qiang. Scientific interpretation of severe drought in the Yangtze River Basin[J]. Journal of Arid Meteorology, 2022, 40(4): 545-548.
张强. 科学解读 “2022年长江流域重大干旱”[J]. 干旱气象, 2022, 40(4): 545-548.
5 YUAN Xing, WANG Yumiao, ZHOU Shiyu, et al. Multiscale causes of the 2022 Yangtze mega-flash drought under climate change[J]. Science China Earth Sciences, 2024,54(8): 2 690-2 702.
袁星, 王钰淼, 周诗玙,等. 气候变化下2022年长江特大骤旱的多尺度成因分析[J]. 中国科学: 地球科学, 2024, 54(8): 2 690-2 702.
6 PENDERGRASS A G, MEEHL G A, PULWARTY R, et al. Flash droughts present a new challenge for subseasonal-to-seasonal prediction[J]. Nature Climate Change, 2020, 10: 191-199.
7 SVOBODA M, LECOMTE D, HAYES M, et al. The drought monitor[J]. Bulletin of the American Meteorological Society, 2002, 83(8): 1 181-1 190.
8 MO K C, LETTENMAIER D P. Heat wave flash droughts in decline[J]. Geophysical Research Letters, 2015, 42(8): 2 823-2 829.
9 YUAN X, WANG L Y, WU P L, et al. Anthropogenic shift towards higher risk of flash drought over China[J]. Nature Communications, 2019, 10. DOI: 10.1038/s41467-019-12692-7 .
10 CHRISTIAN J I, BASARA J B, HUNT E D, et al. Global distribution, trends, and drivers of flash drought occurrence[J]. Nature Communications, 2021, 12. DOI: 10.1038/s41467-021-26692-z .
11 FORD T W, LABOSIER C F. Meteorological conditions associated with the onset of flash drought in the eastern United States[J]. Agricultural and Forest Meteorology, 2017, 247: 414-423.
12 WANG L Y, YUAN X, XIE Z H, et al. Increasing flash droughts over China during the recent global warming hiatus[J]. Scientific Reports, 2016, 6. DOI: 10.1038/srep30571 .
13 FAN Ke. Atmospheric circulation anomalies in the Southern Hemisphere and summer rainfall over Yangtze River Valley[J]. Chinese Journal of Geophysics, 2006, 49(3): 672-679.
范可. 南半球环流异常与长江中下游夏季旱涝的关系[J]. 地球物理学报, 2006, 49(3): 672-679.
14 HOERLING M, KUMAR A. The perfect ocean for drought[J]. Science, 2003, 299(5 607): 691-694.
15 SCHUBERT S D, STEWART R E, WANG H L, et al. Global meteorological drought: a synthesis of current understanding with a focus on SST drivers of precipitation deficits[J]. Journal of Climate, 2016, 29(11): 3 989-4 019.
16 LI Yiping, ZHANG Jinyu, YUE Ping, et al. Study on characteristics of severe drought event over Yangtze River Basin in summer of 2022 and its causes[J]. Journal of Arid Meteorology, 2022, 40(5): 733-747.
李忆平, 张金玉, 岳平, 等. 2022年夏季长江流域重大干旱特征及其成因研究[J]. 干旱气象, 2022, 40(5): 733-747.
17 YANG Haijun. Assessing the meridional atmosphere and ocean energy transport in a varying climate[J]. Chinese Science Bulletin, 2013, 58(18): 1 706-1 710.
杨海军. 估计变动气候中大气和海洋经向热量输送[J]. 科学通报, 2013, 58(18): 1 706-1 710.
18 CHENG L J, von SCHUCKMANN K, ABRAHAM J P, et al. Past and future ocean warming[J]. Nature Reviews Earth & Environment, 2022, 3: 776-794.
19 SENEVIRATNE S I, CORTI T, DAVIN E L, et al. Investigating soil moisture-climate interactions in a changing climate: a review[J]. Earth-Science Reviews, 2010, 99(3/4): 125-161.
20 KOSTER R D, SCHUBERT S D, WANG H, et al. Flash drought as captured by reanalysis data: disentangling the contributions of precipitation deficit and excess evapotranspiration[J]. Journal of Hydrometeorology, 2019, 20(6): 1 241-1 258.
