地球科学进展 ›› 2024, Vol. 39 ›› Issue (9): 889 -901. doi: 10.11867/j.issn.1001-8166.2024.069

综述与评述 上一篇    下一篇

底栖有孔虫对海洋环境的生态响应概述
吴玉琦 1( ), 陈页 1 , 2, 郭远明 1 , 2, 袁涛 3, 李铁军 1 , 2, 乔玲 1 , 2( )   
  1. 1.浙江海洋大学 海洋与渔业研究所,浙江 舟山 316021
    2.浙江省海洋水产研究所,浙江省海洋渔业 资源可持续利用技术研究重点实验室,浙江 舟山 316021
    3.舟山市定海生态环境监测站 (舟山市定海生态环境保护技术服务中心),浙江 舟山 316000
  • 收稿日期:2024-06-26 修回日期:2024-08-26 出版日期:2024-09-10
  • 通讯作者: 乔玲 E-mail:2561735208@qq.com;qiaoling1990123@126.com
  • 基金资助:
    浙江省海洋水产研究所科技计划项目(HYS-ZX-202410)

Overview of the Ecological Response of Benthic Foraminifera to Marine Environment

Yuqi WU 1( ), Ye CHEN 1 , 2, Yuanming GUO 1 , 2, Tao YUAN 3, Tiejun LI 1 , 2, Ling QIAO 1 , 2( )   

  1. 1.Marine and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan Zhejiang 316021, China
    2.Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan Zhejiang 316021, China
    3.Zhoushan Dinghai Ecological Environment Monitoring Station (Zhoushan Dinghai Ecological Environment Protection Technology Service Center), Zhoushan Zhejiang 316000, China
  • Received:2024-06-26 Revised:2024-08-26 Online:2024-09-10 Published:2024-11-22
  • Contact: Ling QIAO E-mail:2561735208@qq.com;qiaoling1990123@126.com
  • About author:WU Yuqi, research areas include conservation and utilization of fishery resources. E-mail: 2561735208@qq.com
  • Supported by:
    the Science and Technology Project of Zhejiang Marine Fisheries Research Institute(HYS-ZX-202410)

随着人类活动的不断增加,海洋生态系统正面临着巨大威胁。底栖有孔虫作为海洋环境的指示生物,具有个体小、种类多、生命周期短、多样性高、分布广泛以及对环境变化敏感等特点,在监测海洋环境污染和海洋生态系统变化方面具有重要作用。综述了自然环境因素和人为因素对底栖有孔虫壳体形态、物种丰度、群落组成及多样性的影响,概括了底栖有孔虫作为海洋环境变化指示生物的响应指标,如壳孔密度、孔隙度和壳体Mg/Ca等可以用来指示海洋升温、海洋酸化和低氧等海洋气候变化,底栖有孔虫群落多样性的降低、耐受种丰度的增加以及敏感种丰度的降低常作为海洋环境污染的指示性指标。最后指出了在研究中需要注意的问题及未来研究方向:目前大多数有孔虫研究都采用了不同的技术和方法,缺乏标准化的样品采集、制备、处理和数据分析方法,因此大多数研究结果无法相互比较。此外,底栖有孔虫对环境变化的响应机制尚不明确。因此,未来研究可以通过将基因组学、转录组学和蛋白质组学等手段与物种生态学相互作用整合起来,从基因水平探索底栖有孔虫响应环境变化的遗传学机制,以期为利用底栖有孔虫重建和预测海洋气候变化,以及指示现代海洋环境质量提供理论依据。

With the rapid development of the economy, pollution of the coastal marine environment has become increasingly serious, resulting in an evident decline in environmental quality and deterioration of ecosystems, which have harmful effects on biological resources and human health. Benthic foraminifera, as indicator organisms of marine environments, have the characteristics of small size, wide distribution, high density and species diversity, short life cycles, good preservation potential in marine sediments, and high sensitivity to various pollutants, all of which play an important role in monitoring marine environmental pollution and changes in marine ecosystems. In this study, we reviewed the effects of natural environmental factors, such as temperature, salinity, dissolved oxygen, sediment grain size, organic matter, and water depth and anthropogenic pollutants, such as heavy metals, organic pollutants, and nutrients on the shell morphology, species abundance, community composition, and diversity of benthic foraminifera. We summarized the response indicators of benthic foraminifera to marine environmental changes. The microscopic characteristics of the benthic foraminifera, such as pore density, porosity, and chemical composition, such as Mg/Ca and B/Ca, can be used to indicate marine climate changes, including ocean warming, ocean acidification, and low oxygen. Decrease in benthic foraminiferal community diversity, increase in tolerant species abundance, and decrease in sensitive species abundance can be used as indicators of marine environmental pollution. In addition, we pointed out problems that require attention and directions for future research. Currently, most foraminiferal studies use different techniques and methods. The lack of standardized methods for sample collection, preparation, processing, and data analysis makes it impossible to compare the results of most studies. In addition, the response mechanisms of benthic foraminifera to environmental changes are unclear. Therefore, future studies should explore the genetic mechanisms of benthic foraminiferal responses to environmental changes at the gene level by integrating genomics, transcriptomics, and proteomics with species ecology. The purpose of this study was to provide a theoretical basis for using benthic foraminifera to reconstruct and predict marine climate change and indicate modern marine environment quality.

