地球科学进展 ›› 2023, Vol. 38 ›› Issue (2): 151 -167. doi: 10.11867/j.issn.1001-8166.2023.004

综述与评述 上一篇    下一篇

碳汇效应及其影响因素研究进展
杨卫东 1( ), 曾联波 1 , 2( ), 李想 2   
  1. 1.中国石油大学(北京)地球科学学院,北京 102249
    2.北京大学能源研究院,北京 100871
  • 收稿日期:2022-08-12 修回日期:2022-12-23 出版日期:2023-02-10
  • 通讯作者: 曾联波 E-mail:1204505055@qq.com;lbzeng@sina.com

Advances in Research of Carbon Sinks and Their Influencing Factors Evaluation

Weidong YANG 1( ), Lianbo ZENG 1 , 2( ), Xiang LI 2   

  1. 1.College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China
    2.Institute of Energy, Peking University, Beijing 100871, China
  • Received:2022-08-12 Revised:2022-12-23 Online:2023-02-10 Published:2023-03-02
  • Contact: Lianbo ZENG E-mail:1204505055@qq.com;lbzeng@sina.com
  • About author:YANG Weidong (1998-), male, Baoji City, Shaanxi Province, Master student. Research areas include resources and environment. E-mail: 1204505055@qq.com

碳中和现已成为全球共识。为实现碳中和目标,除了发展新能源降低碳排放外,提升固碳增汇能力是其重要途径。碳汇可分为海洋碳汇和陆地碳汇两大类。海洋碳汇包括沿海生态碳汇、海水生态碳汇和人工海洋碳汇。其中,沿海生态碳汇主要由海岸植被固碳效应和沿海沉积物负载形成,海水生态碳汇主要由海洋碳泵效应形成,这两种碳汇与季风洋流条件、陆源有机物输入、海岸地理条件和人为活动直接相关,人工海洋碳汇的可行性需要综合考虑对海洋生态的影响。陆地碳汇包括陆地植被碳汇、自然地质碳汇和人工地质碳汇。其中,陆地植被碳汇是通过森林植被、草地植被以及湿地植被等植物的光合作用实现,受气温与降水、大气成分、土地利用变化以及自然干扰等因素的影响。自然地质碳汇主要由土壤碳汇和岩石风化碳汇组成,土壤碳汇受区域植被条件、气候条件和土壤利用等因素影响,而碳酸盐岩和硅酸盐岩风化作用吸收大气CO2的岩石风化碳汇主要受气温、降水、岩石类型、水文条件以及人类活动的影响。人工地质碳汇是将捕集后的CO2注入地下指定区域进行长期封存形成,其封存能力受地质构造、储盖条件、地热、地层水动力、油气潜力和盆地勘探开发程度等因素的影响。从气候环境、自然资源和社会经济等多种措施有机结合实现固碳增汇,是未来实现碳中和的有效途径。

Carbon neutrality has become a topic of global consensus. To achieve carbon neutrality, it is also important to enhance carbon sequestration and sink capabilities, apart from the development of new energy to minimize carbon emissions. Carbon sinks can be divided into marine and terrestrial types. The marine carbon sink is mainly composed of three parts: the coastal ecological carbon sink mainly formed by the carbon sequestration effect of coastal vegetation and coastal sediment load, and the marine ecological carbon sink mainly formed by dissolution and microbial pumps in the ocean. Both are directly related to monsoon oceanic current conditions, terrestrial organic inputs, coastal geographical conditions, and human activity. The feasibility of an artificial oceanic carbon sink depends on its impact on marine ecology. In terrestrial carbon sinks, vegetation carbon sinks are formed by organic carbon generated by the photosynthesis of terrestrial plants, including forest, grassland, and wetland vegetation. The influencing factors include temperature and precipitation, atmospheric composition, land use and its changes, and natural disturbance effects. Natural geological carbon sinks mostly consist of soil and karst carbon sinks. Soil carbon sinks are affected by regional vegetation, climatic conditions, soil utilization, and other factors. Karst carbon sinks are mainly produced by weathering between carbonate and silicate rocks absorbing atmospheric CO2, which is affected by temperature, precipitation, rock type, hydrological conditions, and human activity. An artificial geological carbon sink was formed because the captured CO2 was injected into the designated area underground for storage. The storage capacity depends on the evaluation of geological characteristics, reservoir conditions, oil distribution, and production. For the future, it is necessary to act decisively in climatic, natural resources, the social economy, and other aspects to fix carbon, enhance carbon sequestration, and achieve carbon neutrality.