21 ZHOU S Y, YUAN X. Acceleration of the onset speeds of heat waves over East China by upwind flash droughts[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(10). DOI:10.1029/2022JD038072 .
22 ULLAH W, ZHU C X, WANG G J, et al. Soil moisture-constrained East Asian Monsoon meridional patterns over China from observations[J]. NPJ Climate and Atmospheric Science, 2023, 6. DOI:10.1038/s41612-023-00331-4 .
23 SCHUMACHER D L, KEUNE J, DIRMEYER P, et al. Drought self-propagation in drylands due to land-atmosphere feedbacks[J]. Nature Geoscience, 2022, 15: 262-268.
24 ZENG D W, YUAN X, ROUNDY J K. Effect of teleconnected land-atmosphere coupling on northeast China persistent drought in spring-summer of 2017[J]. Journal of Climate, 2019, 32(21): 7 403-7 420.
25 ZHU S G, QI Y J, CHEN H S, et al. Distinct impacts of spring soil moisture over the Indo-China Peninsula on summer precipitation in the Yangtze River Basin under different SST backgrounds[J]. Climate Dynamics, 2021, 56(5): 1 895-1 918.
26 REN Fumin, YUAN Yuan, SUN Chenghu, et al. Review of progress of ENSO studies in the past three decades[J]. Advances in Meteorological Science and Technology, 2012, 2(3): 17-24.
任福民, 袁媛, 孙丞虎, 等. 近30年ENSO研究进展回顾[J]. 气象科技进展, 2012, 2(3): 17-24.
27 ZHANG Qiang, YAO Yubi, LI Yaohui, et al. Progress and prospect on the study of causes and variation regularity of droughts in China[J]. Acta Meteorologica Sinica, 2020, 78(3): 500-521.
张强, 姚玉璧, 李耀辉, 等. 中国干旱事件成因和变化规律的研究进展与展望[J]. 气象学报, 2020, 78(3): 500-521.
28 SENEVIRATNE S I, LÜTHI D, LITSCHI M, et al. Land-atmosphere coupling and climate change in Europe[J]. Nature, 2006, 443: 205-209.
29 DIRMEYER P A, BALSAMO G, BLYTH E M, et al. Land-atmosphere interactions exacerbated the drought and heatwave over northern Europe during summer 2018[J]. AGU Advances, 2021, 2(2). DOI:10.1029/2020AV000283 .
30 ZHOU S, WILLIAMS A P, BERG A M, et al. Land-atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(38): 18 848-18 853.
31 WANG Y M, YUAN X. Land-atmosphere coupling speeds up flash drought onset[J]. The Science of the Total Environment, 2022, 851(Part 1). DOI: 10.1016/j.scitotenv.2022.158109 .
32 REDMOND K. The depiction of drought: a commentary[J]. Bulletin of the American Meteorological Society, 2002, 83(8): 1 143-1 147.
33 MA Yaoming, HU Zeyong, TIAN Lide, et al. Study progresses of the Tibet Plateau climate system change and mechanism of its impact on East Asia[J]. Advances in Earth Science, 2014, 29(2): 207-215.
马耀明, 胡泽勇, 田立德, 等. 青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J]. 地球科学进展, 2014, 29(2): 207-215.
34 WANG Chenpeng, HUANG Mengtian, ZHAI Panmao. New progress and enlightenment on different types of drought changes from IPCC sixth assessment report[J]. Acta Meteorologica Sinica, 2022, 80(1): 168-175.
王晨鹏,黄萌田, 翟盘茂. IPCC AR6报告关于不同类型干旱变化研究的新进展与启示[J]. 气象学报, 2022, 80(1): 168-175.
35 QING Y M, WANG S, ANCELL B C, et al. Accelerating flash droughts induced by the joint influence of soil moisture depletion and atmospheric aridity[J]. Nature Communications, 2022, 13. DOI: 10.1038/s41467-022-28752-4 .
36 YUAN X, WANG Y M, JI P, et al. A global transition to flash droughts under climate change[J]. Science, 2023, 380(6 641): 187-191.
37 YIN Han, LI Yaohui. Summary of advance on drought study in southwest China[J]. Journal of Arid Meteorology, 2013, 31(1): 182-193.
尹晗,李耀辉. 我国西南干旱研究最新进展综述[J]. 干旱气象, 2013, 31(1): 182-193.