中图分类号: 

图1 有孔虫种类统计 6
Fig. 1 Statistics of foraminifera species 6
图2 不同深度底栖有孔虫丰度、多样性及种类分布图 80
Fig. 2 Schematic distribution of foraminiferal abundancediversity and species along different depth intervals 80
表1 底栖有孔虫在海洋环境重金属污染监测中的应用
Table 1 Application of benthic foraminifera in monitoring heavy metal pollution in marine environment
污染物 概述 参考文献
Hg 随着Hg浓度的增加,底栖有孔虫出现变形,生长受到抑制,甚至死亡;有孔虫的伪足延伸开始减少,繁殖速度减慢;Hg浓度超过80 ng/L时,有孔虫生长受到抑制;Bulimina marginataHaynesina depressulaNonion cfr. fabumVirgulinella fragilisGavelinopsis sp.、Bulimina elongataE. advenum的相对丰度与Hg呈正相关 89 - 91
Cd 在高浓度Cd下暴露12 h后,具有伪足活性底栖有孔虫的占比明显降低 92
Cu和Pb Cribroelphidium excavatum与Cu和Pb的浓度呈显著正相关,在Cu和Pb高污染地区,其数量超过机会主义种A. tepida 93
Cd、Pb和Zn 较高浓度的重金属使底栖有孔虫丰度、物种丰富度和均匀度下降,本实验中Zn是唯一使有孔虫发生形态畸变的元素,且A. tepida的形态畸变频率最高 94
Cu、Pb和Zn Cu、Pb和Zn含量的增加对有孔虫物种组成有显著影响,在高污染区域,耐受种A. tepidaB. elongataB. marginataNonionella turgida出现 95
Cu、Zn、Hg和Ni AmmoniaCribroelphidium与Cu、Zn、Hg和Ni呈正相关;ArchaiasLaevipeneroplisAndrosina与Cu、Zn、Hg和Ni呈负相关 96
Co、Cr、Cu、Ni、Pb和Zn A. tepidaH. canariensisE. nakanokawaense对金属富集具有耐受性 12
Cr、Co、Cu、As、Sb和Hg 受所选环境因子的影响,重金属对底栖有孔虫群落组成的变异性影响最大 97
Hg、Cd、Pb、Cr、Cu、Zn、Mn和Ni 污染最严重的海湾,有孔虫物种数量减少,A. tepidaE. crispumAmphicoryna scalarisNoniella turgidaNonion depressulum物种最丰富 18
Al、Fe、Mn、Zn、Pb、Cu、Co和Cd Pb和Al富集的区域,有孔虫组合多样性较低,以机会主义种A. tepida为主 98
Cd、As、Cr、Cu、Ni、Pb、V、Zn和Hg 有孔虫密度和物种丰富度随着重金属浓度的增加而降低 99
As、Cd、Cr、Cu、Fe、Ni、Mn、Pb和Zn 有孔虫物种的相对丰度、密度和多样性与重金属浓度呈负相关 100
Cd、Cu、Cr、Pb、Mn、Hg、Ni、Ag、Sn和Zn 10种重金属均会在A. aomoriensisAmmonia batavaElphidium excavatum壳体中富集,且不同物种的壳体对重金属的吸附有差异 101
22 张静, 胡刚, 马国荣, 等. 长江远端三角洲表层沉积物中底栖有孔虫分布及其对环境的指示[J]. 海洋地质与第四纪地质, 2020, 40(4): 127-138.
23 DONG S S, LEI Y L, LI T G, et al. Responses of benthic foraminifera to changes of temperature and salinity: results from a laboratory culture experiment[J]. Science China Earth Sciences, 2019, 62(2): 459-472.
24 PRAZERES M, PANDOLFI J M. Effects of elevated temperature on the shell density of the large benthic foraminifera Amphistegina lobifera [J]. Journal of Eukaryotic Microbiology, 2016, 63(6): 786-793.
25 LI Meng, LEI Yanli, LI Tiegang, et al. Effect of temperature and salinity on the growth and survive of benthic foraminifera Ammonia aomoriensis (Asano, 1951) under laboratory culture experiment—based on morphological measurement[J]. Acta Micropalaeontologica Sinica, 2018, 35(2): 140-156.
李蒙, 类彦立, 李铁刚, 等. 实验室培养下温度和盐度对底栖有孔虫Ammonia aomoriensis(Asano, 1951)存活和生长的影响——基于形态测量[J]. 微体古生物学报, 2018, 35(2): 140-156.
26 LEI Y L, LI T G, NIGAM R, et al. Environmental significance of morphological variations in the foraminifer Ammonia aomoriensis (Asano, 1951) and its molecular identification: a study from the Yellow Sea and East China Sea, PR China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 483: 49-57.
27 DONG S S, LEI Y L, WU T Z, et al. New evidence for coiling direction of benthic foraminifera as a temperature proxy[J]. Frontiers in Marine Science, 2023, 10. DOI: 10.3389/fmars.2023.1122189 .
28 DELDICQ N, LANGLET D, DELAETER C, et al. Effects of temperature on the behaviour and metabolism of an intertidal foraminifera and consequences for benthic ecosystem functioning[J]. Scientific Reports, 2021, 11. DOI: 10.1038/s41598-021-83311-z .
29 SARASWAT R, NIGAM R, PACHKHANDE S. Difference in optimum temperature for growth and reproduction in benthic foraminifer Rosalina globularis: implications for paleoclimatic studies[J]. Journal of Experimental Marine Biology and Ecology, 2011, 405(1/2): 105-110.
30 EREZ J. The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies[J]. Reviews in Mineralogy and Geochemistry, 2003, 54(1): 115-149.
31 ELDERFIELD H, YU J, ANAND P, et al. Calibrations for benthic foraminiferal Mg/Ca paleothermometry and the carbonate ion hypothesis[J]. Earth and Planetary Science Letters, 2006, 250(3/4): 633-649.
