1 |
YUAN Xing, WANG Yumiao, ZHANG Miao, et al. A few thoughts on the study of flash drought[J]. Transactions of Atmospheric Sciences, 2020, 43(6): 1 086-1 095.
|
|
袁星, 王钰淼, 张苗, 等. 关于骤旱研究的一些思考[J]. 大气科学学报, 2020, 43(6): 1 086-1 095.
|
2 |
YUAN X, MA Z G, PAN M, et al. Microwave remote sensing of short-term droughts during crop growing seasons[J]. Geophysical Research Letters, 2015, 42(11): 4 394-4 401.
|
3 |
OTKIN J A, SVOBODA M, HUNT E D, et al. Flash droughts: a review and assessment of the challenges imposed by rapid-onset droughts in the United States[J]. Bulletin of the American Meteorological Society, 2018, 99(5): 911-919.
|
4 |
ZHANG Qiang. Scientific interpretation of severe drought in the Yangtze River Basin[J]. Journal of Arid Meteorology, 2022, 40(4): 545-548.
|
|
张强. 科学解读 “2022年长江流域重大干旱”[J]. 干旱气象, 2022, 40(4): 545-548.
|
5 |
YUAN Xing, WANG Yumiao, ZHOU Shiyu, et al. Multiscale causes of the 2022 Yangtze mega-flash drought under climate change[J]. Science China Earth Sciences, 2024,54(8): 2 690-2 702.
|
|
袁星, 王钰淼, 周诗玙,等. 气候变化下2022年长江特大骤旱的多尺度成因分析[J]. 中国科学: 地球科学, 2024, 54(8): 2 690-2 702.
|
6 |
PENDERGRASS A G, MEEHL G A, PULWARTY R, et al. Flash droughts present a new challenge for subseasonal-to-seasonal prediction[J]. Nature Climate Change, 2020, 10: 191-199.
|
7 |
SVOBODA M, LECOMTE D, HAYES M, et al. The drought monitor[J]. Bulletin of the American Meteorological Society, 2002, 83(8): 1 181-1 190.
|
8 |
MO K C, LETTENMAIER D P. Heat wave flash droughts in decline[J]. Geophysical Research Letters, 2015, 42(8): 2 823-2 829.
|
9 |
YUAN X, WANG L Y, WU P L, et al. Anthropogenic shift towards higher risk of flash drought over China[J]. Nature Communications, 2019, 10. DOI: 10.1038/s41467-019-12692-7 .
|
10 |
CHRISTIAN J I, BASARA J B, HUNT E D, et al. Global distribution, trends, and drivers of flash drought occurrence[J]. Nature Communications, 2021, 12. DOI: 10.1038/s41467-021-26692-z .
|
11 |
FORD T W, LABOSIER C F. Meteorological conditions associated with the onset of flash drought in the eastern United States[J]. Agricultural and Forest Meteorology, 2017, 247: 414-423.
|
12 |
WANG L Y, YUAN X, XIE Z H, et al. Increasing flash droughts over China during the recent global warming hiatus[J]. Scientific Reports, 2016, 6. DOI: 10.1038/srep30571 .
|
13 |
FAN Ke. Atmospheric circulation anomalies in the Southern Hemisphere and summer rainfall over Yangtze River Valley[J]. Chinese Journal of Geophysics, 2006, 49(3): 672-679.
|
|
范可. 南半球环流异常与长江中下游夏季旱涝的关系[J]. 地球物理学报, 2006, 49(3): 672-679.
|
14 |
HOERLING M, KUMAR A. The perfect ocean for drought[J]. Science, 2003, 299(5 607): 691-694.
|
15 |
SCHUBERT S D, STEWART R E, WANG H L, et al. Global meteorological drought: a synthesis of current understanding with a focus on SST drivers of precipitation deficits[J]. Journal of Climate, 2016, 29(11): 3 989-4 019.
|
16 |
LI Yiping, ZHANG Jinyu, YUE Ping, et al. Study on characteristics of severe drought event over Yangtze River Basin in summer of 2022 and its causes[J]. Journal of Arid Meteorology, 2022, 40(5): 733-747.
|
|
李忆平, 张金玉, 岳平, 等. 2022年夏季长江流域重大干旱特征及其成因研究[J]. 干旱气象, 2022, 40(5): 733-747.