38 ZENG Yujin, XIE Zhenghui. Projection and evaluation of the land-atmosphere coupling strength over China by CMIP5 models[J]. Climatic and Environmental Research, 2015, 20(3): 337-346.
曾毓金, 谢正辉. 基于CMIP5模拟的中国区域陆气耦合强度评估及未来情景预估[J]. 气候与环境研究, 2015, 20(3): 337-346.
39 WANG L N, LYU K W, ZHUANG W, et al. Recent shift in the warming of the southern oceans modulated by decadal climate variability[J]. Geophysical Research Letters, 2021, 48(3). DOI:10.1029/2020GL090889 .
40 ZHAO Qianqian, ZHANG Jingpeng, ZHAO Tianbao, et al. Vegetation changes and its response to climate change in China since 2000[J]. Plateau Meteorology, 2021, 40(2): 292-301.
赵倩倩, 张京朋, 赵天保, 等. 2000年以来中国区域植被变化及其对气候变化的响应[J]. 高原气象, 2021, 40(2): 292-301.
41 ZHANG Xuezhen, ZHU Jinfeng. Variations in fractional vegetation coverage over eastern China during 1982-2006[J]. Climatic and Environmental Research, 2013, 18(3): 365-374.
张学珍, 朱金峰. 1982—2006年中国东部植被覆盖度的变化[J]. 气候与环境研究, 2013, 18(3): 365-374.
42 HIRSCH A L, PITMAN A J, KALA J. The role of land cover change in modulating the soil moisture-temperature land-atmosphere coupling strength over Australia[J]. Geophysical Research Letters, 2014, 41(16): 5 883-5 890.
43 YU L X, LIU Y, LIU T X, et al. Impact of recent vegetation greening on temperature and precipitation over China[J]. Agricultural and Forest Meteorology, 2020, 295. DOI:10.1016/j.agrformet.2020.108197 .
44 ZHAO Jingchuan, LIU Shuhua. Research on the impact of vegetation change on land-atmosphere coupling strength in northwest China[J]. Chinese Journal of Geophysics, 2015, 58(1): 47-62.
赵靖川, 刘树华. 植被变化对西北地区陆气耦合强度的影响[J]. 地球物理学报, 2015, 58(1): 47-62.
45 CHRISTIAN J I, HOBBINS M, HOELL A, et al. Flash drought: a state of the science review[J]. WIREs Water, 2024, 11(3). DOI: 10.1002/wat2.1714 .
46 WU Guoxiong, LI Jianping, ZHOU Tianjun, et al. The key region affecting the short-term climate variations in China: the joining area of Asia and Indian-Pacific Ocean[J]. Advances in Earth Science, 2006, 21(11): 1 109-1 118.
吴国雄, 李建平, 周天军, 等. 影响我国短期气候异常的关键区: 亚印太交汇区[J]. 地球科学进展, 2006, 21(11): 1 109-1 118.
47 ZHANG Qiang, LI Dongliang, YAO Yubi, et al. Progress and prospect of the research on drought formation, prediction, and related risk assessment[J]. Acta Meteorologica Sinica, 2024, 82(1): 1-21.
张强, 李栋梁, 姚玉璧, 等. 干旱形成机制与预测理论方法及其灾害风险特征研究进展与展望[J]. 气象学报, 2024, 82(1): 1-21.
48 LIU Shuyan, RONG Yanshu, Xingyue LÜ, et al. Comparative analysis of drought in China and the United States in 2012[J]. Journal of Arid Meteorology, 2021, 39(5): 717-726.
刘书言, 荣艳淑, 吕星月, 等. 2012年中美两国干旱的对比分析[J]. 干旱气象, 2021, 39(5): 717-726.
49 SUN Bo, WANG Huijun, HUANG Yanyan, et al. Characteristics and causes of the hot-dry climate anomalies in China during summer of 2022[J]. Transactions of Atmospheric Sciences, 2023, 46(1): 1-8.
孙博, 王会军, 黄艳艳, 等. 2022年夏季中国高温干旱气候特征及成因探讨[J]. 大气科学学报, 2023, 46(1): 1-8.
50 HUANG H J, ZHU Z W, LI J. Disentangling the unprecedented Yangtze River Basin extreme high temperatures in summer 2022: combined impacts of the reintensified La Niña and strong positive NAO[J]. Journal of Climate, 2024, 37(3): 927-942.