32 YE Liming, QIU Zhongyan, LEI Jijiang. Calibration of Mg/Ca thermometry of the benthic foraminifera from the Bering Sea[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 165-170.
叶黎明, 邱中炎, 雷吉江. 白令海底栖有孔虫壳体镁钙比值对水团温度的响应[J]. 海洋地质与第四纪地质, 2012, 32(4): 165-170.
33 CHANG V T C, WILLIAMS R J P, MAKISHIMA A, et al. Mg and Ca isotope fractionation during CaCO3 biomineralisation[J]. Biochemical and Biophysical Research Communications, 2004, 323(1): 79-85.
34 MARCHITTO T M, BRYAN S P, CURRY W B, et al. Mg/Ca temperature calibration for the benthic foraminifer Cibicidoides pachyderma[J]. Paleoceanography, 2007, 22(1). DOI:10.1029/2006pa001287 .
35 GUPTA B S. Modern foraminifera[M]. New York: Kluwer Academic Publishers, 2003: 239-258.
36 MACDONALD G. Experimental determination of calcite-aragonite equilibrium relations at elevated temperatures and pressures[J]. American Mineralogist, 1956, 41: 744-756.
37 BÉ A W H, HUTSON W H, BE A W H. Ecology of planktonic foraminifera and biogeographic patterns of life and fossil assemblages in the Indian Ocean[J]. Micropaleontology, 1977, 23(4): 369-414.
38 DEBENAY J P, GUILLOU J J, REDOIS F, et al. Distribution trends of foraminiferal assemblages in paralic environments[M]// Environmental micropaleontology. Boston, MA: Springer, 2000: 39-67.
39 MURRAY J W. Ecology and applications of benthic foraminifera[M]. Cambridge: Cambridge University Press, 2006.
40 MURRAY J W. Ecology and palaeoecology of benthic foraminifera[M]. Harlow, Essex, England: Longman Scientific and Technical, 1991.
41 LI Tao, XIANG Rong, LI Tuanjie. Benthic foraminiferal distribution in surface sediments of Zhujiang Estuary and its environmental implications[J]. Marine Geology & Quaternary Geology, 2011, 31(6): 91-98.
李涛, 向荣, 李团结. 珠江口表层沉积物底栖有孔虫分布及环境指示[J]. 海洋地质与第四纪地质, 2011, 31(6): 91-98.
42 KENIGSBERG C, ABRAMOVICH S, HYAMS-KAPHZAN O. The effect of long-term brine discharge from desalination plants on benthic foraminifera[J]. PLoS ONE, 2020, 15(1). DOI: 10.1371/journal.pone.0227589 .
43 SARASWAT R, KOUTHANKER M, KURTARKAR S R, et al. Effect of salinity induced pH/alkalinity changes on benthic foraminifera: a laboratory culture experiment[J]. Estuarine, Coastal and Shelf Science, 2015, 153: 96-107.
44 NIGAM R, KURTARKAR S R, SARASWAT R, et al. Response of benthic foraminifera Rosalina leei to different temperature and salinity, under laboratory culture experiment[J]. Journal of the Marine Biological Association of the United Kingdom, 2008, 88(4): 699-704.
45 GESLIN E, DEBENAY J P, DULEBA W, et al. Morphological abnormalities of foraminiferal tests in Brazilian environments: comparison between polluted and non-polluted areas[J]. Marine Micropaleontology, 2002, 45(2): 151-168.
46 XU Jian, LI Jianru, QIAO Peijun. Progresses in study of foraminiferal Mg/Ca-thermometer: salinity effect and its correction[J]. Advances in Earth Science, 2011, 26(9): 997-1 005.
徐建, 李建如, 乔培军. 有孔虫Mg/Ca温度计研究进展: 盐度影响及校正[J]. 地球科学进展, 2011, 26(9): 997-1 005.
47 LI Jianru. The application of foraminiferal shell Mg/Ca ratio in paleo-environmental studies[J]. Advances in Earth Science, 2005, 20(8): 815-822.
李建如. 有孔虫壳体的Mg/Ca比值在古环境研究中的应用[J]. 地球科学进展, 2005, 20(8): 815-822.
48 FERGUSON J E, HENDERSON G M, KUCERA M, et al. Systematic change of foraminiferal Mg/Ca ratios across a strong salinity gradient[J]. Earth and Planetary Science Letters, 2008, 265(1/2): 153-166.
49 KAIHO K. Effect of organic carbon flux and dissolved oxygen on the Benthic Foraminiferal Oxygen Index (BFOI)[J]. Marine Micropaleontology, 1999, 37(1): 67-76.
50 GIBSON R N, ATKINSON R J A. Oxygen minimum zone benthos: adaptation and community response to hypoxia[J]. Oceanography and Marine Biology, 2003, 41: 1-45.
51 van der WEIJDEN C H, REICHART G J, VISSER H J. Enhanced preservation of organic matter in sediments deposited within the oxygen minimum zone in the northeastern Arabian Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1999, 46(5): 807-830.
52 den DULK M, REICHART G J, MEMON G M, et al. Benthic foraminiferal response to variations in surface water productivity and oxygenation in the northern Arabian Sea[J]. Marine Micropaleontology, 1998, 35(1/2): 43-66.
53 SINGH D P, SARASWAT R, NIGAM R. Untangling the effect of organic matter and dissolved oxygen on living benthic foraminifera in the southeastern Arabian Sea[J]. Marine Pollution Bulletin, 2021, 172. DOI:10.1016/j.marpolbul.2021.112883 .