中图分类号: 

表1 碳汇的分类及时间尺度
Table 1 Classification and time scale of carbon sinks
图1 海洋碳汇效应示意图
(a)海洋碳泵效应示意图 5 ;(b)主要的沿海生态碳汇 14
Fig. 1 Schematic diagram of ocean carbon sink
(a) The principle of the ocean carbon pump 5 ;(b) Major coastal ecological carbon sinks 14
图2 陆地碳循环概念图(据参考文献[ 11 ]修改)
Fig. 2 Concept map of terrestrial carbon cyclemodified after reference 11 ])
图3 湿地生态中植物吸收转化CO2 原理示意图(据参考文献[ 11 ]修改)
Fig. 3 Principles of plants absorption and transformation of CO2 in wetland ecologymodified after reference 11 ])
图4 岩石风化碳汇作用过程示意图(据参考文献[ 42 ]修改)
Fig. 4 The process of weathering carbon sinkmodified after reference 42 ])
图5 碳捕集、利用与封存(CCUS)工程概念示意图(据参考文献[ 45 ]修改)
Fig. 5 Conceptual diagram of Carbon CaptureUtilization and StorageCCUSprojectmodified after reference 45 ])
图6 CO2 提高采收率示意图(据参考文献[ 9 ]修改)
Fig. 6 Diagram of CO2 injection for enhanced oil recoverymodified after reference 9 ])
图7 陆地生态碳汇及碳源影响因素强度随时间变化对比图(据参考文献[ 11 ]修改)
Fig. 7 The influence factors of terrestrial ecological carbon sink and carbon sourceand their intensity changes over timemodified after reference 11 ])
图8 岩溶碳汇与降水量的关系图(据参考文献[ 69 ]修改)
Fig. 8 Relationship between karst carbon sink and precipitationmodified after reference 69 ])
表2 不同岩石类型的岩石风化碳汇数据表(据参考文献[ 42 ]修改)
Table 2 Weathering carbon sink data of different rock typesmodified after reference 42 ])
图9 外源酸对岩石风化碳汇影响机理示意图(据参考文献[ 79 ]修改)
Fig. 9 Influence mechanism of exogenous acid on weathering carbon sinkmodified after reference 79 ])
1 FANG J Y, ZHU J L, WANG S P, et al. Global warming, human-induced carbon emissions, and their uncertainties[J]. Science China Earth Sciences, 2011, 54(10): 1 458-1 468.
2 YANG Y H, SHI Y, SUN W J, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Science China Life Sciences, 2022, 65(5): 861-895.
3 JIAO Nianzhi. Developing ocean negative carbon emission technology to support national carbon neutralization[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(2): 179-187.
焦念志. 研发海洋“负排放”技术支撑国家“碳中和”需求[J]. 中国科学院院刊, 2021, 36(2): 179-187.
4 FANG Jingyun, GUO Zhaodi. Looking for missing carbon sinks from terrestrial ecosystems[J]. Chinese Journal of Nature, 2007, 29(1): 1-6.
方精云, 郭兆迪. 寻找失去的陆地碳汇[J]. 自然杂志, 2007, 29(1): 1-6.
5 LI Jing, WEN Guoyi, YANG Xiaofei, et al. Mechanism and development countermeasures of marine carbon sinks[J]. Ocean Development and Management, 2018, 35(12): 11-15.
李静, 温国义, 杨晓飞, 等. 海洋碳汇作用机理与发展对策[J]. 海洋开发与管理, 2018, 35(12): 11-15.
6 FANG J Y, YU G R, LIU L L, et al. Climate change, human impacts, and carbon sequestration in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4 015-4 020.
7 LI Liang. Research on Karst/geological carbon sinks process and flux in Chaotian watershed, Guilin, China[D]. Beijing: Chinese Academy of Geological Sciences, 2013.
李亮. 潮田河流域(岩溶)地质碳汇过程及通量估算研究[D]. 北京: 中国地质科学院, 2013.
8 PU Junbing, JIANG Zhongcheng, YUAN Daoxian, et al. Some opinions on rock-weathering-related carbon sinks from the IPCC fifth assessment report[J]. Advances in Earth Science, 2015, 30(10): 1 081-1 090.