|
17 |
YANG Haijun. Assessing the meridional atmosphere and ocean energy transport in a varying climate[J]. Chinese Science Bulletin, 2013, 58(18): 1 706-1 710.
|
|
杨海军. 估计变动气候中大气和海洋经向热量输送[J]. 科学通报, 2013, 58(18): 1 706-1 710.
|
18 |
CHENG L J, von SCHUCKMANN K, ABRAHAM J P, et al. Past and future ocean warming[J]. Nature Reviews Earth & Environment, 2022, 3: 776-794.
|
19 |
SENEVIRATNE S I, CORTI T, DAVIN E L, et al. Investigating soil moisture-climate interactions in a changing climate: a review[J]. Earth-Science Reviews, 2010, 99(3/4): 125-161.
|
20 |
KOSTER R D, SCHUBERT S D, WANG H, et al. Flash drought as captured by reanalysis data: disentangling the contributions of precipitation deficit and excess evapotranspiration[J]. Journal of Hydrometeorology, 2019, 20(6): 1 241-1 258.
|
21 |
ZHOU S Y, YUAN X. Acceleration of the onset speeds of heat waves over East China by upwind flash droughts[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(10). DOI:10.1029/2022JD038072 .
|
22 |
ULLAH W, ZHU C X, WANG G J, et al. Soil moisture-constrained East Asian Monsoon meridional patterns over China from observations[J]. NPJ Climate and Atmospheric Science, 2023, 6. DOI:10.1038/s41612-023-00331-4 .
|
23 |
SCHUMACHER D L, KEUNE J, DIRMEYER P, et al. Drought self-propagation in drylands due to land-atmosphere feedbacks[J]. Nature Geoscience, 2022, 15: 262-268.
|
24 |
ZENG D W, YUAN X, ROUNDY J K. Effect of teleconnected land-atmosphere coupling on northeast China persistent drought in spring-summer of 2017[J]. Journal of Climate, 2019, 32(21): 7 403-7 420.
|
25 |
ZHU S G, QI Y J, CHEN H S, et al. Distinct impacts of spring soil moisture over the Indo-China Peninsula on summer precipitation in the Yangtze River Basin under different SST backgrounds[J]. Climate Dynamics, 2021, 56(5): 1 895-1 918.
|
26 |
REN Fumin, YUAN Yuan, SUN Chenghu, et al. Review of progress of ENSO studies in the past three decades[J]. Advances in Meteorological Science and Technology, 2012, 2(3): 17-24.
|
|
任福民, 袁媛, 孙丞虎, 等. 近30年ENSO研究进展回顾[J]. 气象科技进展, 2012, 2(3): 17-24.
|
27 |
ZHANG Qiang, YAO Yubi, LI Yaohui, et al. Progress and prospect on the study of causes and variation regularity of droughts in China[J]. Acta Meteorologica Sinica, 2020, 78(3): 500-521.
|
|
张强, 姚玉璧, 李耀辉, 等. 中国干旱事件成因和变化规律的研究进展与展望[J]. 气象学报, 2020, 78(3): 500-521.
|
28 |
SENEVIRATNE S I, LÜTHI D, LITSCHI M, et al. Land-atmosphere coupling and climate change in Europe[J]. Nature, 2006, 443: 205-209.
|
29 |
DIRMEYER P A, BALSAMO G, BLYTH E M, et al. Land-atmosphere interactions exacerbated the drought and heatwave over northern Europe during summer 2018[J]. AGU Advances, 2021, 2(2). DOI:10.1029/2020AV000283 .
|
30 |
ZHOU S, WILLIAMS A P, BERG A M, et al. Land-atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(38): 18 848-18 853.
|
31 |
WANG Y M, YUAN X. Land-atmosphere coupling speeds up flash drought onset[J]. The Science of the Total Environment, 2022, 851(Part 1). DOI: 10.1016/j.scitotenv.2022.158109 .
|
32 |
REDMOND K. The depiction of drought: a commentary[J]. Bulletin of the American Meteorological Society, 2002, 83(8): 1 143-1 147.
|
33 |
MA Yaoming, HU Zeyong, TIAN Lide, et al. Study progresses of the Tibet Plateau climate system change and mechanism of its impact on East Asia[J]. Advances in Earth Science, 2014, 29(2): 207-215.