54 CORLISS B H. Microhabitats of benthic foraminifera within deep-sea sediments[J]. Nature, 1985, 314: 435-438.
55 RATHBURN A E, CORLISS B H. The ecology of living (stained) deep-sea benthic foraminifera from the Sulu Sea[J]. Paleoceanography, 1994, 9(1): 87-150.
56 GEORGESCU M D, ARZ J A, MACAULEY R V, et al. Late Cretaceous (Santonian-Maastrichtian) serial foraminifera with pore mounds or pore mound-based ornamentation structures[J]. Revista Española de Micropaleontologia, 2011, 43(1/2): 109-139.
57 DUBICKA Z, ZŁOTNIK M, BORSZCZ T. Test morphology as a function of behavioral strategies—inferences from benthic foraminifera[J]. Marine Micropaleontology, 2015, 116: 38-49.
1 SETTY M. Role of foraminifera in oceanographic events [J]. Journal of Scientific and Industrial Research, 1979, 38: 380-399.
2 ZHENG Shouyi, FU Zhaoxian. Fauna sinica, phylum granuloreticulosa, foraminiferida, agglutinated foraminifera[M]. Beijing: Science Press, 2003.
郑守仪, 傅钊先. 中国动物志,粒网虫门,有孔虫纲,胶结有孔虫[M]. 北京: 科学出版社, 2003.
3 KOHO K A, PIÑA-OCHOA E. Benthic foraminifera: inhabitants of low-oxygen environments[M]// Anoxia. Dordrecht: Springer, 2012: 249-285.
4 BICCHI E, DEBENAY J P, PAGÈS J. Relationship between benthic foraminiferal assemblages and environmental factors in atoll lagoons of the central Tuamotu Archipelago (French Polynesia)[J]. Coral Reefs, 2002, 21(3): 275-290.
5 HALLOCK P, GLENN E C. Larger foraminifera: a tool for paleoenvironmental analysis of Cenozoic carbonate depositional facies[J]. PALAIOS, 1986, 1(1): 55-64.
6 HAYWARD B W, LE C F, VACHARD D, et al. World foraminifera database[DB/OL]. [2024-05-20]. .
7 WILLIS K A, SERRA-GONÇALVES C, RICHARDSON K, et al. Cleaner seas: reducing marine pollution[J]. Reviews in Fish Biology and Fisheries, 2022, 32(1): 145-160.
8 PATIL M P, JEONG I, WOO H E, et al. Natural variations in the benthic environment and bacterial communities of coastal sediments around aquaculture farms in South Korea[J]. Indian Journal of Microbiology, 2023, 63(1): 100-105.
9 SZEFER P, GLASBY G P, PEMPKOWIAK J, et al. Extraction studies of heavy-metal pollutants in surficial sediments from the southern Baltic Sea off Poland[J]. Chemical Geology, 1995, 120(1/2): 111-126.
10 IP C C M, LI X D, ZHANG G, et al. Over one hundred years of trace metal fluxes in the sediments of the Pearl River Estuary, South China[J]. Environmental Pollution, 2004, 132(1): 157-172.
11 LI T, LI X J, ZHONG H X, et al. Distribution of trace metals and the benthic foraminiferal assemblage as a characterization of the environment in the North Minjiang River Estuary (Fujian, China)[J]. Marine Pollution Bulletin, 2015, 90(1/2): 227-241.
12 LI T, XIANG R, LI T J. Influence of trace metals in recent benthic foraminifera distribution in the Pearl River Estuary[J]. Marine Micropaleontology, 2014, 108: 13-27.
13 ALVE E. Benthic foraminiferal responses to estuarine pollution: a review[J]. The Journal of Foraminiferal Research, 1995, 25(3): 190-203.
14 STOUFF V, GESLIN E, DEBENAY J P, et al. Origin of morphological abnormalities in ammonia (foraminifera): studies in laboratory and natural environments[J]. The Journal of Foraminiferal Research, 1999, 29(2): 152-170.
15 WATKINS J G. Foraminiferal ecology around the orange county, California, ocean sewer outfall[J]. Micropaleontology, 1961, 7(2): 199-206.
16 SAMIR A M. The response of benthic foraminifera and ostracods to various pollution sources: a study from two lagoons in Egypt[J]. The Journal of Foraminiferal Research, 2000, 30(2): 83-98.
17 ELBERLING B, KNUDSEN K L, KRISTENSEN P H, et al. Applying foraminiferal stratigraphy as a biomarker for heavy metal contamination and mining impact in a fiord in West Greenland[J]. Marine Environmental Research, 2003, 55(3): 235-256.
18 BERGIN F, KUCUKSEZGIN F, ULUTURHAN E, et al. The response of benthic foraminifera and Ostracoda to heavy metal pollution in Gulf of Izmir (Eastern Aegean Sea)[J]. Estuarine, Coastal and Shelf Science, 2006, 66(3/4): 368-386.
19 DEBENAY J P, FERNANDEZ J M. Benthic foraminifera records of complex anthropogenic environmental changes combined with geochemical data in a tropical bay of New Caledonia (SW Pacific)[J]. Marine Pollution Bulletin, 2009, 59(8/9/10/11/12): 311-322.
20 LI Yue, LI Bo, LI Tao. Distribution pattern and influence factors of benthic foraminifera in the surface sediments of northern South China Sea[J]. Marine Geology Frontiers, 2022, 38(2): 30-36.
58 PEREZ-CRUZ L L, MACHAIN-CASTILLO M L. Benthic foraminifera of the oxygen minimum zone, continental shelf of the Gulf of Tehuantepec, Mexico[J]. The Journal of Foraminiferal Research, 1990, 20(4): 312-325.