蒲俊兵, 蒋忠诚, 袁道先, 等. 岩石风化碳汇研究进展: 基于IPCC第五次气候变化评估报告的分析[J]. 地球科学进展, 2015, 30(10): 1 081-1 090.
9 CHEN Bing, XIAO Hongliang, LI Jingming, et al. Advances in research on carbon capture, utilization and storage[J]. Applied Chemical Industry, 2018, 47(3): 589-592.
陈兵, 肖红亮, 李景明, 等. 二氧化碳捕集、利用与封存研究进展[J]. 应用化工, 2018, 47(3): 589-592.
10 LEUNG D Y C, CARAMANNA G, MAROTO-VALER M M. An overview of current status of carbon dioxide capture and storage technologies [J]. Renewable & Sustainable Energy Reviews, 2014, 39: 426-443.
11 KEENAN T F, WILLIAMS C A. The terrestrial carbon sink[J]. Annual Review of Environment and Resources, 2018, 43: 219-243.
12 WEI N, LI X C, LIU S N, et al. A strategic framework for commercialization of carbon capture, geological utilization, and storage technology in China [J]. International Journal of Greenhouse Gas Control, 2021, 110. DOI:10.1016/j.ijggc.2021.103420 .
13 ZHANG Y, ZHAO M X, CUI Q, et al. Processes of coastal ecosystem carbon sequestration and approaches for increasing carbon sink[J]. Science China Earth Sciences, 2017, 60(5): 809-820.
14 DEB S, MANDAL B. Soils and sediments of coastal ecology: a global carbon sink [J]. Ocean & Coastal Management, 2021, 214. DOI:10.1016/j.ocecoaman.2021.105937 .
15 CHMURA G L. What do we need to assess the sustainability of the tidal salt marsh carbon sink? [J]. Ocean & Coastal Management, 2013, 83: 25-31.
16 THORHAUG A L, POULOS H M, LOPEZ-PORTILLO J, et al. Gulf of Mexico estuarine blue carbon stock, extent and flux: mangroves, marshes, and seagrasses: a North American hotspot [J]. Science of the Total Environment, 2019, 653: 1 253-1 261.
17 VELDHUIS E R, SCHRAMA M, STAAL M, et al. Plant stress-tolerance traits predict salt marsh vegetation patterning[J]. Frontiers in Marine Science, 2019, 5. DOI:10.3389/fmars.2018.00501 .
18 JIAO N Z, CAI R H, ZHENG Q, et al. Unveiling the enigma of refractory carbon in the ocean[J]. National Science Review, 2018, 5(4): 459-463.
19 NOBLE R T, FUHRMAN J A. Rapid virus production and removal as measured with fluorescently labeled viruses as tracers[J]. Applied and Environmental Microbiology, 2000, 66(9): 3 790-3 797.
20 HOUSE K Z, SCHRAG D P, HARVEY C F, et al. Permanent carbon dioxide storage in deep-sea sediments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(33): 12 291-12 295.
21 CUI Junfu, MIAO Jianjun, CHEN Jinwei. Research on China low carbon economy and carbon sinks—discussion on forest, soil and geological sequestration[J]. Journal of North China Electric Power University (Social Sciences), 2015(4): 1-6.
崔俊富, 苗建军, 陈金伟. 低碳经济与中国碳汇发展研究: 基于森林碳汇、土壤碳汇和地质碳汇的讨论[J]. 华北电力大学学报(社会科学版), 2015(4): 1-6.
22 YANG J M, JI X X, DEANE D C, et al. Spatiotemporal distribution and driving factors of forest biomass carbon storage in China: 1977-2013 [J]. Forests, 2017, 8(7). DOI:10.3390/f8070263 .
23 CHANG J F, CIAIS P, GASSER T, et al. Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands[J]. Nature Communications, 2021, 12(1). DOI:10.1038/s41467-020-20406-7 .
24 PIAO S L, FANG J Y, ZHOU L M, et al. Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999 [J]. Global Biogeochemical Cycles, 2007, 21(2): 1-10.
25 ZHANG L, ZHOU G S, JI Y H, et al. Spatiotemporal dynamic simulation of grassland carbon storage in China[J]. Science China Earth Sciences, 2016, 59(10): 1 946-1 958.
