1 |
PÖRTNER H. Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view[J]. Marine Ecology Progress Series, 2008, 373: 203-217.
|
2 |
JIAO Nianzhi. Developing ocean negative carbon emission technology to support national carbon neutralization[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(2): 179-187.
|
|
焦念志. 研发海洋“负排放”技术支撑国家“碳中和” 需求[J]. 中国科学院院刊, 2021, 36(2): 179-187.
|
3 |
WANG F, HARINDINTWALI J D, YUAN Z Z, et al. Technologies and perspectives for achieving carbon neutrality[J]. The Innovation, 2021, 2(4). DOI: 10.1016/j.xinn.2021.100180 .
|
4 |
Ministry of Ecology and Environment the People’s Republic of China. Responding to climate change: China’s policies and actions in 2023[Z]. 2023.
|
|
中华人民共和国生态环境部. 《中国应对气候变化的政策与行动2023年度报告》[Z]. 2023.
|
5 |
CAO Long. Climate system response to carbon dioxide removal[J]. Climate Change Research, 2021, 17(6): 664-670.
|
|
曹龙. IPCC AR6报告解读: 气候系统对二氧化碳移除响应[J]. 气候变化研究进展, 2021, 17(6): 664-670.
|
6 |
ZHANG C L, SHI T, LIU J H, et al. Eco-engineering approaches for ocean negative carbon emission[J]. Science Bulletin, 2022, 67(24): 2 564-2 573.
|
7 |
SABINE C L, FEELY R A, GRUBER N, et al. The oceanic sink for anthropogenic CO2 [J]. Science, 2004, 305(5 682): 367-371.
|
8 |
KHATIWALA S, PRIMEAU F, HALL T. Reconstruction of the history of anthropogenic CO2 concentrations in the ocean[J]. Nature, 2009, 462: 346-349.
|
9 |
FRIEDLINGSTEIN P, O’SULLIVAN M, JONES M W, et al. Global carbon budget 2023[J]. Earth System Science Data, 2023, 15(12): 5 301-5 069.
|
10 |
JIAO Nianzhi, DAI Minhan, JIAN Zhimin, et al. Research strategies for ocean carbon storage mechanisms and effects[J]. Chinese Science Bulletin, 2022, 67(15): 1 600-1 606.
|
|
焦念志, 戴民汉, 翦知湣, 等. 海洋储碳机制及相关生物地球化学过程研究策略[J]. 科学通报, 2022, 67(15): 1 600-1 606.
|
11 |
GUO Xuefei, ZHANG Minji, ZHOU Wei, et al. Technology development and future directions of ocean alkalinity enhancement[J]. Ocean Development and Management, 2023, 40(9): 30-36.
|
|
郭雪飞, 张敏吉, 周微, 等. 海洋碱性矿物增汇技术发展方向研究[J]. 海洋开发与管理, 2023, 40(9): 30-36.
|
12 |
JIAO Nianzhi, LUO Tingwei, LIU Jihua, et al. Ocean negative carbon emissions in the context of Earth system science[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(9): 1 294-1 305.
|
|
焦念志, 骆庭伟, 刘纪化, 等. 海洋负排放: 基于地球系统科学思维的海洋科技变革[J]. 中国科学院院刊, 2023, 38(9): 1 294-1 305.
|
13 |
RAVEN J A, FALKOWSKI P G. Oceanic sinks for atmospheric CO2 [J]. Plant, Cell & Environment, 1999, 22(6): 741-755.
|
14 |
SARMIENTO J L, GRUBER N. Sinks for anthropogenic carbon[J]. Physics Today, 2002, 55(8): 30-36.
|
15 |
Intergovernmental Panel on Climate. Climate Change 2013—the physical science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2014.
|
16 |
BEERLING D J, LEAKE J R, LONG S P, et al. Farming with crops and rocks to address global climate, food and soil security[J]. Nature Plants, 2018, 4(3): 138-147.
|
17 |
JIANG L Q, CARTER B R, FEELY R A, et al. Surface ocean pH and buffer capacity: past, present and future[J]. Scientific Reports, 2019, 9(1). DOI: 10.1038/s41598-019-55039-4 .
|
18 |
CAI W J, JIAO N Z. Wastewater alkalinity addition as a novel approach for ocean negative carbon emissions[J]. Innovation (Cambridge (Mass)), 2022, 3(4). DOI: 10.1016/j.xinn.2022.100272 .