59 GLOCK N, EISENHAUER A, MILKER Y, et al. Environmental influences on the pore density of bolivina spissa (cushman)[J]. The Journal of Foraminiferal Research, 2011, 41(1): 22-32.
60 GLOCK N, SCHÖNFELD J, MALLON J. The functionality of pores in benthic foraminifera in view of bottom water oxygenation: a review[M]// Anoxia. Dordrecht: Springer, 2012: 537-552.
61 KUHNT T, FRIEDRICH O, SCHMIEDL G, et al. Relationship between pore density in benthic foraminifera and bottomwater oxygen content[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2013, 76: 85-95.
62 KUHNT T, SCHIEBEL R, SCHMIEDL G, et al. Automated and manual analyses of the pore density-to-oxygen relationship in globobulimina turgida (bailey)[J]. The Journal of Foraminiferal Research, 2014, 44(1): 5-16.
63 WANG F F, YANG S X, ZHAI B, et al. Pore density of the benthic foraminiferal test responded to the hypoxia off the Changjiang Estuary in the East China Sea[J]. Frontiers in Marine Science, 2023, 10. DOI: 10.3389/fmars.2023.1159614 .
64 ZHU Xiaodong. Ecological factors responsible foraminiferal abundance in sediments: a comprehensive consideration[J]. Journal of Nanjing University (Natural Sciences Edition), 1993, 29(4): 680-689.
朱晓东. 影响沉积物中有孔虫丰度的生态因素探讨[J]. 南京大学学报(自然科学版), 1993, 29(4): 680-689.
65 SUN Rongtao, LI Tiegang, CHANG Fengming. Distribution of benthic foraminifera and its bearing on marine environmental factors in the North Yellow Sea surface sediments[J]. Marine Geology & Quaternary Geology, 2009, 29(4): 21-28.
孙荣涛, 李铁刚, 常凤鸣. 北黄海表层沉积物中的底栖有孔虫分布与海洋环境[J]. 海洋地质与第四纪地质, 2009, 29(4):21-28.
66 BARRAS C, JORISSEN F J, LABRUNE C, et al. Live benthic foraminiferal faunas from the French Mediterranean Coast: towards a new biotic index of environmental quality[J]. Ecological Indicators, 2014, 36: 719-743.
20 李越, 李波, 李涛. 南海北部海域表层沉积物底栖有孔虫分布特征及影响因素[J]. 海洋地质前沿, 2022, 38(2): 30-36.
21 LI Shuluan. Distribution of the foraminiferal thanatocoenosis of Pearl River Estuary[J]. Marine Geology & Quaternary Geology, 1985, 5(2): 83-106.
李淑鸾. 珠江口底质中有孔虫埋葬群的分布规律[J]. 海洋地质与第四纪地质, 1985, 5(2): 85-106.
22 ZHANG Jing, HU Gang, MA Guorong, et al. Distribution of benthic foraminifera in the surficial sediments of Changjiang distal delta and its environmental implications[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 127-138.
67 LI T, CAI G Q, ZHANG M H, et al. The response of benthic foraminifera to heavy metals and grain sizes: a case study from Hainan Island, China[J]. Marine Pollution Bulletin, 2021, 167. DOI:10.1016/j.marpolbul.2021.112328 .
68 QIAO L, FAN S Y, REN C Z, et al. Total and active benthic foraminiferal community and their response to heavy metals revealed by high throughput DNA and RNA sequencing in the Zhejiang coastal waters, East China Sea[J]. Marine Pollution Bulletin, 2022, 184. DOI: 10.1016/j.marpolbul.2022.114225 .
69 ZHANG Jiangyong, WANG Pinxian. Benthic foraminifera in deep-sea reserch: retrospect and prospect[J]. Advances in Earth Science, 2004, 19(4): 545-551.
张江勇, 汪品先. 深海研究中的底栖有孔虫: 回顾与展望[J]. 地球科学进展,2004, 19(4): 545-551.
70 LESEN A E. Relationship between benthic foraminifera and food resources in South San Francisco Bay, California, USA [J]. Marine Ecology Progress Series, 2005, 297: 131-145.
71 TARASOVA T S. Environmental impacts on the benthic foraminiferal fauna in nearshore ecosystems[J]. Russian Journal of Marine Biology, 2006, 32(1): S11-S20.
72 FONTANIER C, JORISSEN F J, LICARI L, et al. Live benthic foraminiferal faunas from the bay of Biscay: faunal density,composition, and microhabitats[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2002, 49(4): 751-785.
73 REOLID M, DUARTE L V, RITA P. Changes in foraminiferal assemblages and environmental conditions during the T-OAE (Early Jurassic) in the northern Lusitanian Basin, Portugal[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 520: 30-43.
74 REOLID M, RODRÍGUEZ-TOVAR F J, NAGY J, et al. Benthic foraminiferal morphogroups of mid to outer shelf environments of the Late Jurassic (Prebetic Zone, southern Spain): characterization of biofacies and environmental significance[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 261(3/4): 280-299.
75 JENKINS C D. The ecological significance of foraminifera in the Kimmeridgian of Southern England[J]. Grzybowski Foundation Special Publication, 2000, 7: 167-178.
76 MARTINS M V A, SILVA F, LAUT L L M, et al. Response of benthic foraminifera to organic matter quantity and quality and bioavailable concentrations of metals in Aveiro Lagoon (Portugal)[J]. PLoS ONE, 2015, 10(2). DOI: 10.1371/journal.pone.0118077 .
