地球科学进展 ›› 2024, Vol. 39 ›› Issue (9): 902 -914. doi: 10.11867/j.issn.1001-8166.2024.068

综述与评述 上一篇    下一篇

中国红树林生态系统的碳源汇特征及核算
苏娟 1( ), 王凡 2( ), 王艺杰 1, 廖晓琳 3, 李婷婷 4, 朱旭东 5, 覃章才 1   
  1. 1.中山大学 大气科学学院,南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082
    2.中山大学 生态学院,广东 深圳 518107
    3.南京林业大学 生态与环境学院,江苏 南京 210037
    4.中国科学院 大气物理研究所,北京 100029
    5.福建台湾海峡海洋生态系统国家野外科学观测研究站,厦门大学 环境与生态学院,福建 厦门 361102
  • 收稿日期:2024-06-03 修回日期:2024-08-28 出版日期:2024-09-10
  • 通讯作者: 王凡 E-mail:sujuan5@mail2.sysu.edu.cn;wangfan25@mail.sysu.edu.cn
  • 基金资助:
    国家自然科学基金联合基金项目(U21A6001);中国气象局气候变化专题(QBZ202301)

Characteristics and Accounting of Carbon Sources and Sinks in Chinese Mangrove Ecosystems

Juan SU 1( ), Fan WANG 2( ), Yijie WANG 1, Xiaolin LIAO 3, Tingting LI 4, Xudong ZHU 5, Zhangcai QIN 1   

  1. 1.School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai Guangdong 519082, China
    2.School of Ecology, Sun Yat-sen University, Shenzhen Guangdong 518107, China
    3.College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
    4.Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
    5.National Observation and Research Station for the Taiwan Strait Marine Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen Fujian 361102, China
  • Received:2024-06-03 Revised:2024-08-28 Online:2024-09-10 Published:2024-11-22
  • Contact: Fan WANG E-mail:sujuan5@mail2.sysu.edu.cn;wangfan25@mail.sysu.edu.cn
  • About author:SU Juan, research area includes mangrove carbon accounting. E-mail: sujuan5@mail2.sysu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China-Joint Fund Project(U21A6001);The China Meteorological Administration Climate Change Special Program(QBZ202301)

红树林生态系统是重要的滨海“蓝碳”生态系统,其碳源汇特征和收支是当下我国“碳达峰碳中和”研究的热点。通过收集整理国内外相关研究与数据,系统总结了我国红树林生态系统的碳源汇特征、收支核算方法及现有碳源汇规模。红树林生态系统的碳源汇组分主要包括植被碳库、土壤碳库和大气碳库等。我国现有红树林植被碳汇量为4.0×104~6.1×104 t C/a,土壤碳汇量为4.4×104~9.7×104 t C/a,CH4总排放量约为1.0×103 t C/a,生态系统尺度的碳汇量为0.7×105~1.5×105 t C/a;百年尺度上CH4排放可抵消净生态系统生产力约5%的碳汇效应,横向净碳输出量为0.5×105~1.5×105 t C/a。此外,探讨了红树林碳汇对我国生态系统碳汇总量的贡献及面临的挑战,强调未来需加强红树林保护修复工作,积极开展碳汇监测,并在红树林营造和修复中注意碳汇功能与其他重要生态服务功能的平衡。

The mangrove ecosystem is regarded as a crucial coastal “blue carbon” ecosystem and the characteristics of carbon sources and sinks and their budget are currently a hot topic of research in China on “carbon peaking and carbon neutrality.” Through the collection and compilation of relevant domestic and international research and data, this study summarizes the characteristics of carbon sources and sinks, methodologies for carbon accounting, and budgets of carbon sources and sinks in Chinese mangrove ecosystems. Carbon sources and sinks in mangrove ecosystems primarily include vegetation and soil carbon stocks and greenhouse gases. In Chinese mangrove ecosystems, the annual carbon sequestration of vegetation ranges from 4.0×104 to 6.1×104 t C/a, whereas the annual carbon sequestration of soil ranges from 4.4×104 to 9.7×104 t C/a. The total CH4 emissions are approximately 1.0×103 t C/a and the ecosystem-scale carbon sequestration ranges from 0.7×105 to 1.5×105 t C/a. Over a 100-year period, CH4 emissions can offset approximately 5% of the net ecosystem productivity in terms of carbon sequestration effects. The net lateral carbon output is 0.5×105 to 1.5×105 t C/a. Furthermore, the contribution of mangrove carbon sinks to total ecosystem carbon sequestration in China and their challenges have been discussed thoroughly. Future efforts should focus on strengthening mangrove conservation and restoration, actively monitoring carbon sequestration, and ensuring a balance between the carbon sequestration function and other vital ecological services.