26 WANG Suizi, FAN Jiangwen, LIU Shuai. A comprehensive analysis of difference in carbon stock estimation in the grasslands of China[J]. Acta Agrestia Sinica, 2017, 25(5): 905-913.
王穗子, 樊江文, 刘帅. 中国草地碳库估算差异性综合分析[J]. 草地学报, 2017, 25(5): 905-913.
27 GHERMANDI A, van den BERGH J C J M, BRANDER L M, et al. The economic value of wetland conservation and creation: a meta-analysis[Z/OL]. FEEMWorking Paper No. 79.2008. [2021-10-30]. .
28 MITSCH W J, BERNAL B, NAHLIK A M, et al. Wetlands, carbon, and climate change[J]. Landscape Ecology, 2013, 28(4): 583-597.
29 LU W Z, XIAO J F, LIU F, et al. Contrasting ecosystem CO2 fluxes of inland and coastal wetlands: a meta-analysis of eddy covariance data [J]. Global Change Biology, 2017, 23(3): 1 180-1 198.
30 LOLU A J, AHLUWALIA A S, SIDHU M C, et al. Wetlands: an imbroglio of interlinked carbon pools [J]. Tropical Ecology, 2018, 59(3): 383-395.
31 LIU S S, YANG Y H, SHEN H H, et al. No significant changes in topsoil carbon in the grasslands of northern China between the 1980s and 2000s [J]. Science of the Total Environment, 2018, 624: 1 478-1 487.
32 YANG Y H, FANG J Y, MA W H, et al. Soil carbon stock and its changes in northern China’s grasslands from 1980s to 2000s [J]. Global Change Biology, 2010, 16(11): 3 036-3 047.
33 KOU D, MA W H, DING J Z, et al. Dryland soils in northern China sequester carbon during the early 2000s warming hiatus period [J]. Functional Ecology, 2018, 32(6): 1 620-1 630.
34 BASSI N, KUMAR M D, SHARMA A, et al. Status of wetlands in India: a review of extent, ecosystem benefits, threats and management strategies [J]. Journal of Hydrology: Regional Studies, 2014, 2: 1-19.
35 XIAO D R, DENG L, KIM D G, et al. Carbon budgets of wetland ecosystems in China [J]. Global Change Biology, 2019, 25(6): 2 061-2 076.
36 YU G R, ZHU X J, FU Y L, et al. Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China [J]. Global Change Biology, 2013, 19(3): 798-810.
37 DUAN Xiaonan, WANG Xiaoke, FEI Lu, et al. Primary evaluation of carbon sequestration potential of wetlands in China[J]. Acta Ecologica Sinica, 2008, 28(2): 463-469.
38 CHENG L, QUE X E, YANG L, et al. China’s desert ecosystem: functions rising and services enhancing [J]. Bulletin of the Chinese Academy of Sciences, 2020, 35(6): 690-698.
39 WANG S, XU L, ZHUANG Q L, et al. Investigating the spatio-temporal variability of soil organic carbon stocks in different ecosystems of China [J]. Science of the Total Environment, 2021, 758(2). DOI:10.1016/j.scitotenv.2020.143644 .
40 LI Y, ZHANG C Q, WANG N A, et al. Substantial inorganic carbon sink in closed drainage basins globally [J]. Nature Geoscience, 2017, 10(7): 501-506.
41 QIU Dongsheng, ZHUANG Dafang, HU Yunfeng, et al. Estimation of carbon sink capacity caused by rock weathering in China[J]. Earth Science—Journal of China University of Geosciences, 2004, 29(2): 177-182.
邱冬生, 庄大方, 胡云锋, 等. 中国岩石风化作用所致的碳汇能力估算 [J]. 地球科学:中国地质大学学报, 2004, 29(2): 177-182.
42 JIANG Zhongcheng, QIN Xiaoqun, CAO Jianhua, et al. Significance and carbon sink effects of karst processes in global carbon cycle: also reply to “Discussion on article ‘Calculation of atmospheric CO2 sink formed in karst processes of karst divided regions in China’”[J]. Carsologica Sinica, 2013, 32(1): 1-6.
蒋忠诚, 覃小群, 曹建华, 等. 论岩溶作用对全球碳循环的意义与碳汇效应——兼对《对(中国岩溶作用产生的大气CO2碳汇分区估算)一文的商榷》的答复[J]. 中国岩溶, 2013, 32(1): 1-6.