77 VIDOVIĆ J, DOLENEC M, DOLENEC T, et al. Benthic foraminifera assemblages as elemental pollution bioindicator in marine sediments around fish farm (Vrgada Island, Central Adriatic, Croatia)[J]. Marine Pollution Bulletin, 2014, 83(1): 198-213.
78 DAMAK M, FOURATI R, ELLEUCH B, et al. Environmental quality assessment of the fish farms’ impact in the Monastir Bay (eastern of Tunisia, Central Mediterranean): a benthic foraminiferal perspective[J]. Environmental Science and Pollution Research, 2020, 27(9): 9 059-9 074.
79 VICENTE T M, YAMASHITA C, de MELLO E S S H, et al. Evaluation of the relationship between biomass of living (stained) benthic foraminifera and particulate organic matter vertical flux in an oligotrophic region, Campos Basin, southeastern Brazilian continental margin[J]. Journal of Sea Research, 2021, 176. DOI: 10.1016/j.seares.2021.102110 .
80 KAITHWAR A, SINGH D P, SARASWAT R. A highly diverse living benthic foraminiferal assemblage in the oxygen deficient zone of the southeastern Arabian Sea[J]. Biodiversity and Conservation, 2020, 29(14): 3 925-3 958.
81 WANG Haixia, ZHAO Quanmin, LI Tiegang, et al. Distribution of benthic foraminifera in surface sediments of the Liaodong Bay and its bearing on sedimentary environments[J]. Marine Geology & Quaternary Geology, 2011, 31(2): 87-94.
王海霞, 赵全民, 李铁刚, 等. 辽东湾表层沉积物中底栖有孔虫分布及其与沉积环境的关系[J]. 海洋地质与第四纪地质, 2011, 31(2): 87-94.
82 CHEN Ronghua. Distribution and influencing factors of foraminifera in surface sediments of Zhejiang coastal zone[J]. Donghai Marine Science, 1990, 8(3): 37-50.
陈荣华. 浙江海岸带表层沉积物中有孔虫的分布及其影响因子[J]. 东海海洋, 1990, 8(3): 37-50.
83 GOBI N, VASEEHARAN B, REKHA R, et al. Bioaccumulation, cytotoxicity and oxidative stress of the acute exposure selenium in Oreochromis mossambicus [J]. Ecotoxicology and Environmental Safety, 2018, 162: 147-159.
84 DU Xiaolei. Foraminifera in sediments of Huludao and Yingkou coastal areas in Liaodong Bay in recent hundred years and its response to human activities[D]. Qingdao: Ocean University of China, 2011.
杜晓蕾. 辽东湾葫芦岛与营口近海近百年来沉积物中有孔虫群及其对人为活动的响应[D]. 青岛: 中国海洋大学, 2011.
85 MISHRA R, SINGH E, KUMAR A, et al. Metal pollution in marine environment: sources and impact assessment[M]// Metals in water. Amsterdam: Elsevier, 2023: 175-193.
86 GALLEGO A, MARTÍN-GONZÁLEZ A, ORTEGA R, et al. Flow cytometry assessment of cytotoxicity and reactive oxygen species generation by single and binary mixtures of cadmium, zinc and copper on populations of the ciliated protozoan Tetrahymena thermophila [J]. Chemosphere, 2007, 68(4): 647-661.
87 LINSHY V N, SARASWAT R, KURTARKAR S R, et al. Experiment to decipher the effect of heavy metal cadmium on coastal benthic foraminifer Pararotalia nipponica (Asano)[J]. Environmental Science, 2013, 58(2): 205-211.
88 STANKOVIC S, STANKOVIC A R. Bioindicators of toxic metals[M]// Green materials for energy, products and depollution. Dordrecht: Springer, 2013: 151-228.
89 SARASWAT R, KURTARKAR S R, MAZUMDER A, et al. Foraminifers as indicators of marine pollution: a culture experiment with Rosalina leei [J]. Marine Pollution Bulletin, 2004, 48(1/2): 91-96.
90 NIGAM R, LINSHY V N, KURTARKAR S R, et al. Effects of sudden stress due to heavy metal mercury on benthic foraminifer Rosalina leei: laboratory culture experiment[J]. Marine Pollution Bulletin, 2009, 59(8/9/10/11/12): 362-368.
91 FRONTALINI F, GRECO M, di BELLA L, et al. Assessing the effect of mercury pollution on cultured benthic foraminifera community using morphological and eDNA metabarcoding approaches[J]. Marine Pollution Bulletin, 2018, 129(2): 512-524.
92 LOSADA R M T, AL-ENEZI E, CESARINI E, et al. Assessing the cadmium effects on the benthic foraminifer ammonia cf. parkinsoniana: an acute toxicity test[J]. Water, 2020, 12(4). DOI: 10.3390/w12041018 .
93 RAPOSO D, FRONTALINI F, CLEMENTE I, et al. Benthic foraminiferal response to trace elements in a tropical mesotidal Brazilian Estuary[J]. Estuaries and Coasts, 2022, 45(8): 2 610-2 631.
94 BROUILLETTE P E, KABENGI N, GOLDSTEIN S T. Effects of heavy-metal contaminants (Cd, Pb, Zn) on benthic foraminiferal assemblages grown from propagules, Sapelo Island, Georgia (USA)[J]. Marine Micropaleontology, 2019, 147: 1-11.
95 DIMIZA M D, TRIANTAPHYLLOU M V, PORTELA M, et al. Response of living benthic foraminifera to anthropogenic pollution and metal concentrations in Saronikos Gulf (Greece, Eastern Mediterranean)[J]. Minerals, 2022, 12(5). DOI: 10.3390/MIN12050591 .