|
|
马耀明, 胡泽勇, 田立德, 等. 青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J]. 地球科学进展, 2014, 29(2): 207-215.
|
34 |
WANG Chenpeng, HUANG Mengtian, ZHAI Panmao. New progress and enlightenment on different types of drought changes from IPCC sixth assessment report[J]. Acta Meteorologica Sinica, 2022, 80(1): 168-175.
|
|
王晨鹏,黄萌田, 翟盘茂. IPCC AR6报告关于不同类型干旱变化研究的新进展与启示[J]. 气象学报, 2022, 80(1): 168-175.
|
35 |
QING Y M, WANG S, ANCELL B C, et al. Accelerating flash droughts induced by the joint influence of soil moisture depletion and atmospheric aridity[J]. Nature Communications, 2022, 13. DOI: 10.1038/s41467-022-28752-4 .
|
36 |
YUAN X, WANG Y M, JI P, et al. A global transition to flash droughts under climate change[J]. Science, 2023, 380(6 641): 187-191.
|
37 |
YIN Han, LI Yaohui. Summary of advance on drought study in southwest China[J]. Journal of Arid Meteorology, 2013, 31(1): 182-193.
|
|
尹晗,李耀辉. 我国西南干旱研究最新进展综述[J]. 干旱气象, 2013, 31(1): 182-193.
|
38 |
ZENG Yujin, XIE Zhenghui. Projection and evaluation of the land-atmosphere coupling strength over China by CMIP5 models[J]. Climatic and Environmental Research, 2015, 20(3): 337-346.
|
|
曾毓金, 谢正辉. 基于CMIP5模拟的中国区域陆气耦合强度评估及未来情景预估[J]. 气候与环境研究, 2015, 20(3): 337-346.
|
39 |
WANG L N, LYU K W, ZHUANG W, et al. Recent shift in the warming of the southern oceans modulated by decadal climate variability[J]. Geophysical Research Letters, 2021, 48(3). DOI:10.1029/2020GL090889 .
|
40 |
ZHAO Qianqian, ZHANG Jingpeng, ZHAO Tianbao, et al. Vegetation changes and its response to climate change in China since 2000[J]. Plateau Meteorology, 2021, 40(2): 292-301.
|
|
赵倩倩, 张京朋, 赵天保, 等. 2000年以来中国区域植被变化及其对气候变化的响应[J]. 高原气象, 2021, 40(2): 292-301.
|
41 |
ZHANG Xuezhen, ZHU Jinfeng. Variations in fractional vegetation coverage over eastern China during 1982-2006[J]. Climatic and Environmental Research, 2013, 18(3): 365-374.
|
|
张学珍, 朱金峰. 1982—2006年中国东部植被覆盖度的变化[J]. 气候与环境研究, 2013, 18(3): 365-374.
|
42 |
HIRSCH A L, PITMAN A J, KALA J. The role of land cover change in modulating the soil moisture-temperature land-atmosphere coupling strength over Australia[J]. Geophysical Research Letters, 2014, 41(16): 5 883-5 890.
|
43 |
YU L X, LIU Y, LIU T X, et al. Impact of recent vegetation greening on temperature and precipitation over China[J]. Agricultural and Forest Meteorology, 2020, 295. DOI:10.1016/j.agrformet.2020.108197 .
|
44 |
ZHAO Jingchuan, LIU Shuhua. Research on the impact of vegetation change on land-atmosphere coupling strength in northwest China[J]. Chinese Journal of Geophysics, 2015, 58(1): 47-62.
|
|
赵靖川, 刘树华. 植被变化对西北地区陆气耦合强度的影响[J]. 地球物理学报, 2015, 58(1): 47-62.
|
45 |
CHRISTIAN J I, HOBBINS M, HOELL A, et al. Flash drought: a state of the science review[J]. WIREs Water, 2024, 11(3). DOI: 10.1002/wat2.1714 .
|
46 |
WU Guoxiong, LI Jianping, ZHOU Tianjun, et al. The key region affecting the short-term climate variations in China: the joining area of Asia and Indian-Pacific Ocean[J]. Advances in Earth Science, 2006, 21(11): 1 109-1 118.
|
|
吴国雄, 李建平, 周天军, 等. 影响我国短期气候异常的关键区: 亚印太交汇区[J]. 地球科学进展, 2006, 21(11): 1 109-1 118.