中图分类号: 

图1 红树林生态系统的碳循环过程
绿色箭头为碳输入,红色箭头为碳输出,黑色箭头为碳储存过程;DOC为溶解性有机碳,POC为颗粒有机碳,DIC为溶解性无机碳
Fig. 1 The carbon cycling processes in mangrove ecosystems
Green arrows: carbon input, red arrows: carbon output, and black arrows: carbon storage; DOC: Dissolved Organic Carbon, POC: Particulate Organic Carbon, DIC: Dissolved Inorganic Carbon
表1 我国红树林土壤碳汇的相关参数估算值
Table 1 Estimates of relevant parameters for soil carbon sequestration in Chinese mangrove forests
表2 中国红树林生态系统碳通量
Table 2 Carbon flux in mangrove ecosystems in China
表3 红树林主要的政策性文件和碳汇方法学
Table 3 Major policiesregulationsand carbon sequestration methodologies for mangrove ecosystems
类别 时间 发布机构 文件名称
红树林保护修复政策文件 国家政策 2020年 自然资源部、国家林业和草原局 《红树林保护修复专项行动计划(2020—2025年)》
2021年 自然资源部、国家林业和草原局 《红树林生态修复手册》
2022年 国家林业和草原局、自然资源部 《全国湿地保护规划(2022—2030年)》
地方政策 2017年 湛江市人民政府 《广东湛江红树林国家级自然保护区管理办法》
2018年 广西壮族自治区人民代表大会常务委员会 《广西壮族自治区红树林资源保护条例》
2020年 福建省自然资源厅、福建省林业局 《福建省红树林保护修复专项行动实施方案》
2022年 海南省人民政府 《海南省加强红树林保护修复实施方案》
碳汇核算和项目开发方法学 国家层面 2022年 自然资源部 《海洋碳汇核算方法》
2023年 大自然保护协会 《红树林恢复碳汇计量与监测方法》
2023年 生态环境部 《温室气体自愿减排项目方法学 红树林营造(CCER-14-002-V01)》
2023年 自然资源部 《蓝碳生态系统碳汇计量监测技术规程》
地方层面 2023年 海南省生态环境厅 《海南红树林造林/再造林碳汇项目方法学》
2023年 福建省生态环境厅 《福建省修复红树林碳汇项目方法学》
2023年 广东省生态环境厅 《广东省红树林碳普惠方法学(2023年版)》
2023年 深圳市规划和自然资源局 《红树林保护项目碳汇方法学(试行)》
2023年 深圳市市场监督管理局 《海洋碳汇核算指南》
2024年 深圳市市场监督管理局 《红树林碳储量调查和碳汇核算指南》)
1 LIN Peng. Mangrove ecosystem in China[M]. Beijing:Science Press,1997.
林鹏. 中国红树林生态系统[M]. 北京:科学出版社,1997.
2 WANG Wenqing, WANG Mao. The mangroves of China[M]. Beijing:Science Press,2007.
王文卿,王瑁. 中国红树林[M]. 北京:科学出版社,2007.
3 ALONGI D M. Carbon balance in salt marsh and mangrove ecosystems:a global synthesis[J]. Journal of Marine Science and Engineering,2020,8(10). DOI:10.3390/jmse8100767 .
4 BOUILLON S, BORGES A V, CASTAÑEDA-MOYA E, et al. Mangrove production and carbon sinks:a revision of global budget estimates[J]. Global Biogeochemical Cycles,2008,22(2). DOI:10.1029/2007GB003052 .
5 WANG F M, SANDERS C J, SANTOS I R, et al. Global blue carbon accumulation in tidal wetlands increases with climate change[J]. National Science Review,2020,8(9). DOI:10.1093/nsr/nwaa296/6035244 .
6 WANG F M, LIU J H, QIN G M, et al. Coastal blue carbon in China as a nature-based solution toward carbon neutrality[J]. The Innovation, 2023, 4(5). DOI:10.1016/j.xinn.2023.100481 .
7 QIN Z C, DENG X, GRISCOM B, et al. Natural climate solutions for China:the last mile to carbon neutrality[J]. Advances in Atmospheric Sciences,2021,38(6):889-895.