51 MA F, YUAN X, LI H, et al. Flash drought in the south of Yangtze River and the potential impact of North Atlantic Sea surface temperature[J]. Journal of Geophysical Research: Atmospheres, 2024, 129(5). DOI:10.1029/2023JD039820 .
52 LIANG Y, DU Y. Oceanic impacts on 50-80-day intraseasonal oscillation in the eastern tropical Indian Ocean[J]. Climate Dynamics, 2022, 59(5): 1 283-1 296.
53 WANG Zunya, DING Yihui. Climatic characteristics of rainy seasons in China[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(1): 1-13.
王遵娅, 丁一汇. 中国雨季的气候学特征[J]. 大气科学, 2008, 32(1): 1-13.
54 YUN K S, SEO K H, HA K J. Relationship between ENSO and northward propagating intraseasonal oscillation in the East Asian summer monsoon system[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D14). DOI:10.1029/2008JD009901 .
55 QI L, JI Y, ZHANG W J. Indispensable role of the madden-julian oscillation in the 2019 extreme autumn drought over eastern China[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(6). DOI: 10.1029/2020JD034123 .
56 WANG J Z, WANG C Z. Joint boost to super El Niño from the Indian and Atlantic Oceans[J]. Journal of Climate, 2021, 34(12): 4 937-4 954.
57 HOBBINS M T, WOOD A, MCEVOY D J, et al. The evaporative demand drought index. part I: linking drought evolution to variations in evaporative demand[J]. Journal of Hydrometeorology, 2016, 17(6): 1 745-1 761.
58 OTKIN J A, ANDERSON M C, HAIN C, et al. Examining rapid onset drought development using the thermal infrared-based evaporative stress index[J]. Journal of Hydrometeorology, 2013, 14(4): 1 057-1 074.
59 BASARA J B, CHRISTIAN J I, WAKEFIELD R A, et al. The evolution, propagation, and spread of flash drought in the central United States during 2012[J]. Environmental Research Letters, 2019, 14(8). DOI:10.1088/1748-9326/ab2cc0 .
60 QIAO L, ZUO Z Y, ZHANG R H, et al. Soil moisture-atmosphere coupling accelerates global warming[J]. Nature Communications, 2023, 14. DOI: 10.1038/s41467-023-40641-y .
61 ZHOU Tianjun. The dry-hot feedback between soil moisture and atmosphere and the accelerated global warming[J]. Science China Earth Sciences, 2024, 54(3): 907-908.
周天军. 土壤湿度—大气耦合加速全球变暖进程[J]. 中国科学:地球科学, 2024, 54(3): 907-908.
62 ZHANG R H, ZUO Z Y. Impact of spring soil moisture on surface energy balance and summer monsoon circulation over East Asia and precipitation in East China[J]. Journal of Climate, 2011, 24(13): 3 309-3 322.
63 LI Yaohui, MENG Xianhong, ZHANG Hongsheng, et al. Advances and key scientific issues of land atmosphere coupling between the Tibet Plateau and the northern desert and its impact on northern China drought[J]. Advances in Earth Science, 2021, 36(3): 265-275.
李耀辉, 孟宪红, 张宏升, 等. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
64 LI Dengxuan, WANG Chenghai. The relation between soil moisture over the Tibetan Plateau in spring and summer precipitation in the eastern China[J]. Journal of Glaciology and Geocryology, 2016, 38(1): 89-99.
李登宣, 王澄海. 青藏高原春季土壤湿度与中国东部夏季降水之间的关系[J]. 冰川冻土, 2016, 38(1): 89-99.
65 ZUO Zhiyan, ZHANG Renhe. Relationship between summer precipitation and spring soil moisture in eastern China[J]. Chinese Science Bulletin, 2007, 52(14): 1 722-1 724.
左志燕, 张人禾. 中国东部夏季降水与春季土壤湿度的联系[J]. 科学通报, 2007, 52(14): 1 722-1 724.
66 ZHOU S Y, YUAN X. Upwind droughts enhance half of the heatwaves over North China[J]. Geophysical Research Letters, 2022, 49(2). DOI:10.1029/2021GL096639 .
67 LI Qiaoping, DING Yihui, DONG Wenjie. A numerical study on effects of the soil moisture upon the regional short-term climate[J]. Journal of Applied Meteorological Science, 2007, 18(1): 1-11.