43 WANG Shijie, LIU Zaihua, NI Jian, et al. A review of research progress and future prospective of carbon cycle in karst area of south China[J]. Earth and Environment, 2017, 45(1): 2-9.
王世杰, 刘再华, 倪健, 等. 中国南方喀斯特地区碳循环研究进展[J]. 地球与环境, 2017, 45(1): 2-9.
44 MI Jianfeng, MA Xiaofang. Development trend analysis of carbon capture, utilization and storage technology in China[J]. Proceedings of the CSEE, 2019, 39(9): 2 537-2 544.
米剑锋, 马晓芳. 中国CCUS技术发展趋势分析 [J]. 中国电机工程学报, 2019, 39(9): 2 537-2 544.
45 XING Liren, WU Zhengwan, ZHANG Ruoyu. Development status and prospect analysis of CCUS industry[J]. International Petroleum Economics, 2021, 29(8): 99-105.
邢力仁, 武正弯, 张若玉. CCUS产业发展现状与前景分析 [J]. 国际石油经济, 2021, 29(8): 99-105.
46 MCCULLOCH S, REMME U, BAINS P, et al. ETP 2020 special report on carbon capture utilisation and storage: CCUS in clean energy transitions [R]. IEA, 2020.
47 SOLOMON S, CARPENTER M, FLACH T A. Intermediate storage of carbon dioxide in geological formations: a technical perspective [J]. International Journal of Greenhouse Gas Control, 2008, 2(4): 502-510.
48 LU Bowen, ZHANG Liqi, XU Yongqing, et al. Carbon Capture, Utilization and Storage (CCUS) technology helps to the realization of carbon neutralization[J]. Industrial Safety and Environmental Protection, 2021, 47(): 30-34.
鲁博文, 张立麒, 徐勇庆, 等. 碳捕集,利用与封存(CCUS)技术助力碳中和实现 [J]. 工业安全与环保, 2021, 47(): 30-34.
49 FAN J L, WEI S, SHEN S, et al. Geological storage potential of CO2 emissions for China’s coal-fired power plants: a city-level analysis [J]. International Journal of Greenhouse Gas Control, 2021, 106: 1-9.
50 FAN J L, SHEN S, WEI S J, et al. Near-term CO2 storage potential for coal-fired power plants in China: a county-level source-sink matching assessment [J]. Applied Energy, 2020, 279. DOI:10.1016/j.apenergy.2020.115878 .
51 MICHAEL K, GOLAB A, SHULAKOVA V, et al. Geological storage of CO2 in saline aquifers—a review of the experience from existing storage operations [J]. International Journal of Greenhouse Gas Control, 2010, 4(4): 659-667.
52 SZULCZEWSKI M L, MACMINN C W, JUANES R. Theoretical analysis of how pressure buildup and CO2 migration can both constrain storage capacity in deep saline aquifers [J]. International Journal of Greenhouse Gas Control, 2014, 23: 113-118.
53 HU L, SHI X, BAI Y, et al. Recent organic carbon sequestration in the shelf sediments of the Bohai Sea and Yellow Sea, China [J]. Journal of Marine Systems, 2016, 155: 50-58.
54 YAO P, YU Z G, BIANCHI T S, et al. A multiproxy analysis of sedimentary organic carbon in the Changjiang Estuary and adjacent shelf [J]. Journal of Geophysical Research-Biogeosciences, 2015, 120(7): 1 407-1 429.
55 CONNOR R F, CHMURA G L, BEECHER C B. Carbon accumulation in Bay of Fundy salt marshes: implications for restoration of reclaimed marshes [J]. Global Biogeochemical Cycles, 2001, 15(4): 943-954.
56 LIU Y X, LUO M, YE R Z, et al. Impacts of the rhizosphere effect and plant species on organic carbon mineralization rates and pathways, and bacterial community composition in a tidal marsh[J]. FEMS Microbiology Ecology, 2019, 95(9). DOI: 10.1093/femsec/fiz120 .
57 ATWOOD T B, CONNOLLY R M, ALMAHASHEER H, et al. Global patterns in mangrove soil carbon stocks and losses [J]. Nature Climate Change, 2017, 7(7): 523-528.
58 ADAME M F, ZAKARIA R M, FRY B, et al. Loss and recovery of carbon and nitrogen after mangrove clearing [J]. Ocean & Coastal Management, 2018, 161: 117-126.