|
47 |
ZHANG Qiang, LI Dongliang, YAO Yubi, et al. Progress and prospect of the research on drought formation, prediction, and related risk assessment[J]. Acta Meteorologica Sinica, 2024, 82(1): 1-21.
|
|
张强, 李栋梁, 姚玉璧, 等. 干旱形成机制与预测理论方法及其灾害风险特征研究进展与展望[J]. 气象学报, 2024, 82(1): 1-21.
|
48 |
LIU Shuyan, RONG Yanshu, Xingyue LÜ, et al. Comparative analysis of drought in China and the United States in 2012[J]. Journal of Arid Meteorology, 2021, 39(5): 717-726.
|
|
刘书言, 荣艳淑, 吕星月, 等. 2012年中美两国干旱的对比分析[J]. 干旱气象, 2021, 39(5): 717-726.
|
49 |
SUN Bo, WANG Huijun, HUANG Yanyan, et al. Characteristics and causes of the hot-dry climate anomalies in China during summer of 2022[J]. Transactions of Atmospheric Sciences, 2023, 46(1): 1-8.
|
|
孙博, 王会军, 黄艳艳, 等. 2022年夏季中国高温干旱气候特征及成因探讨[J]. 大气科学学报, 2023, 46(1): 1-8.
|
50 |
HUANG H J, ZHU Z W, LI J. Disentangling the unprecedented Yangtze River Basin extreme high temperatures in summer 2022: combined impacts of the reintensified La Niña and strong positive NAO[J]. Journal of Climate, 2024, 37(3): 927-942.
|
51 |
MA F, YUAN X, LI H, et al. Flash drought in the south of Yangtze River and the potential impact of North Atlantic Sea surface temperature[J]. Journal of Geophysical Research: Atmospheres, 2024, 129(5). DOI:10.1029/2023JD039820 .
|
52 |
LIANG Y, DU Y. Oceanic impacts on 50-80-day intraseasonal oscillation in the eastern tropical Indian Ocean[J]. Climate Dynamics, 2022, 59(5): 1 283-1 296.
|
53 |
WANG Zunya, DING Yihui. Climatic characteristics of rainy seasons in China[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(1): 1-13.
|
|
王遵娅, 丁一汇. 中国雨季的气候学特征[J]. 大气科学, 2008, 32(1): 1-13.
|
54 |
YUN K S, SEO K H, HA K J. Relationship between ENSO and northward propagating intraseasonal oscillation in the East Asian summer monsoon system[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D14). DOI:10.1029/2008JD009901 .
|
55 |
QI L, JI Y, ZHANG W J. Indispensable role of the madden-julian oscillation in the 2019 extreme autumn drought over eastern China[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(6). DOI: 10.1029/2020JD034123 .
|
56 |
WANG J Z, WANG C Z. Joint boost to super El Niño from the Indian and Atlantic Oceans[J]. Journal of Climate, 2021, 34(12): 4 937-4 954.
|
57 |
HOBBINS M T, WOOD A, MCEVOY D J, et al. The evaporative demand drought index. part I: linking drought evolution to variations in evaporative demand[J]. Journal of Hydrometeorology, 2016, 17(6): 1 745-1 761.
|
58 |
OTKIN J A, ANDERSON M C, HAIN C, et al. Examining rapid onset drought development using the thermal infrared-based evaporative stress index[J]. Journal of Hydrometeorology, 2013, 14(4): 1 057-1 074.
|
59 |
BASARA J B, CHRISTIAN J I, WAKEFIELD R A, et al. The evolution, propagation, and spread of flash drought in the central United States during 2012[J]. Environmental Research Letters, 2019, 14(8). DOI:10.1088/1748-9326/ab2cc0 .
|
60 |
QIAO L, ZUO Z Y, ZHANG R H, et al. Soil moisture-atmosphere coupling accelerates global warming[J]. Nature Communications, 2023, 14. DOI: 10.1038/s41467-023-40641-y .
|
61 |
ZHOU Tianjun. The dry-hot feedback between soil moisture and atmosphere and the accelerated global warming[J]. Science China Earth Sciences, 2024, 54(3): 907-908.
|
|
周天军. 土壤湿度—大气耦合加速全球变暖进程[J]. 中国科学:地球科学, 2024, 54(3): 907-908.