8 State Council of the People’s Republic of China. State Council’s notice on issuing the action plan for carbon peak before 2030[Z]. 2021.
中华人民共和国国务院. 国务院关于印发2030年前碳达峰行动方案的通知[Z]. 2021.
9 Ministry of Natural Resources of the People’s Republic of China. Announcement on the release of the guidelines for the assessment of the impact of anthropogenic underwater noise on marine life and 12 other industry standards [Z]. 2022.
中华人民共和国自然资源部. 自然资源部关于发布《人为水下噪声对海洋生物影响评价指南》等12项行业标准的公告[Z]. 2022.
10 VERRA. Zhanjiang afforestation project [EB/OL]. 2021. [2024-09-15]. .
11 Shenzhen Municipal Planning and Natural Resources Bureau. Announcement on the auction of carbon sink conservation of mangroves in Futian mangrove nature reserve,Shenzhen [Z]. 2023.
深圳市规划和自然资源局. 深圳市福田红树林自然保护区红树林保护碳汇拍卖公告[Z]. 2023.
12 LU Ri, WANG Chen, CHEN Ye, et al. Carbon credit measurement method for mangrove conservation carbon sink project:a case study of Futian mangrove nature reserve in Shenzhen[J]. Scientia Silvae Sinicae,2023,59(3):44-53.
陆日,王晨,陈烨,等.红树林保护碳汇项目碳信用计量方法:以深圳市福田红树林保护区为例[J]. 林业科学,2023,59(3):44-53.
13 ZHAO P, GE S, HE D H, et al. Incorporating coastal blue carbon into subnational greenhouse gas inventories[J]. Frontiers in Marine Science,2022,9. DOI:10.3389/fmars.2022.932984 .
14 JIA P H, HUANG W D, ZHANG Z Y, et al. The carbon sink of mangrove ecological restoration between 1988-2020 in Qinglan Bay,Hainan Island,China[J]. Forests,2022,13(10). DOI:10.3390/f13101547 .
15 DAI Ziyi, LIAO Lirong, LIANG Jiahui, et al. Blue carbon stocks of mangrove from 1988 to 2018 in Beihai,Guangxi[J]. Marine Environmental Science,2022,41(1):8-15,23.
戴子熠,廖丽蓉,梁嘉慧,等. 1988—2018年广西北海红树林蓝碳储量变化分析[J]. 海洋环境科学,2022,41(1):8-15,23.
16 LI Cuihua, CAI Rongshuo, YAN Xiuhua. Analysis on the changes of carbon budget of mangrove wetland in Hainan Dongzhaigang during 2010-2018[J]. Marine Science Bulletin,2020,39(4):488-497.
李翠华,蔡榕硕,颜秀花. 2010—2018年海南东寨港红树林湿地碳收支的变化分析[J].海洋通报,2020,39(4):488-497.
17 CHEN Mengchen, CHEN Yi, JIANG Liuzhi, et al. Review on carbon fixation and sequestration potential of mangroves ecosystems[J]. Shandong Forestry Science and Technology,2018,48(2):127-131.
陈孟晨,陈义,姜刘志,等. 红树林生态系统固碳功能和潜力研究进展[J]. 山东林业科技,2018,48(2):127-131.
18 MAO Zilong, YANG Xiaomao, ZHAO Zhenye, et al. Preliminary study on mangrove ecosystem carbon cycle of Kandelia candel in Futian nature reserve,Shenzhen,China[J]. Ecology and Environmental Sciences,2012,21(7):1 189-1 199.
毛子龙,杨小毛,赵振业,等. 深圳福田秋茄红树林生态系统碳循环的初步研究[J].生态环境学报,2012,21(7):1 189-1 199.
19 BAI J K, MENG Y C, GOU R K, et al. Mangrove diversity enhances plant biomass production and carbon storage in Hainan Island,China[J]. Functional Ecology,2021,35(3):774-786.
20 XIONG Y M, LIAO B W, PROFFITT E, et al. Soil carbon storage in mangroves is primarily controlled by soil properties:a study at Dongzhai Bay, China[J]. Science of the Total Environment, 2018, 619/620: 1 226-1 235.
21 ZHANG Li, GUO Zhihua, LI Zhiyong. Carbon storage and carbon sink of mangrove wetland:research progress[J]. Chinese Journal of Applied Ecology,2013, 24(4): 1 153-1 159.