59 BROEK M, VANDENDRIESSCHE C, POPPELMONDE D, et al. Long-term organic carbon sequestration in tidal marsh sediments is dominated by old-aged allochthonous inputs in a macrotidal estuary[J]. Global Change Biology, 2018, 24(6): 2 498-2 512.
60 JIAO Nianzhi, LI Chao, WANG Xiaoxue. Response and feedback of marine carbon sink to climate change[J]. Advances in Earth Science, 2016, 31(7): 668-681.
焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
61 LUO Y Q, WENG E S. Dynamic disequilibrium of the terrestrial carbon cycle under global change [J]. Trends in Ecology & Evolution, 2011, 26(2): 96-104.
62 ZHU Z C, PIAO S L, MYNENI R B, et al. Greening of the Earth and its drivers [J]. Nature Climate Change, 2016, 6(8): 791-795.
63 PIAO S L, SITCH S, CIAIS P, et al. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends [J]. Global Change Biology, 2013, 19(7): 2 117-2 132.
64 GONG Yuan, JI Xiaofang, HUA Yuting, et al. Research progress of CO2 flux in forest ecosystem based on eddy covariance technique: a review[J]. Journal of Zhejiang A&F University, 2020, 37(3): 593-604.
龚元, 纪小芳, 花雨婷, 等. 基于涡动相关技术的森林生态系统二氧化碳通量研究进展 [J]. 浙江农林大学学报, 2020, 37(3): 593-604.
65 XUE Longfei, LUO Xiaofeng, LI Zhaoliang, et al. Spatial spillover effects and influencing factors of forest carbon sink in China—spatial econometric analysis based on forest resources inventory in 31 provinces of the mainland of China[J]. Journal of Natural Resources, 2017, 32(10): 1 744-1 754.
薛龙飞, 罗小锋, 李兆亮, 等. 中国森林碳汇的空间溢出效应与影响因素: 基于大陆31个省(市、区)森林资源清查数据的空间计量分析[J]. 自然资源学报, 2017, 32(10): 1 744-1 754.
66 CUI Lilun, YUAN Wenping, ZHANG Haicheng. Soil erosion effect on terrestial ecosystem carbon source and sink[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(6): 816-822.
崔利论, 袁文平, 张海成. 土壤侵蚀对陆地生态系统碳源汇的影响[J]. 北京师范大学学报(自然科学版), 2016, 52(6): 816-822.
67 PIAO S, HUANG M, LIU Z, et al. Lower land-use emissions responsible for increased net land carbon sink during the slow warming period [J]. Nature Geoscience, 2018, 11(10): 739-743.
68 MAN Weidong. Estimating wetland organic carbon storage in the greater khingan mountains based on remote sensing and measured data[D]. Harbin: Northeast Institute of Geography and Agroecology, 2018.
满卫东. 基于遥感和实测数据的大兴安岭沼泽湿地碳储量估算研究[D]. 哈尔滨: 中国科学院东北地理与农业生态研究所, 2018.
69 LI Chunlong, ZHAO Jiamei, LONG Si, et al. Carbon sink effect of simulated acid rain in lime soil and carbonate rock system[J]. Carsologica Sinica, 2014, 33(1): 51-56.
李春龙, 赵家梅, 龙偲, 等. 模拟酸雨条件下石灰土—碳酸盐岩体系的碳汇效应[J]. 中国岩溶, 2014, 33(1): 51-56.
70 HUANG Fen, ZHANG Chunlai, YANG Hui, et al. Achievements and prospects in the study of karst carbon sink processes and effects in China[J]. Geological Survey of China, 2014, 1(3): 57-66.
黄芬, 张春来, 杨慧, 等. 中国岩溶碳汇过程与效应研究成果及展望 [J]. 中国地质调查, 2014, 1(3): 57-66.
71 MACPHERSON G L, ROBERTS J A, BLAIR J M, et al. Increasing shallow groundwater CO2 and limestone weathering, Konza Prairie, USA [J]. Geochimica et Cosmochimica Acta, 2008, 72(23): 5 581-5 599.
72 LIU Zaihua. Field experimental research on the corrosion kinetics of limestone and dolomite in allogenic water-case from Yaoshan Mt., Guilin[J]. Carsologica Sinica, 2000, 19(1): 1-4.