96 CARNAHAN E A, HOARE A M, HALLOCK P, et al. Distribution of heavy metals and foraminiferal assemblages in sediments of Biscayne Bay, Florida, USA[J]. Journal of Coastal Research, 2008, 241: 159-169.
97 LI T, ZHANG M H, LI B, et al. Co-occurrence patterns and community assembly mechanisms of benthic foraminiferal communities in South Chinese Bays[J]. Ecological Indicators, 2022, 144. DOI:10.1016/j.ecolind.2022.109489 .
98 MINHAT F I, SHAARI H, RAZAK N S A, et al. Evaluating performance of foraminifera stress index as tropical-water monitoring tool in strait of Malacca[J]. Ecological Indicators, 2020, 111. DOI: 10.1016/j.ecolind.2019.106032 .
99 FERRARO L, SPROVIERI M, ALBERICO I, et al. Benthic foraminifera and heavy metals distribution: a case study from the Naples Harbour (Tyrrhenian Sea, Southern Italy)[J]. Environmental Pollution, 2006, 142(2): 274-287.
100 MARTINS V A, FRONTALINI F, TRAMONTE K M, et al. Assessment of the health quality of Ria de Aveiro (Portugal): heavy metals and benthic foraminifera[J]. Marine Pollution Bulletin, 2013, 70(1/2): 18-33.
101 SCHMIDT S, HATHORNE E C, SCHÖNFELD J, et al. Heavy metal uptake of nearshore benthic foraminifera during multi-metal culturing experiments[J]. Biogeosciences, 2022, 19(3): 629-664.
102 SCOTT D B, MEDIOLI F S, SCHAFER C T. Monitoring in coastal environments using foraminifera and thecamoebian indicators[M]. Cambridge, UK: Cambridge University Press, 2001.
103 DAMAK M, FRONTALINI F, ELLEUCH B, et al. Benthic foraminiferal assemblages as pollution proxies along the coastal fringe of the Monastir Bay (Tunisia)[J]. Journal of African Earth Sciences, 2019, 150: 379-388.
104 FRANZO A, CAFFAU M, NASI F, et al. Benthic foraminifera for the ecological status assessment of tourist marinas[J]. Ecological Indicators, 2023, 147. DOI:10.1016/j.ecolind.2023.110006 .
105 BUBL M, HEINZ P, WANEK W, et al. Impact of heavy metals (Cu, Fe, Pb, Zn) on carbon and nitrogen uptake of the diatom-bearing benthic foraminifera Heterostegina depressa [J]. Heliyon, 2024, 10(6). DOI: 10.1016/j.heliyon.2024.e27229 .
106 FRONTALINI F, NARDELLI M P, CURZI D, et al. Benthic foraminiferal ultrastructural alteration induced by heavy metals[J]. Marine Micropaleontology, 2018, 138: 83-89.
107 LAMB A L, WILSON G P, LENG M J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material[J]. Earth-Science Reviews, 2006, 75(1/2/3/4): 29-57.
108 ERAZO N G, BOWMAN J S. Sensitivity of the mangrove-estuarine microbial community to aquaculture effluent[J]. iScience, 2021, 24(3). DOI: 10.1016/j.isci.2021.102204 .
109 IGHALO J O, YAP P S, IWUOZOR K O, et al. Adsorption of Persistent Organic Pollutants (POPs) from the aqueous environment by nano-adsorbents: a review[J]. Environmental Research, 2022, 212(Pt A). DOI: 10.1016/j.envres.2022.113123 .
110 GUO W, JI X Y, YU Z F, et al. Research progress and challenges on persistent organic pollutants in lakes[J]. Journal of Earth Science, 2024, 35(2): 729-736.
111 ASHRAF M A. Persistent Organic Pollutants (POPs): a global issue, a global challenge[J]. Environmental Science and Pollution Research, 2017, 24(5): 4 223-4 227.
112 JONES K C. Persistent Organic Pollutants (POPs) and related chemicals in the global environment: some personal reflections[J]. Environmental Science & Technology, 2021, 55(14): 9 400-9 412.
113 SATHISHKUMAR P, MOHAN K N, GANESAN A R, et al. Persistence, toxicological effect and ecological issues of endosulfan—a review[J]. Journal of Hazardous Materials, 2021, 416. DOI:10.1016/J.JHAZMAT.2021.125779 .
114 MELYMUK L, BLUMENTHAL J, SÁŇKA O, et al. Persistent problem: global challenges to managing PCBs[J]. Environmental Science & Technology, 2022, 56(12): 9 029-9 040.
115 FAJEMILA O T, SARIASLAN N, LANGER M R. Spatial distribution of benthic foraminifera in the Lagos Lagoon (Nigeria): tracing the impact of environmental perturbations[J]. PLoS ONE, 2020, 15(12). DOI: 10.1371/journal.pone.0243481 .
116 CARIDI F, SABBATINI A, BIRARDA G, et al. Cigarette butts, a threat for marine environments: lessons from benthic foraminifera (Protista)[J]. Marine Environmental Research, 2020, 162. DOI: 10.1016/j.marenvres.2020.105150 .
117 MCGENITY T J, FOLWELL B D, MCKEW B A, et al. Marine crude-oil biodegradation: a central role for interspecies interactions[J]. Aquatic Biosystems, 2012, 8(1): 10. DOI:10.1186/2046-9063-8-10 .
118 PETERSON C H, RICE S D, SHORT J W, et al. Long-term ecosystem response to the Exxon Valdez oil spill[J]. Science, 2003, 302(5 653): 2 082-2 086.