|
62 |
ZHANG R H, ZUO Z Y. Impact of spring soil moisture on surface energy balance and summer monsoon circulation over East Asia and precipitation in East China[J]. Journal of Climate, 2011, 24(13): 3 309-3 322.
|
63 |
LI Yaohui, MENG Xianhong, ZHANG Hongsheng, et al. Advances and key scientific issues of land atmosphere coupling between the Tibet Plateau and the northern desert and its impact on northern China drought[J]. Advances in Earth Science, 2021, 36(3): 265-275.
|
|
李耀辉, 孟宪红, 张宏升, 等. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
|
64 |
LI Dengxuan, WANG Chenghai. The relation between soil moisture over the Tibetan Plateau in spring and summer precipitation in the eastern China[J]. Journal of Glaciology and Geocryology, 2016, 38(1): 89-99.
|
|
李登宣, 王澄海. 青藏高原春季土壤湿度与中国东部夏季降水之间的关系[J]. 冰川冻土, 2016, 38(1): 89-99.
|
65 |
ZUO Zhiyan, ZHANG Renhe. Relationship between summer precipitation and spring soil moisture in eastern China[J]. Chinese Science Bulletin, 2007, 52(14): 1 722-1 724.
|
|
左志燕, 张人禾. 中国东部夏季降水与春季土壤湿度的联系[J]. 科学通报, 2007, 52(14): 1 722-1 724.
|
66 |
ZHOU S Y, YUAN X. Upwind droughts enhance half of the heatwaves over North China[J]. Geophysical Research Letters, 2022, 49(2). DOI:10.1029/2021GL096639 .
|
67 |
LI Qiaoping, DING Yihui, DONG Wenjie. A numerical study on effects of the soil moisture upon the regional short-term climate[J]. Journal of Applied Meteorological Science, 2007, 18(1): 1-11.
|
|
李巧萍, 丁一汇, 董文杰. 土壤湿度异常对区域短期气候影响的数值模拟试验[J]. 应用气象学报, 2007, 18(1): 1-11.
|
68 |
ZHOU S Y, LIANG M L, YUAN X. Impact of upwind flash drought on 2022 record-shattering heatwave over East China[J]. Climate Dynamics, 2024. DOI:10.1007/s00382-024-07211-4 .
|
69 |
HAN T T, CHEN H P, WANG H J. Recent changes in summer precipitation in northeast China and the background circulation[J]. International Journal of Climatology, 2015, 35(14): 4 210-4 219.
|
70 |
ZENG D W, YUAN X. Modeling the influence of upstream land-atmosphere coupling on the 2017 persistent drought over Northeast China[J]. Journal of Climate, 2021. DOI:10.1175/JCLI-D-20-0650.1 .
|
71 |
LIANG Lening, CHEN Haishan. Possible linkage between spring soil moisture anomalies over South China and summer rainfall in China[J]. Transactions of Atmospheric Sciences, 2010, 33(5): 536-546.
|
|
梁乐宁, 陈海山. 春季华南土壤湿度异常与中国夏季降水的可能联系[J]. 大气科学学报, 2010, 33(5): 536-546.
|
72 |
DONG X, ZHOU Y, CHEN H S, et al. Lag impacts of the anomalous July soil moisture over southern China on the August rainfall over the Huang-Huai River Basin[J]. Climate Dynamics, 2022, 58(5): 1 737-1 754.
|
73 |
LI H X, CHEN H P, WANG H J, et al. Can Barents Sea ice decline in spring enhance summer hot drought events over northeastern China?[J]. Journal of Climate, 2018, 31(12): 4 705-4 725.
|
74 |
TASCHETTO A S, STOJANOVIC M, HOLGATE C M, et al. Changes in moisture sources contributed to the onset and development of the 2017-2019 southeast Australian drought[J]. Weather and Climate Extremes, 2024, 44. DOI:10.1016/j.wace.2024.100672 .
|
75 |
MA Zhuguo, FU Congbin. The fact of global drought in the second half of the 20th century and its connection with large-scale background[J]. Science China Earth Sciences, 2007, 37(2): 222-233.
|
|
马柱国, 符淙斌. 20世纪下半叶全球干旱化的事实及其与大尺度背景的联系[J]. 中国科学:地球科学, 2007, 37(2): 222-233.
|
76 |
HUANG J P, YU H P, GUAN X D, et al. Accelerated dryland expansion under climatechange[J]. Nature Climate Change, 2016, 6: 166-171.