张莉,郭志华,李志勇. 红树林湿地碳储量及碳汇研究进展[J]. 应用生态学报,2013, 24(4): 1 153-1 159.
22 LI C, WANG F, YANG P, et al. Mangrove wetlands distribution status identification,changing trend analyzation and carbon storage assessment of China[J]. China Geology,2023,6:1-11.
23 YANG Fang, WANG Mao, WANG Wenqing, et al. Development technology and carbon trading strategies of mangrove carbon sink[J].Acta Scientiarum Naturalium Universitatis Pekinensis, 2024, 60(4): 723-731.
杨芳,王瑁,王文卿,等. 红树林碳汇开发技术与碳交易对策[J]. 北京大学学报(自然科学版), 2024, 60(4): 723-731.
24 WANG J L, YU G R, HAN L, et al. Ecosystem carbon exchange across China’s coastal wetlands:spatial patterns,mechanisms,and magnitudes[J]. Agricultural and Forest Meteorology, 2024, 345. DOI:10.1016/j.agrformet.2023.109859 .
25 BOUILLON S, DAHDOUH-GUEBAS F, RAO A V V S, et al. Sources of organic carbon in mangrove sediments:variability and possible ecological implications[J]. Hydrobiologia,2003, 495(1): 33-39.
26 LOVELOCK C E, DUARTE C M. Dimensions of blue carbon and emerging perspectives[J]. Biology Letters,2019,15(3). DOI:10.1098/rsbl.2018.0781 .
27 XIONG Y M, LIAO B W, WANG F M. Mangrove vegetation enhances soil carbon storage primarily through in situ inputs rather than increasing allochthonous sediments[J]. Marine Pollution Bulletin, 2018, 131(Pt A): 378-385.
28 KRISTENSEN E, BOUILLON S, DITTMAR T, et al. Organic carbon dynamics in mangrove ecosystems:a review[J]. Aquatic Botany, 2008, 89(2): 201-219.
29 ZHU J J, YAN B. Blue carbon sink function and carbon neutrality potential of mangroves[J]. Science of the Total Environment, 2022, 822. DOI:10.1016/j.scitotenv.2022.153438 .
30 SANDERMAN J, HENGL T, FISKE G J. Soil carbon debt of 12, 000 years of human land use[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(36): 9 575-9 580.
31 LIU X, XIONG Y M, LIAO B W. Relative contributions of leaf litter and fine roots to soil organic matter accumulation in mangrove forests[J]. Plant and Soil, 2017, 421(1): 493-503.
32 ALONGI D M. Carbon sequestration in mangrove forests[J]. Carbon Management, 2012, 3(3): 313-322.
33 CHEN S Y, CHEN B, CHEN G C, et al. Higher soil organic carbon sequestration potential at a rehabilitated mangrove comprised of Aegiceras corniculatum compared to Kandelia obovata [J]. Science of the Total Environment, 2021,752. DOI:10.1016/j.scitotenv.2020.142279 .
34 LUNSTRUM A, CHEN L Z. Soil carbon stocks and accumulation in young mangrove forests[J]. Soil Biology and Biochemistry, 2014, 75: 223-232.
35 OUYANG X G, LEE S Y. Improved estimates on global carbon stock and carbon pools in tidal wetlands[J]. Nature Communications, 2020, 11. DOI:10.1038/s41467-019-14120-2 .
36 WANG Y S, GU J D. Ecological responses,adaptation and mechanisms of mangrove wetland ecosystem to global climate change and anthropogenic activities[J]. International Biodeterioration & Biodegradation,2021,162. DOI:10.1016/j.ibiod.2021.105248 .
37 RICHARDS D R, FRIESS D A. Rates and drivers of mangrove deforestation in southeast Asia,2000-2012[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(2): 344-349.
38 DENG H, HE J X, FENG D, et al. Microplastics pollution in mangrove ecosystems:a critical review of current knowledge and future directions[J]. Science of the Total Environment,2021, 753. DOI:10.1016/j.scitotenv.2020.142041 .
39 SASMITO S D, SILLANPÄÄ M, HAYES M A, et al. Mangrove blue carbon stocks and dynamics are controlled by hydrogeomorphic settings and land-use change[J]. Global Change Biology, 2020, 26(5): 3 028-3 039.