刘再华. 外源水对灰岩和白云岩的侵蚀速率野外试验研究: 以桂林尧山为例[J]. 中国岩溶, 2000, 19(1): 1-4.
73 PAN Genxing, TENG Yongzhong, TAO Yuxiang, et al. Influence of pedo-chemical field on epi-karstification in Guilin area: evidence of field monitoring and laboratory simulation[J]. Soils, 2000, 32(4): 173-177.
潘根兴, 腾永忠, 陶于祥, 等. 土壤化学场对桂林地区表层岩溶的影响——野外监测与实验室模拟 [J]. 土壤, 2000, 32(4): 173-177.
74 SHESTOPALOV A I, BOGACHEV A V, MURTAZINA R A, et al. Dissolution kinetics of calcium carbonate minerals in H2O-CO2 solutions in turbulent flow: the role of the diffusion boundary layer and the slow reaction H2O+CO2=H++HCO 3 - [J]. Geochimica et Cosmochimica Acta, 1997, 61(14): 2 879-2 889.
75 CAO Jianhua, YUAN Daoxian, PAN Genxing, et al. Influence of soil carbon transfer under different vegetations on carbon cycle of karst dynamics system[J]. Earth and Environment, 2004, 32(1): 90-96.
曹建华, 袁道先, 潘根兴, 等. 不同植被下土壤碳转移对岩溶动力系统中碳循环的影响 [J]. 地球与环境, 2004, 32(1): 90-96.
76 HE Shiyi, RAN Jingcheng, YUAN Daoxian, et al. A comparative study on hydrological and ecological effects in different karst ecosystems[J]. Acta Geoscientia Sinica, 2001, 22(3): 265-270.
何师意, 冉景丞, 袁道先, 等. 不同岩溶环境系统的水文和生态效应研究 [J]. 地球学报, 2001, 22(3): 265-270.
77 BRISTOW T F, KENNEDY M J, MORRISON K D, et al. The influence of authigenic clay formation on the mineralogy and stable isotopic record of lacustrine carbonates [J]. Geochimica et Cosmochimica Acta, 2012, 90: 64-82.
78 ZHU Hui, ZENG Cheng, LIU Zaihua, et al. Karst-related carbon sink flux variations caused by land use changes: an example from the Puding karst test site in Guizhou[J]. Hydrogeology and Engineering Geology, 2015, 42(6): 120-125.
朱辉, 曾成, 刘再华, 等. 岩溶作用碳汇强度变化的土地利用调控规律——贵州普定岩溶水—碳通量大型模拟试验场研究 [J]. 水文地质工程地质, 2015, 42(6): 120-125.
79 ZHANG Yuanzhu. Effects of allogenic acids(sulfuric acid and nitric acid)on karst carbon cycle—a study from laolongdong subterranean catchment, Chongqing[D]. Chongqing: Southwest University, 2017.
张远瞩. 外源酸(硫酸、硝酸)对岩溶碳循环的影响: 以重庆南山老龙洞地下河流域为例[D]. 重庆: 西南大学, 2017.
80 LIU Congqiang, JIANG Yingkui, TAO Faxiang, et al. Chemical weathering of carbonate rocks by sulfuric acid and the carbon cycling in Southwest China[J]. Geochimica, 2008, 37(4): 404-414.
刘丛强, 蒋颖魁, 陶发祥, 等. 西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环 [J]. 地球化学, 2008, 37(4): 404-414.
81 PRICE J R, RICE K C, SZYMANSKI D W. Mass-balance modeling of mineral weathering rates and CO2 consumption in the forested, metabasaltic Hauver Branch watershed, Catoctin Mountain, Maryland, USA [J]. Earth Surface Processes and Landforms, 2013, 38(8): 859-875.
82 CHEN Junwu, CHEN Xiangsheng. A preliminary study on China’s long and medium-term strategic goals for reducing carbon emissions(Ⅵ)—discussions on emission targets for carbon capture and sequestration[J]. Sino-Global Energy, 2011, 16(10): 1-17.
陈俊武, 陈香生. 中国中长期碳减排战略目标初探(Ⅵ): 碳捕集与封存排放目标讨论[J]. 中外能源, 2011, 16(10): 1-17.
83 BACHU S. Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change [J]. Energy Conversion & Management, 2000, 41(9): 953-970.