|
77 |
TRENBERTH K E, DAI A G, van der SCHRIER G, et al. Global warming and changes in drought[J]. Nature Climate Change, 2014, 4: 17-22.
|
78 |
ZHANG W X, FURTADO K, WU P L, et al. Increasing precipitation variability on daily-to-multiyear time scales in a warmer world[J]. Science Advances, 2021, 7(31). DOI: 10.1126/sciadv.abf8021 .
|
79 |
YUAN X, WANG L Y, WOOD E F. Anthropogenic intensification of southern African flash droughts as exemplified by the 2015/16 season[J]. Bulletin of the American Meteorological Society, 2018, 99(1): S86-S90.
|
80 |
DIRMEYER P A, CASH B A, KINTER J L III, et al. Evidence for enhanced land-atmosphere feedback in a warming climate[J]. Journal of Hydrometeorology, 2012, 13(3): 981-995.
|
81 |
HSU H, DIRMEYER P A. Soil moisture-evaporation coupling shifts into new gears under increasing CO2 [J]. Nature Communications, 2023, 14. DOI: 10.1038/s41467-023-36794-5 .
|
82 |
BARTUSEK S, KORNHUBER K, TING M F. 2021 North American heatwave amplified by climate change-driven nonlinear interactions[J]. Nature Climate Change, 2022, 12: 1 143-1 150.
|
83 |
KORNHUBER K, PETOUKHOV V, PETRI S, et al. Evidence for wave resonance as a key mechanism for generating high-amplitude quasi-stationary waves in boreal summer[J]. Climate Dynamics, 2017, 49(5): 1 961-1 979.
|
84 |
FRANCIS J A, VAVRUS S J. Evidence linking Arctic amplification to extreme weather in mid-latitudes[J]. Geophysical Research Letters, 2012, 39(6). DOI: 10.1029/2012GL051000 .
|
85 |
JIA Gensuo. New understanding of land-climate interactions from IPCC special report on climate change and land[J]. Climate Change Research, 2020, 16(1): 9-16.
|
|
贾根锁. IPCC《气候变化与土地特别报告》对陆气相互作用的新认知[J]. 气候变化研究进展, 2020, 16(1): 9-16.
|
86 |
CHEN C, PARK T, WANG X H, et al. China and India lead in greening of the world through land-use management[J]. Nature Sustainability, 2019, 2: 122-129.
|
87 |
PIAO Shilong, ZHANG Xianzhou, WANG Tao. Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change[J]. Chinese Science Bulletin, 2019, 64(27): 2 842-2 855.
|
|
朴世龙, 张宪洲, 汪涛, 等. 青藏高原生态系统对气候变化的响应及其反馈[J]. 科学通报, 2019, 64(27): 2 842-2 855.
|
88 |
ANDERSON C A, VIVONI E R. Impact of land surface states within the flux footprint on daytime land-atmosphere coupling in two semiarid ecosystems of the southwestern U.S[J]. Water Resources Research, 2016, 52(6): 4 785-4 800.
|
89 |
ZHAO Lin, CHEN Yuchun, Shihua LÜ, et al. Numerical simulation of Tibetan Plateau underling surface vegetation variation climate effect in summer[J]. Journal of Anhui Agricultural Sciences, 2010, 38(30): 17 067-17 070, 17 084.
|
|
赵林, 陈玉春, 吕世华, 等. 青藏高原夏季下垫面植被变化气候效应的数值模拟[J]. 安徽农业科学, 2010, 38(30): 17 067-17 070, 17 084.
|
90 |
ANDEREGG W R L, TRUGMAN A T, BOWLING D R, et al. Plant functional traits and climate influence drought intensification and land-atmosphere feedbacks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(28): 14 071-14 076.
|
91 |
MENG X H, EVANS J P, MCCABE M F. The impact of observed vegetation changes on land-atmosphere feedbacks during drought[J]. Journal of Hydrometeorology, 2014, 15(2): 759-776.
|
92 |
LIU M X, HUANG J Y, SUN A Y, et al. What roles can water-stressed vegetation play in agricultural droughts?[J]. The Science of the Total Environment, 2022, 803. DOI: 10.1016/j.scitotenv.2021.149810 .