|
19 |
HANSELL D A. Recalcitrant dissolved organic carbon fractions[J]. Annual Review of Marine Science, 2013, 5: 421-445.
|
20 |
CARROLL D, MENEMENLIS D, DUTKIEWICZ S, et al. Attribution of space-time variability in global-ocean dissolved inorganic carbon[J]. Global Biogeochemical Cycles, 2022, 36(3). DOI:10.1029/2021GB007162 .
|
21 |
LIU Jihua, ZHENG Qiang. From the frontier theory of marine carbon sink to China’s scheme of marine negative emissions[J]. Science China: Earth Sciences, 2021, 51(4): 644-652.
|
|
刘纪化, 郑强. 从海洋碳汇前沿理论到海洋负排放中国方案[J]. 中国科学: 地球科学, 2021, 51(4): 644-652.
|
22 |
HURD C L, HEPBURN C D, CURRIE K I, et al. Testing the effects of ocean acidification on algal metabolism: considerations for experimental designs(1)[J]. Journal of Phycology, 2009, 45(6): 1 236-1 251.
|
23 |
National Academies of Sciences E, Medicine, Division on E, et al. A research strategy for ocean-based carbon dioxide removal and sequestration[M]// A research strategy for ocean-based carbon dioxide removal and sequestration. Washington (DC): National Academies Press, 2021.
|
24 |
TURLEY C, NIGHTINGALE P, RILEY N, et al. Literature review: environmental impacts of a gradual or catastrophic release of CO2 into the marine environment following carbon dioxide capture[R]. UK Department for Environment, 2004.
|
25 |
RAYMOND P A, HAMILTON S K. Anthropogenic influences on riverine fluxes of dissolved inorganic carbon to the oceans[J]. Limnology and Oceanography Letters, 2018, 3(3): 143-155.
|
26 |
YU Lei, LI Sanzhong, SUO Yanhui, et al. Carbon cycling in costal ocean and CO2 negative emissions[J]. Journal of Marine Sciences, 2023, 41(1): 14-25.
|
|
于雷, 李三忠, 索艳慧, 等. 海岸海洋碳循环过程与CO2负排放[J]. 海洋学研究, 2023, 41(1): 14-25.
|
27 |
BAUER J E, CAI W J, RAYMOND P A, et al. The changing carbon cycle of the coastal ocean[J]. Nature, 2013, 504(7 478): 61-70.
|
28 |
BOIX CANADELL M, ESCOFFIER N, ULSETH A J, et al. Alpine glacier shrinkage drives shift in dissolved organic carbon export from quasi-chemostasis to transport limitation[J]. Geophysical Research Letters, 2019, 46(15): 8 872-8 881.
|
29 |
TIAN H Q, YAO Y Z, LI Y, et al. Increased terrestrial carbon export and CO2 evasion from global inland waters since the preindustrial era[J]. Global Biogeochemical Cycles, 2023, 37(10). DOI:10.1029/2023GB007776 .
|
30 |
YU Z T, WANG X J, HAN G X, et al. Organic and inorganic carbon and their stable isotopes in surface sediments of the Yellow River Estuary[J]. Scientific Reports, 2018, 8. DOI:10.1038/s41598-018-29200-4 .
|
31 |
KWAK K, SONG H, MARSHALL J, et al. Suppressed pCO2 in the Southern Ocean due to the interaction between current and wind[J]. Journal of Geophysical Research: Oceans, 2021, 126(12). DOI:10.1029/2021JC017884 .
|
32 |
LI Y X, XUE L, YANG X F, et al. Wastewater inputs reduce the CO2 uptake by coastal oceans[J]. Science of the Total Environment, 2023, 901. DOI:10.1016/j.scitotenv.2023.165700 .
|
33 |
CHEN T Y, ROBINSON L F, LI T, et al. Radiocarbon evidence for the stability of polar ocean overturning during the Holocene[J]. Nature Geoscience, 2023, 16: 631-636.
|
34 |
HÖNISCH B, RIDGWELL A, SCHMIDT D N, et al. The geological record of ocean acidification[J]. Science, 2012, 335(6 072): 1 058-1 063.
|
35 |
LIANG H D, LUNSTRUM A M, DONG S J, et al. Constraining CaCO3 export and dissolution with an ocean alkalinity inverse model[J]. Global Biogeochemical Cycles, 2023, 37(2). DOI: 10.1029/2022gb007535 .