119 SILLIMAN B R, van de KOPPEL J, MCCOY M W, et al. Degradation and resilience in Louisiana salt marshes after the BP-Deepwater Horizon oil spill[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(28): 11 234-11 239.
120 HAN Y L, NAMBI I M, PRABHAKAR C T. Environmental impacts of the Chennai oil spill accident—a case study[J]. The Science of the Total Environment, 2018, 626: 795-806.
121 NEETHU C S, SARAVANAKUMAR C, PURVAJA R, et al. Oil-spill triggered shift in indigenous microbial structure and functional dynamics in different marine environmental matrices[J]. Scientific Reports, 2019, 9. DOI: 10.1038/s41598-018-37903-x .
122 BALACHANDAR K, VISWANATHAN C, ROBIN R S, et al. Benthic foraminifera as an environmental proxy for pollutants along the coast of Chennai, India[J]. Chemosphere, 2023, 310. DOI: 10.1016/j.chemosphere.2022.136824 .
123 ETUKOKWU U A, UDOM G J, GIADOM F. Lagena inferocostata—an opportunistic index species of hydrocarbon pollutants in gokana and khana local government areas of river state, Nigeria[J]. International Journal of Research and Innovation in Social Science, 2023, VII: 779-790.
124 Bureau of Fisheries, Ministry of Agriculture and Rural Affairs, National Fisheries Technology Extension Center, China Society of Fisheries. China fishery statistical yearbook 2023 [M]. Beijing: China Agriculture Press, 2023.
农业农村部渔业渔政管理局, 全国水产技术推广总站,中国水产学会. 2023中国渔业统计年鉴 [M]. 北京: 中国农业出版社, 2023.
125 CHAMBERLAIN J. Impacts of biodeposits from suspended mussel (Mytilus edulis L.) culture on the surrounding surficial sediments[J]. ICES Journal of Marine Science, 2001, 58(2): 411-416.
126 KAISER M J. Ecological effects of shellfish cultivation[J]. Environmental Impacts of Aquaculture, 2001, 5: 51-75.
127 CARVALHO S, BARATA M, PEREIRA F, et al. Distribution patterns of macrobenthic species in relation to organic enrichment within aquaculture earthen ponds[J]. Marine Pollution Bulletin, 2006, 52(12): 1 573-1 584.
128 ABAKARI G, WU X, HE X, et al. Bacteria in biofloc technology aquaculture systems: roles and mediating factors[J]. Reviews in Aquaculture, 2022, 14(3): 1 260-1 284.
129 CEARRETA A. Population dynamics of benthic foraminifera in the Santoña estuary, Spain[J]. Revue de Paléobiologie, 1988, 22: 721-724.
130 DEBENAY J P, TSAKIRIDIS E, SOULARD R, et al. Factors determining the distribution of foraminiferal assemblages in Port Joinville Harbor (Ile d’Yeu, France): the influence of pollution[J]. Marine Micropaleontology, 2001, 43(1/2): 75-118.
131 PARSAIAN M, SHOKRI M R, PAZOOKI J. The response of benthic foraminifera to aquaculture and industrial pollution: a case study from the northern Persian Gulf[J]. Marine Pollution Bulletin, 2018, 135: 682-693.
132 DUBOIS A, BARRAS C, PAVARD J C, et al. Distribution patterns of benthic foraminifera in fish farming areas (Corsica, France): implications for the implementation of biotic indices in biomonitoring studies[J]. Water, 2021, 13(20). DOI: 10.3390/w13202821 .
133 BOUCHET V M P, DELDICQ N, BAUX N, et al. Benthic foraminifera to assess ecological quality statuses: the case of salmon fish farming[J]. Ecological Indicators, 2020, 117. DOI: 10.1016/j.ecolind.2020.106607 .
134 ORON S, ANGEL D, GOODMAN-TCHERNOV B, et al. Benthic foraminiferal response to the removal of aquaculture fish cages in the Gulf of Aqaba-Eilat, Red Sea[J]. Marine Micropaleontology, 2014, 107: 8-17.
135 PAWLOWSKI J, ESLING P, LEJZEROWICZ F, et al. Benthic monitoring of salmon farms in Norway using foraminiferal metabarcoding[J]. Aquaculture Environment Interactions, 2016, 8: 371-386.
136 MALEK M N A, FRONTALINI F. Benthic foraminifera as bioindicators of marine pollution: a bibliometric approach to unravel trends, patterns and perspectives[J]. Marine Pollution Bulletin, 2024, 199. DOI:10.1016/j.marpolbul.2023.115941 .
[1] 张涵, 许博超, 郭肖伊, 张晓洁, 于志刚. 活体底栖有孔虫鉴别方法及其应用[J]. 地球科学进展, 2021, 36(12): 1247-1257.
[2] 徐昭萌, 刘素美. 底栖有孔虫体内储存硝酸盐和反硝化研究进展[J]. 地球科学进展, 2017, 32(9): 949-958.
[3] 向 荣,刘 芳,陈 忠,颜 文,陈木宏. 冷泉区底栖有孔虫研究进展[J]. 地球科学进展, 2010, 25(2): 193-202.
[4] 李清,王家生,王晓芹,陈祈,陈洪仁. IODP 311航次底栖有孔虫碳稳定同位素对天然气水合物地质系统的指示[J]. 地球科学进展, 2008, 23(11): 1161-1166.
[5] 张江勇;汪品先. 深海研究中的底栖有孔虫:回顾与展望[J]. 地球科学进展, 2004, 19(4): 545-551.
阅读次数
全文


摘要