|
93 |
ZHANG B Q, TIAN L, ZHAO X N, et al. Feedbacks between vegetation restoration and local precipitation over the Loess Plateau in China[J]. Science China Earth Sciences, 2021, 64(6): 920-931.
|
94 |
ZHANG Yaocun. Virtual numerical experiments on the climate effects of vegetation type changes over northern China[J]. Journal of Nanjing University (Natural Sciences), 2004, 40(6): 684-691.
|
|
张耀存. 我国北方地区植被类型变化气候效应的虚拟数值试验[J]. 南京大学学报(自然科学版), 2004, 40(6): 684-691.
|
95 |
ZIPPER S C, KEUNE J, KOLLET S J. Land use change impacts on European heat and drought: remote land-atmosphere feedbacks mitigated locally by shallow groundwater[J]. Environmental Research Letters, 2019, 14(4). DOI: 10.1088/1748-9326/ab0db3 .
|
96 |
CUI J P, LIAN X, HUNTINGFORD C, et al. Global water availability boosted by vegetation-driven changes in atmospheric moisture transport[J]. Nature Geoscience, 2022, 15: 982-988.
|
97 |
ZHANG M, YUAN X, OTKIN J A, et al. Climate warming outweighs vegetation greening in intensifying flash droughts over China[J]. Environmental Research Letters, 2022, 17(5). DOI:10.1088/1748-9326/ac69fb .
|
98 |
MYOUNG B, CHOI Y S, CHOI S J, et al. Impact of vegetation on land-atmosphere coupling strength and its implication for desertification mitigation over East Asia[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D12). DOI: 10.1029/2011JD017143 .
|
99 |
WANG Miaomiao, WANG Shaoqiang, CHEN Bin, et al. CO2 fertilization promoting the carbon uptake of global terrestrial ecosystems in 2020-2050[J]. Acta Ecologica Sinica, 2023, 43(6): 2 408-2 418.
|
|
王苗苗, 王绍强, 陈斌, 等. 2020—2050年CO2施肥效应促进全球陆地生态系统碳吸收[J]. 生态学报, 2023, 43(6): 2 408-2 418.
|
100 |
TIAN Jing. Effects of atmospheric CO2 concentration on vegetation transpiration over China[J]. Advances in Earth Science, 2021, 36(8): 826-835.
|
|
田静. 大气CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
|
101 |
HE M Z, PIAO S L, HUNTINGFORD C, et al. Amplified warming from physiological responses to carbon dioxide reduces the potential of vegetation for climate change mitigation[J]. Communications Earth & Environment, 2022, 3. DOI: 10.1038/s43247-022-00489-4 .
|
102 |
BERG A, FINDELL K, LINTNER B, et al. Land-atmosphere feedbacks amplify aridity increase over land under global warming[J]. Nature Climate Change, 2016, 6: 869-874.
|
103 |
KEENAN T F, HOLLINGER D Y, BOHRER G, et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise[J]. Nature, 2013, 499: 324-327.
|
104 |
MANKIN J S, SEAGER R, SMERDON J E, et al. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change[J]. Nature Geoscience, 2019, 12: 983-988.
|
105 |
ZHANG Y, GENTINE P, LUO X Z, et al. Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2 [J]. Nature Communications, 2022, 13. DOI: 10.1038/s41467-022-32631-3 .
|
106 |
MCDERMID S S, MONTES C, COOK B I, et al. The sensitivity of land-atmosphere coupling to modern agriculture in the northern midlatitudes[J]. Journal of Climate, 2019, 32(2): 465-484.
|
107 |
XI X Z, LIANG M L, YUAN X. Increased atmospheric water stress on gross primary productivity during flash droughts over China from 1961 to 2022[J]. Weather and Climate Extremes, 2024, 44. DOI: 10.1016/j.wace.2024.100667 .
|
108 |
LU Y Q, HARDING K, KUEPPERS L. Irrigation effects on land-atmosphere coupling strength in the United States[J]. Journal of Climate, 2017, 30(10): 3 671-3 685.
|
109 |
TANG Qiuhong, LIU Xingcai, LI Zhe, et al. Integrated water systems model for terrestrial water cycle simulation[J]. Advances in Earth Science, 2019, 34(2): 115-123.
|
|
汤秋鸿, 刘星才, 李哲, 等. 陆地水循环过程的综合集成与模拟[J]. 地球科学进展, 2019, 34(2): 115-123.
|