40 QIN G M, HE W J, SANDERS C J, et al. Contributions of plant-and microbial-derived residuals to mangrove soil carbon stocks:implications for blue carbon sequestration[J]. Functional Ecology, 2024, 38(3): 573-585.
41 GUAN W, XIONG Y M, LIAO B W. Soil inorganic carbon in mangroves of tropical China:patterns and implications[J]. Biology Letters, 2018, 14(11). DOI:10.1098/rsbl.2018.0483 .
42 OUYANG X G, GUO F, LEE S Y. Multiple drivers for carbon stocks and fluxes in different types of mangroves[J]. Science of the Total Environment,2024,906. DOI:10.1016/j.scitotenv.2023.167511 .
43 LUO Z K, FENG W T, LUO Y Q, et al. Soil organic carbon dynamics jointly controlled by climate,carbon inputs,soil properties and soil carbon fractions[J]. Global Change Biology,2017, 23(10): 4 430-4 439.
44 CHEN J H, HUANG Y Y, CHEN G C, et al. Effects of simulated sea level rise on stocks and sources of soil organic carbon in Kandelia obovata mangrove forests[J]. Forest Ecology and Management, 2020, 460. DOI:10.1016/j.foreco.2020.117898 .
45 XIA S P, SONG Z L, van ZWIETEN L, et al. Storage,patterns and influencing factors for soil organic carbon in coastal wetlands of China[J]. Global Change Biology,2022,28(20):6 065-6 085.
46 HU M J, SARDANS J, SUN D Y, et al. Microbial diversity and keystone species drive soil nutrient cycling and multifunctionality following mangrove restoration[J]. Environmental Research, 2024, 251(Pt 2). DOI:10.1016/j.envres.2024.118715 .
47 LU Z, QIN G M, GAN S C, et al. Blue carbon sink capacity of mangroves determined by leaves and their associated microbiome[J]. Global Change Biology, 2024, 30(1). DOI:10.1111/gcb.17007 .
48 WANG Q, WEN Y X, ZHAO B, et al. Coastal soil texture controls soil organic carbon distribution and storage of mangroves in China[J]. Catena, 2021, 207. DOI:10.1016/j.catena.2021.105709 .
49 GOLDBERG L, LAGOMASINO D, THOMAS N, et al. Global declines in human-driven mangrove loss[J]. Global Change Biology, 2020, 26(10):5 844-5 855.
50 ROSENTRETER J A, AL-HAJ A N, FULWEILER R W, et al. Methane and nitrous oxide emissions complicate coastal blue carbon assessments[J].Global Biogeochemical Cycles,2021, 35(2). DOI:10.1029/2020GB006858 .
51 IPCC. Climate change 2013:the physical science basis:working group I contribution to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge:Cambridge University Press, 2014.
52 HE Y X, GUAN W, XUE D, et al. Comparison of methane emissions among invasive and native mangrove species in Dongzhaigang,Hainan Island[J]. Science of the Total Environment, 2019, 697. DOI:10.1016/j.scitotenv.2019.133945 .
53 HERNÁNDEZ M E, JUNCA-GÓMEZ D. Carbon stocks and greenhouse gas emissions (CH4 and N2O) in mangroves with different vegetation assemblies in the central coastal plain of Veracruz Mexico[J]. Science of the Total Environment, 2020,741. DOI:10.1016/j.scitotenv.2020.140276 .
54 LIN X L, HETHARUA B, LIN L, et al. Mangrove sediment microbiome:adaptive microbial assemblages and their routed biogeochemical processes in Yunxiao mangrove national nature reserve,China[J]. Microbial Ecology, 2019, 78(1): 57-69.
55 CAMERON C, HUTLEY L B, FRIESS D A, et al. Hydroperiod,soil moisture and bioturbation are critical drivers of greenhouse gas fluxes and vary as a function of landuse change in mangroves of Sulawesi,Indonesia[J]. Science of the Total Environment, 2019, 654: 365-377.
56 AL-HAJ A N, FULWEILER R W. A synthesis of methane emissions from shallow vegetated coastal ecosystems[J]. Global Change Biology, 2020, 26(5): 2 988-3 005.
57 LIN C W, LIN W J, HO C W, et al. Flushing emissions of methane and carbon dioxide from mangrove soils during tidal cycles[J]. Science of the Total Environment, 2024, 919. DOI:10.1016/j.scitotenv.2024.170768 .