李巧萍, 丁一汇, 董文杰. 土壤湿度异常对区域短期气候影响的数值模拟试验[J]. 应用气象学报, 2007, 18(1): 1-11.
68 ZHOU S Y, LIANG M L, YUAN X. Impact of upwind flash drought on 2022 record-shattering heatwave over East China[J]. Climate Dynamics, 2024. DOI:10.1007/s00382-024-07211-4 .
69 HAN T T, CHEN H P, WANG H J. Recent changes in summer precipitation in northeast China and the background circulation[J]. International Journal of Climatology, 2015, 35(14): 4 210-4 219.
70 ZENG D W, YUAN X. Modeling the influence of upstream land-atmosphere coupling on the 2017 persistent drought over Northeast China[J]. Journal of Climate, 2021. DOI:10.1175/JCLI-D-20-0650.1 .
71 LIANG Lening, CHEN Haishan. Possible linkage between spring soil moisture anomalies over South China and summer rainfall in China[J]. Transactions of Atmospheric Sciences, 2010, 33(5): 536-546.
梁乐宁, 陈海山. 春季华南土壤湿度异常与中国夏季降水的可能联系[J]. 大气科学学报, 2010, 33(5): 536-546.
72 DONG X, ZHOU Y, CHEN H S, et al. Lag impacts of the anomalous July soil moisture over southern China on the August rainfall over the Huang-Huai River Basin[J]. Climate Dynamics, 2022, 58(5): 1 737-1 754.
73 LI H X, CHEN H P, WANG H J, et al. Can Barents Sea ice decline in spring enhance summer hot drought events over northeastern China?[J]. Journal of Climate, 2018, 31(12): 4 705-4 725.
74 TASCHETTO A S, STOJANOVIC M, HOLGATE C M, et al. Changes in moisture sources contributed to the onset and development of the 2017-2019 southeast Australian drought[J]. Weather and Climate Extremes, 2024, 44. DOI:10.1016/j.wace.2024.100672 .
75 MA Zhuguo, FU Congbin. The fact of global drought in the second half of the 20th century and its connection with large-scale background[J]. Science China Earth Sciences, 2007, 37(2): 222-233.
马柱国, 符淙斌. 20世纪下半叶全球干旱化的事实及其与大尺度背景的联系[J]. 中国科学:地球科学, 2007, 37(2): 222-233.
76 HUANG J P, YU H P, GUAN X D, et al. Accelerated dryland expansion under climatechange[J]. Nature Climate Change, 2016, 6: 166-171.
77 TRENBERTH K E, DAI A G, van der SCHRIER G, et al. Global warming and changes in drought[J]. Nature Climate Change, 2014, 4: 17-22.
78 ZHANG W X, FURTADO K, WU P L, et al. Increasing precipitation variability on daily-to-multiyear time scales in a warmer world[J]. Science Advances, 2021, 7(31). DOI: 10.1126/sciadv.abf8021 .
79 YUAN X, WANG L Y, WOOD E F. Anthropogenic intensification of southern African flash droughts as exemplified by the 2015/16 season[J]. Bulletin of the American Meteorological Society, 2018, 99(1): S86-S90.
80 DIRMEYER P A, CASH B A, KINTER J L III, et al. Evidence for enhanced land-atmosphere feedback in a warming climate[J]. Journal of Hydrometeorology, 2012, 13(3): 981-995.
81 HSU H, DIRMEYER P A. Soil moisture-evaporation coupling shifts into new gears under increasing CO2 [J]. Nature Communications, 2023, 14. DOI: 10.1038/s41467-023-36794-5 .
82 BARTUSEK S, KORNHUBER K, TING M F. 2021 North American heatwave amplified by climate change-driven nonlinear interactions[J]. Nature Climate Change, 2022, 12: 1 143-1 150.
83 KORNHUBER K, PETOUKHOV V, PETRI S, et al. Evidence for wave resonance as a key mechanism for generating high-amplitude quasi-stationary waves in boreal summer[J]. Climate Dynamics, 2017, 49(5): 1 961-1 979.
84 FRANCIS J A, VAVRUS S J. Evidence linking Arctic amplification to extreme weather in mid-latitudes[J]. Geophysical Research Letters, 2012, 39(6). DOI: 10.1029/2012GL051000 .