|
36 |
JELTSCH-THÖMMES A, TRAN G, LIENERT S, et al. Earth system responses to carbon dioxide removal as exemplified by ocean alkalinity enhancement: tradeoffs and lags[J]. Environmental Research Letters, 2024, 19(5). DOI:10.1088/1748-9326/ad4401 .
|
37 |
KHESHGI H S. Sequestering atmospheric carbon dioxide by increasing ocean alkalinity[J]. Energy, 1995, 20(9): 915-922.
|
38 |
PLOCAN hosts the OceanNETs 2021 study: making the ocean an ally in climate protection[Z]. Plataforma Oceánica de Canarias, 2021.
|
39 |
HARTMANN J, SUITNER N, LIM C, et al. Stability of alkalinity in Ocean Alkalinity Enhancement (OAE) approaches-consequences for durability of CO2 storage[J]. Biogeosciences, 2023, 20(4): 781-802.
|
40 |
PAN S Y, CHEN Y H, FAN L S, et al. CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction[J]. Nature Sustainability, 2020, 3: 399-405.
|
41 |
DING Z S, ZHANG X, CHENG T L, et al. Unlocking high carbonation efficiency: direct CO2 mineralization with fly ash and seawater[J]. Chemical Engineering Science, 2023, 282. DOI:10.1016/j.ces.2023.119349 .
|
42 |
RAU G H, CALDEIRA K. Enhanced carbonate dissolution: a means of sequestering waste CO2 as ocean bicarbonate[J]. Energy Conversion and Management, 1999, 40(17): 1 803-1 813.
|
43 |
CHOU W C, GONG G C, HSIEH P S, et al. Potential impacts of effluent from accelerated weathering of limestone on seawater carbon chemistry: a case study for the hoping power plant in northeastern Taiwan [J]. Marine Chemistry, 2015, 168: 27-36.
|
44 |
RAU G H. Electrochemical splitting of calcium carbonate to increase solution alkalinity: implications for mitigation of carbon dioxide and ocean acidity[J]. Environmental Science & Technology, 2008, 42(23): 8 935-8 940.
|
45 |
HOUSE K Z, HOUSE C H, SCHRAG D P, et al. Electrochemical acceleration of chemical weathering as an energetically feasible approach to mitigating anthropogenic climate change[J]. Environmental Science & Technology, 2007, 41(24): 8 464-8 470.
|
46 |
EISAMAN M D, PARAJULY K, TUGANOV A, et al. CO2 extraction from seawater using bipolar membrane electrodialysis[J]. Energy & Environmental Science, 2012, 5(6): 7 346-7 352.
|
47 |
PHIL R. The negative emission potential of alkaline materials[J]. Nature Communications, 2019, 10(1). DOI:10.1038/s41467-019-09475-5 .
|
48 |
RINDER T, von HAGKE C. The influence of particle size on the potential of enhanced basalt weathering for carbon dioxide removal-Insights from a regional assessment[J]. Journal of Cleaner Production, 2021, 315. DOI: 10.1016/j.jclepro.2021.128178 .
|
49 |
RENFORTH P. The potential of enhanced weathering in the UK[J]. International Journal of Greenhouse Gas Control, 2012, 10: 229-243.
|
50 |
YANG B, LEONARD J, LANGDON C. Seawater alkalinity enhancement with magnesium hydroxide and its implication for carbon dioxide removal[J]. Marine Chemistry, 2023, 253. DOI: 10.1016/j.marchem.2023.104251 .
|
51 |
FOTEINIS S, CAMPBELL J S, RENFORTH P. Life cycle assessment of coastal enhanced weathering for carbon dioxide removal from air[J]. Environmental Science & Technology, 2023, 57(15): 6 169-6 178.
|
52 |
OELKERS E H, DECLERCQ J, SALDI G D, et al. Olivine dissolution rates: a critical review[J]. Chemical Geology, 2018, 500: 1-19.
|
53 |
SHIROKOVA L S, BÉNÉZETH P, POKROVSKY O S, et al. Effect of the heterotrophic bacterium Pseudomonas reactans on olivine dissolution kinetics and implications for CO2 storage in basalts[J]. Geochimica et Cosmochimica Acta, 2012, 80: 30-50.
|
54 |
WANG F, GIAMMAR D E. Forsterite dissolution in saline water at elevated temperature and high CO2 pressure[J]. Environmental Science & Technology, 2013, 47(1): 168-173.