58 LI Y L, GE Z M, XIE L N, et al. Effects of waterlogging and salinity increase on CO2 efflux in soil from coastal marshes[J]. Applied Soil Ecology, 2022, 170. DOI:10.1016/j.apsoil.2021.104268 .
59 DEAN J F, MIDDELBURG J J, RÖCKMANN T, et al. Methane feedbacks to the global climate system in a warmer world[J]. Reviews of Geophysics, 2018, 56(1): 207-250.
60 HAN G X, SUN B Y, CHU X J, et al. Precipitation events reduce soil respiration in a coastal wetland based on four-year continuous field measurements[J]. Agricultural and Forest Meteorology, 2018, 256/257: 292-303.
61 HAMILTON S E, FRIESS D A. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012[J]. Nature Climate Change, 2018, 8: 240-244.
62 ZHU Yuanhui, LIU Lin, LIU Kai, et al. Progress in researches on plant biomass of mangrove forests[J]. Wetland Science,2014, 12(4): 515-526.
朱远辉,柳林,刘凯,等. 红树林植物生物量研究进展[J]. 湿地科学,2014, 12(4): 515-526.
63 MENG Y C, GOU R K, BAI J K, et al. Spatial patterns and driving factors of carbon stocks in mangrove forests on Hainan Island,China[J]. Global Ecology and Biogeography, 2022, 31(9): 1 692-1 706.
64 LI Z, ZAN Q J, YANG Q, et al. Remote estimation of mangrove aboveground carbon stock at the species level using a low-cost unmanned aerial vehicle system[J]. Remote Sensing,2019, 11(9). DOI:10.3390/rs11091018 .
65 LUO Z K, SUN O J, WANG E L, et al. Modeling productivity in mangrove forests as impacted by effective soil water availability and its sensitivity to climate change using biome-BGC[J]. Ecosystems, 2010, 13(7): 949-965.
66 MENG Y C, BAI J K, GOU R K, et al. Relationships between above- and below-ground carbon stocks in mangrove forests facilitate better estimation of total mangrove blue carbon[J]. Carbon Balance and Management,2021,16(1). DOI:10.1186/s13021-021-00172-9 .
67 LIU H X, REN H, HUI D F, et al. Carbon stocks and potential carbon storage in the mangrove forests of China[J]. Journal of Environmental Management, 2014, 133: 86-93.
68 XIN K, YAN K, GAO C, et al. Carbon storage and its influencing factors in Hainan Dongzhangang mangrove wetlands[J]. Marine and Freshwater Research, 2018, 69(5): 771-779.
69 MAO D H, WANG Z M, DU B J, et al. National wetland mapping in China:a new product resulting from object-based and hierarchical classification of Landsat 8 OLI images[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2020,164:11-25.
70 KAUFFMAN J B, HEIDER C, COLE T G, et al. Ecosystem carbon stocks of Micronesian mangrove forests[J]. Wetlands,2011, 31(2): 343-352.
71 WANG W Q, FU H F, LEE S Y, et al. Can strict protection stop the decline of mangrove ecosystems in China? from rapid destruction to rampant degradation[J]. Forests,2020,11(1). DOI:10.3390/f11010055 .
72 WANG G, GUAN D, PEART M R, et al. Change in ecosystem carbon storage of the mangrove forest along the Chinese coast between 1990 and 2010[J]. Fresenius Environmental Bulletin, 2016, 25(12): 5 555-5 564.
73 PHAM T D, YOKOYA N, NGUYEN T T T, et al. Improvement of mangrove soil carbon stocks estimation in North Vietnam using sentinel-2 data and machine learning approach[J]. GIScience & Remote Sensing, 2021, 58(1): 68-87.
74 FAN B X, LI Y F. China’s conservation and restoration of coastal wetlands offset much of the reclamation-induced blue carbon losses[J]. Global Change Biology, 2024, 30(1). DOI:10.1111/gcb.17039 .
75 FENG C C, YE G Q, JIANG Q T, et al. The contribution of ocean-based solutions to carbon reduction in China[J]. Science of the Total Environment,2021,797. DOI:10.1016/j.scitotenv.2021.149168 .
76 FU C C, LI Y, ZENG L, et al. Stocks and losses of soil organic carbon from Chinese vegetated coastal habitats[J]. Global Change Biology, 2021, 27(1): 202-214.
77 MENG W Q, FEAGIN R A, HU B B, et al. The spatial distribution of blue carbon in the coastal wetlands of China[J]. Estuarine,Coastal and Shelf Science, 2019, 222: 13-20.