85 JIA Gensuo. New understanding of land-climate interactions from IPCC special report on climate change and land[J]. Climate Change Research, 2020, 16(1): 9-16.
贾根锁. IPCC《气候变化与土地特别报告》对陆气相互作用的新认知[J]. 气候变化研究进展, 2020, 16(1): 9-16.
86 CHEN C, PARK T, WANG X H, et al. China and India lead in greening of the world through land-use management[J]. Nature Sustainability, 2019, 2: 122-129.
87 PIAO Shilong, ZHANG Xianzhou, WANG Tao. Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change[J]. Chinese Science Bulletin, 2019, 64(27): 2 842-2 855.
朴世龙, 张宪洲, 汪涛, 等. 青藏高原生态系统对气候变化的响应及其反馈[J]. 科学通报, 2019, 64(27): 2 842-2 855.
88 ANDERSON C A, VIVONI E R. Impact of land surface states within the flux footprint on daytime land-atmosphere coupling in two semiarid ecosystems of the southwestern U.S[J]. Water Resources Research, 2016, 52(6): 4 785-4 800.
89 ZHAO Lin, CHEN Yuchun, Shihua LÜ, et al. Numerical simulation of Tibetan Plateau underling surface vegetation variation climate effect in summer[J]. Journal of Anhui Agricultural Sciences, 2010, 38(30): 17 067-17 070, 17 084.
赵林, 陈玉春, 吕世华, 等. 青藏高原夏季下垫面植被变化气候效应的数值模拟[J]. 安徽农业科学, 2010, 38(30): 17 067-17 070, 17 084.
90 ANDEREGG W R L, TRUGMAN A T, BOWLING D R, et al. Plant functional traits and climate influence drought intensification and land-atmosphere feedbacks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(28): 14 071-14 076.
91 MENG X H, EVANS J P, MCCABE M F. The impact of observed vegetation changes on land-atmosphere feedbacks during drought[J]. Journal of Hydrometeorology, 2014, 15(2): 759-776.
92 LIU M X, HUANG J Y, SUN A Y, et al. What roles can water-stressed vegetation play in agricultural droughts?[J]. The Science of the Total Environment, 2022, 803. DOI: 10.1016/j.scitotenv.2021.149810 .
93 ZHANG B Q, TIAN L, ZHAO X N, et al. Feedbacks between vegetation restoration and local precipitation over the Loess Plateau in China[J]. Science China Earth Sciences, 2021, 64(6): 920-931.
94 ZHANG Yaocun. Virtual numerical experiments on the climate effects of vegetation type changes over northern China[J]. Journal of Nanjing University (Natural Sciences), 2004, 40(6): 684-691.
张耀存. 我国北方地区植被类型变化气候效应的虚拟数值试验[J]. 南京大学学报(自然科学版), 2004, 40(6): 684-691.
95 ZIPPER S C, KEUNE J, KOLLET S J. Land use change impacts on European heat and drought: remote land-atmosphere feedbacks mitigated locally by shallow groundwater[J]. Environmental Research Letters, 2019, 14(4). DOI: 10.1088/1748-9326/ab0db3 .
96 CUI J P, LIAN X, HUNTINGFORD C, et al. Global water availability boosted by vegetation-driven changes in atmospheric moisture transport[J]. Nature Geoscience, 2022, 15: 982-988.
97 ZHANG M, YUAN X, OTKIN J A, et al. Climate warming outweighs vegetation greening in intensifying flash droughts over China[J]. Environmental Research Letters, 2022, 17(5). DOI:10.1088/1748-9326/ac69fb .
98 MYOUNG B, CHOI Y S, CHOI S J, et al. Impact of vegetation on land-atmosphere coupling strength and its implication for desertification mitigation over East Asia[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D12). DOI: 10.1029/2011JD017143 .
99 WANG Miaomiao, WANG Shaoqiang, CHEN Bin, et al. CO2 fertilization promoting the carbon uptake of global terrestrial ecosystems in 2020-2050[J]. Acta Ecologica Sinica, 2023, 43(6): 2 408-2 418.
王苗苗, 王绍强, 陈斌, 等. 2020—2050年CO2施肥效应促进全球陆地生态系统碳吸收[J]. 生态学报, 2023, 43(6): 2 408-2 418.