84 KOIDE H, TAKAHASHI M, SHINDO Y, et al. Hydrate formation in sediments in the sub-seabed disposal of CO2 [J]. Energy, 1997, 22(2): 279-283.
85 BACHU S. Synthesis and model of formation-water flow, Alberta Basin, Canada [J]. AAPG Bulletin, 1995, 79(8): 1 159-1 178.
86 WU H, JAYNE R S, BODNAR R J, et al. Simulation of CO2 mineral trapping and permeability alteration in fractured basalt: implications for geologic carbon sequestration in mafic reservoirs [J]. International Journal of Greenhouse Gas Control, 2021, 109. DOI:10.1016/j.ijggc.2021.103383 .
87 YANG Hong, ZHAO Xisen, KANG Yulong, et al. Evaluation on geological sequestration suitability and potential of CO2 in Ordos Basin[J]. Climate Change Research, 2019, 15(1): 95-102.
杨红, 赵习森, 康宇龙, 等. 鄂尔多斯盆地CO2地质封存适宜性与潜力评价[J]. 气候变化研究进展, 2019, 15(1): 95-102.
88 LEINEN M. Building relationships between scientists and business in ocean iron fertilization [J]. Marine Ecology Progress Series, 2008, 364: 251-256.
89 PAN Y W, FAN W, ZHANG D H, et al. Research progress in artificial upwelling and its potential environmental effects[J]. Science China Earth Sciences, 2016, 59(2): 236-248.
90 JIAO N, TANG K, CAI H, et al. Increasing the microbial carbon sink in the sea by reducing chemical fertilization on the land [J]. Nature Reviews Microbiology, 2011,9. DOI:10.1038/nrmicro2386-cz .
91 FRIEDLINGSTEIN P, MEINSHAUSEN M, ARORA V K, et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks [J]. Journal of Climate, 2014, 27(2): 511-526.
92 SMITH P, ADAMS J, BEERLING D J, et al. Land-management options for greenhouse gas removal and their impacts on ecosystem services and the sustainable development goals[J]. Annual Review of Environment and Resources, 2019, 44: 255-286.
93 ZHANG Yingjun, YANG Gaowen, LIU Nan, et al. Review of grassland management practices for carbon sequestration[J]. Acta Prataculturae Sinica, 2013, 22(2): 290-299.
张英俊, 杨高文, 刘楠, 等. 草原碳汇管理对策[J]. 草业学报, 2013, 22(2): 290-299.
94 XING Wei, LI Peipei, LIU Minghua, et al. Estimation of carbon storage in wetlands in northeast China[J]. Journal of Xinyang Normal University(Natural Science Edition), 2019, 32(4): 557-562.
邢伟, 李裴培, 刘明华, 等. 我国东北地区沼泽湿地碳储量估算 [J]. 信阳师范学院学报:自然科学版, 2019, 32(4): 557-562.
95 ZENG M, OUYANG S J, ZHANG Y J, et al. CCS technology development in China: status, problems and countermeasures-based on SWOT analysis [J]. Renewable & Sustainable Energy Reviews, 2014, 39: 604-616.
96 PHYOE W W, WANG F. A review of carbon sink or source effect on artificial reservoirs [J]. International Journal of Environmental Science and Technology, 2019, 16(4): 2 161-2 174.
97 ZHOU G Q, JIA B, TAO X D, et al. Estimation of karst carbon sink and its contribution to CO2 emissions over a decade using remote sensing imagery [J]. Applied Geochemistry, 2020, 121. DOI:10.1016/j.apgeochem.2020.104689 .
98 WEI N, LI X C, WANG Y, et al. A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO2 storage in China [J]. International Journal of Greenhouse Gas Control, 2013, 12: 231-246.
99 YANG C B, HOVORKA S D, YOUNG M H, et al. Geochemical sensitivity to CO2 leakage: detection in potable aquifers at carbon sequestration sites[J]. Greenhouse Gases: Science and Technology, 2014, 4(3): 384-399.
100 XIA C Y, WILKINSON M. The geological risks of exploring for a CO2 storage reservoir [J]. International Journal of Greenhouse Gas Control, 2017, 63: 272-280.
[1] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[2] 焦念志, 张传伦, 谢树成, 刘纪化, 张飞. 古今结合论碳汇、见微知著识海洋 *[J]. 地球科学进展, 2014, 29(11): 1294-1297.
阅读次数
全文


摘要