78 CHEN Luzhen, YANG Shengchang, LIN Guanghui. Mangroves in China under global change[M]. Xiamen:Xiamen University Press,2021.
陈鹭真,杨盛昌,林光辉. 全球变化下的中国红树林[M]. 厦门:厦门大学出版社,2021.
79 ZHOU Chenhao, MAO Qinyu, XU Xiao, et al. Preliminary analysis of C sequestration potential of blue carbon ecosystems on Chinese coastal zone[J]. Scientia Sinica Vitae(Vitae),2016,46(4): 475-486.
周晨昊,毛覃愉,徐晓,等. 中国海岸带蓝碳生态系统碳汇潜力的初步分析[J]. 中国科学:生命科学,2016, 46(4): 475-486.
80 HU Xuedong. National blue carbon sink research report:feasibility study of national blue carbon action[M]. Beijing:China Book Publishing House, 2020.
胡学东. 国家蓝色碳汇研究报告:国家蓝碳行动可行性研究[M]. 北京:中国书籍出版社,2020.
81 CHEN G C, TAM N F Y, YE Y. Summer fluxes of atmospheric greenhouse gases N2O,CH4 and CO2 from mangrove soil in South China[J]. Science of the Total Environment, 2010, 408(13): 2 761-2 767.
82 WANG C L, ZHAO X S, CHEN X Y, et al. Variations in CO2 and CH4 exchange in response to multiple biophysical factors from a mangrove wetland park in southeastern China[J]. Atmosphere, 2023, 14(5). DOI:10.3390/atmos14050805 .
83 GOU R K, BUCHMANN N, CHI J S, et al. Temporal variations of carbon and water fluxes in a subtropical mangrove forest:insights from a decade-long eddy covariance measurement[J]. Agricultural and Forest Meteorology, 2023, 343. DOI:10.1016/j.agrformet.2023.109764 .
84 XU Y W, LIAO B W, JIANG Z M, et al. Emission of greenhouse gases(CH4 and CO2)into the atmosphere from restored mangrove soil in South China[J]. Journal of Coastal Research,2020, 37(1). DOI:10.2112/JCOASTRES-D-20-00054.1 .
85 CHEN Y P, CHEN G C, YE Y. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation[J]. Science of the Total Environment, 2015, 526: 19-28.
86 LU C Y, WONG Y S, TAM N F Y, et al. Methane flux and production from sediments of a mangrove wetland on Hainan Island,China[J]. Mangroves and Salt Marshes,1999,3(1):41-49.
87 ZHAO X S, WANG C L, LI T T, et al. Net CO2 and CH4 emissions from restored mangrove wetland:new insights based on a case study in estuary of the Pearl River,China[J]. Science of the Total Environment,2022,811. DOI:10.1016/j.scitotenv.2021.151619 .
88 LIU J G, ZHOU Y L, VALACH A, et al. Methane emissions reduce the radiative cooling effect of a subtropical estuarine mangrove wetland by half[J]. Global Change Biology, 2020,26(9): 4 998-5 016.
89 LIU J G, LAI D Y F. Subtropical mangrove wetland is a stronger carbon dioxide sink in the dry than wet seasons[J]. Agricultural and Forest Meteorology,2019,278. DOI:10.1016/j.agrformet.2019.107644 .
90 ZHU X D, SUN C Y, QIN Z C. Drought-induced salinity enhancement weakens mangrove greenhouse gas cycling[J]. Journal of Geophysical Research:Biogeosciences,2021,126(8). DOI:10.1029/2021JG006416 .
91 CHEN H, LU W, YAN G, et al. Typhoons exert significant but differential impacts on net ecosystem carbon exchange of subtropical mangrove forests in China[J]. Biogeosciences,2014,11(19):5 323-5 333.
92 CUI X W, LIANG J, LU W Z, et al. Stronger ecosystem carbon sequestration potential of mangrove wetlands with respect to terrestrial forests in subtropical China[J]. Agricultural and Forest Meteorology, 2018, 249: 71-80.
93 SUN Ming, XIE Min, MO Weihua, et al .Typhoon impacts on carbon exchange of mangrove net ecosystem in Guangxi[J]. Journal of Meteorological Research and Application, 2021, 42(1): 34-40.
孙明,谢敏,莫伟华,等. 台风过程对广西红树林净生态系统碳交换的影响研究[J]. 气象研究与应用,2021,42(1): 34-40.