100 TIAN Jing. Effects of atmospheric CO2 concentration on vegetation transpiration over China[J]. Advances in Earth Science, 2021, 36(8): 826-835.
田静. 大气CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
101 HE M Z, PIAO S L, HUNTINGFORD C, et al. Amplified warming from physiological responses to carbon dioxide reduces the potential of vegetation for climate change mitigation[J]. Communications Earth & Environment, 2022, 3. DOI: 10.1038/s43247-022-00489-4 .
102 BERG A, FINDELL K, LINTNER B, et al. Land-atmosphere feedbacks amplify aridity increase over land under global warming[J]. Nature Climate Change, 2016, 6: 869-874.
103 KEENAN T F, HOLLINGER D Y, BOHRER G, et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise[J]. Nature, 2013, 499: 324-327.
104 MANKIN J S, SEAGER R, SMERDON J E, et al. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change[J]. Nature Geoscience, 2019, 12: 983-988.
105 ZHANG Y, GENTINE P, LUO X Z, et al. Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2 [J]. Nature Communications, 2022, 13. DOI: 10.1038/s41467-022-32631-3 .
106 MCDERMID S S, MONTES C, COOK B I, et al. The sensitivity of land-atmosphere coupling to modern agriculture in the northern midlatitudes[J]. Journal of Climate, 2019, 32(2): 465-484.
107 XI X Z, LIANG M L, YUAN X. Increased atmospheric water stress on gross primary productivity during flash droughts over China from 1961 to 2022[J]. Weather and Climate Extremes, 2024, 44. DOI: 10.1016/j.wace.2024.100667 .
108 LU Y Q, HARDING K, KUEPPERS L. Irrigation effects on land-atmosphere coupling strength in the United States[J]. Journal of Climate, 2017, 30(10): 3 671-3 685.
109 TANG Qiuhong, LIU Xingcai, LI Zhe, et al. Integrated water systems model for terrestrial water cycle simulation[J]. Advances in Earth Science, 2019, 34(2): 115-123.
汤秋鸿, 刘星才, 李哲, 等. 陆地水循环过程的综合集成与模拟[J]. 地球科学进展, 2019, 34(2): 115-123.
[1] 魏泽勋, 徐腾飞, 方越, 王晶, 秦秉斌, 胡石建, 李颖, 聂珣炜, 张志祥, 李志, 曹智勇, 马强. 热带太平洋—印度洋洋际交换及其气候效应的观测研究[J]. 地球科学进展, 2024, 39(8): 788-800.
[2] 刘锦波, 张勇, 刘时银, 王欣, 蒋宗立. 青藏高原及周边石冰川识别、冰储量及动力学过程研究进展[J]. 地球科学进展, 2024, 39(4): 391-404.
[3] 兰措. 气候变化背景下陆面模式研究进展及不足[J]. 地球科学进展, 2024, 39(1): 46-55.
[4] 丁一汇, 柳艳菊, 徐影, 吴萍, 薛童, 汪靖, 石英, 张颖娴, 宋亚芳, 王朋岭. 全球气候变化的区域响应:中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望[J]. 地球科学进展, 2023, 38(6): 551-562.
[5] 李耀辉, 于敬磊, 谷娟, 桑文军, 靳晓琳, 黄玉. 民航飞行 CO2 排放及其对气候变化影响研究综述[J]. 地球科学进展, 2023, 38(1): 9-16.
[6] 陈小刚, 李凌, 杜金洲. 红树林和盐沼湿地间隙水交换过程及其碳汇潜力[J]. 地球科学进展, 2022, 37(9): 881-898.
[7] 陈亚宁, 李玉朋, 李稚, 刘永昌, 黄文静, 刘西刚, 冯梅青. 全球气候变化对干旱区影响分析[J]. 地球科学进展, 2022, 37(2): 111-119.
[8] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展, 2022, 37(2): 187-201.
[9] 韩林生, 王祎. 全球海洋观测系统展望及对我国的启示[J]. 地球科学进展, 2022, 37(11): 1157-1164.
[10] 李稚, 李玉朋, 李鸿威, 刘永昌, 王川. 中亚地区干旱变化及其影响分析[J]. 地球科学进展, 2022, 37(1): 37-50.
[11] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[12] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[13] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[14] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[15] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
阅读次数
全文


摘要