94 ROSENTRETER J A, MAHER D T, ERLER D V, et al. Methane emissions partially offset “blue carbon” burial in mangroves[J]. Science Advances, 2018, 4(6). DOI:10.1126/sciadv.aao4985 .
95 COTOVICZ L C, ABRIL G, SANDERS C J, et al. Methane oxidation minimizes emissions and offsets to carbon burial in mangroves[J]. Nature Climate Change, 2024, 14: 275-281.
96 PIAO S L, FANG J Y, CIAIS P, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature,2009,458(7 241):1 009-1 013.
97 FANG J Y, YU G R, LIU L L, et al. Climate change,human impacts,and carbon sequestration in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4 015-4 020.
98 LIU C, LIU G Y, CASAZZA M, et al. Current status and potential assessment of China’s Ocean carbon sinks[J]. Environmental Science & Technology, 2022, 56(10): 6 584-6 595.
99 YU G R, ZHU X J, FU Y L, et al. Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China[J]. Global Change Biology, 2013, 19(3): 798-810.
100 Ministry of Natural Resources of the People’s Republic of China, National Forestry and Grassland Administration. Notice on issuing the special action plan for the protection and restoration of mangroves (2020-2025)[Z]. Beijing:National Forestry and Grassland Administration,2020.
中华人民共和国自然资源部,国家林业和草原局. 关于印发《红树林保护修复专项行动计划(2020—2025年)》的通知[Z]. 北京:自然资源部,2020.
101 FENG B B, TAO Y C, XIE X S, et al. Identification of suitable mangrove distribution areas and estimation of carbon stocks for mangrove protection and restoration action plan in China[J]. Journal of Marine Science and Engineering, 2024,12(3). DOI:10.3390/jmse12030445 .
[1] 牛雪琦, 时巍巍, 吴文欣, 刘树伟, 杨平, 李思亮, 晏智锋. 内陆水体 CH4 冒泡排放研究进展[J]. 地球科学进展, 2023, 38(8): 802-814.
[2] 许茜, 效存德, 冯雅茹, 杜志恒, 王磊, 魏志强. 微生物介导的热融湖碳循环关键过程研究进展[J]. 地球科学进展, 2023, 38(5): 470-482.
[3] 杨卫东, 曾联波, 李想. 碳汇效应及其影响因素研究进展[J]. 地球科学进展, 2023, 38(2): 151-167.
[4] 陈小刚, 李凌, 杜金洲. 红树林和盐沼湿地间隙水交换过程及其碳汇潜力[J]. 地球科学进展, 2022, 37(9): 881-898.
[5] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[6] 张亚峰, 姚振, 马强, 姬丙艳, 苗国文, 许光, 马风娟. 青藏高原北缘土壤碳库和碳汇潜力研究[J]. 地球科学进展, 2018, 33(2): 206-212.
[7] 潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
[8] 黄奇波, 覃小群, 刘朋雨, 张连凯, 苏春田. 非岩溶水和硫酸参与溶蚀对湘南地区地下河流域岩溶碳汇通量的影响[J]. 地球科学进展, 2017, 32(3): 307-318.
[9] 许子娟, 左昕昕, 范百龄, 丁新泉, 张晓东, 李子川, 闫翠香, 宋照亮. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151-159.
[10] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[11] 蒲俊兵, 蒋忠诚, 袁道先, 章程. 岩石风化碳汇研究进展:基于IPCC 第五次气候变化评估报告的分析[J]. 地球科学进展, 2015, 30(10): 1081-1090.
[12] 焦念志, 张传伦, 谢树成, 刘纪化, 张飞. 古今结合论碳汇、见微知著识海洋 *[J]. 地球科学进展, 2014, 29(11): 1294-1297.
[13] 郑聚锋, 潘根兴, 程琨, 张旭辉. 从《IPCC 2006 国家温室气体排放清单增补:2013湿地》谈湿地温室气体计量进展及问题[J]. 地球科学进展, 2014, 29(10): 1120-1125.
[14] 张介霞, 詹力扬, 陈立奇. 南大洋N 2O研究进展及测量新技术展望 *[J]. 地球科学进展, 2013, 28(11): 1201-1208.
[15] 赵吉,李靖宇,周玉,白玉涛,于景丽. 甲烷氧化与氨氧化微生物及其耦合功能[J]. 地球科学进展, 2012, 27(6): 651-659.
阅读次数
全文


摘要