|
55 |
GESAMP. High level review of a wide range of proposed marine geoengineering techniques[Z]. GESAMP, 2019.
|
56 |
MORAS C A, BACH L T, CYRONAK T, et al. Ocean alkalinity enhancement-avoiding runaway CaCO3 precipitation during quick and hydrated lime dissolution[J]. Biogeosciences, 2022, 19(15): 3 537-3 557.
|
57 |
HARTMANN J, WEST A J, RENFORTH P, et al. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification[J]. Reviews of Geophysics, 2013, 51(2): 113-149.
|
58 |
RENFORTH P, HENDERSON G. Assessing ocean alkalinity for carbon sequestration[J]. Reviews of Geophysics, 2017, 55(3): 636-674.
|
59 |
KÖHLER P, ABRAMS J F, VÖLKER C, et al. Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology[J]. Environmental Research Letters, 2013, 8(1). DOI 10.1088/1748-9326/8/1/014009.
|
60 |
ADKINS J, DONG S J, BERELSON W. Accelerated weathering of limestone on cargo ships[C]//Goldschmidt 2021 abstracts. France: European Association of Geochemistry, 2021.
|
61 |
MEYSMAN F J R, MONTSERRAT F. Negative CO2 emissions via enhanced silicate weathering in coastal environments[J]. Biology Letters, 2017, 13(4). DOI:10.1098/rsbl.2016.0905 .
|
62 |
CASERINI S, PAGANO D, CAMPO F, et al. Potential of maritime transport for ocean liming and atmospheric CO2 removal[J]. Frontiers in Climate, 2021, 3. DOI: 10.3389/fclim.2021.575900 .
|
63 |
HARVEY L D D. Mitigating the atmospheric CO2 increase and ocean acidification by adding limestone powder to upwelling regions[J]. Journal of Geophysical Research: Oceans, 2008, 113(C4). DOI: 10.1029/2007JC004373 .
|
64 |
BACH L T, GILL S J, RICKABY R E M, et al. CO2 removal with enhanced weathering and ocean alkalinity enhancement: potential risks and co-benefits for marine pelagic ecosystems[J]. Frontiers in Climate, 2019, 1. DOI:10.3389/fdim.2019.00007 .
|
65 |
RAU G H, CARROLL S A, BOURCIER W L, et al. Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(25): 10 095-10 100.
|
66 |
HANGX S J T, SPIERS C J. Coastal spreading of olivine to control atmospheric CO2 concentrations: a critical analysis of viability[J]. International Journal of Greenhouse Gas Control, 2009, 3(6): 757-767.
|
67 |
BURT D J, FRÖB F, ILYINA T. The sensitivity of the marine carbonate system to regional ocean alkalinity enhancement[J]. Frontiers in Climate, 2021, 3. DOI: 10.3389/fclim.2021.624075 .
|
68 |
RIEBESELL U, BACH L, BELLERBY R, et al. Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification[J]. Nature Geoscience, 2017, 10: 19-23.
|
69 |
LaROWE D E, ARNDT S, BRADLEY J A, et al. The fate of organic carbon in marine sediments—new insights from recent data and analysis[J]. Earth-Science Reviews, 2020, 204. DOI: 10.1016/j.earscirev.2020.103146 .
|
70 |
KROEKER K J, KORDAS R L, CRIM R N, et al. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms[J]. Ecology Letters, 2010, 13(11): 1 419-1 434.
|
71 |
MONTSERRAT F, RENFORTH P, HARTMANN J, et al. Olivine dissolution in seawater: implications for CO2 sequestration through enhanced weathering in coastal environments[J]. Environmental Science & Technology, 2017, 51(7): 3 960-3 972.
|
72 |
ANDERSON M A, MOREL F M M. The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii[J]. Limnology and Oceanography, 1982, 27(5): 789-813.
|
73 |
NELSON D M, TRÉGUER P, BRZEZINSKI M A, et al. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation[J]. Global Biogeochemical Cycles, 1995, 9(3): 359-372.
|
74 |
HUMBORG C, ITTEKKOT V, COCIASU A, et al. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure[J]. Nature, 1997, 386: 385-388.
|
75 |
HAUCK J, KÖHLER P, WOLF-GLADROW D, et al. Iron fertilisation and century-scale effects of open ocean dissolution of olivine in a simulated CO2 removal experiment[J]. Environmental Research Letters, 2016, 11(2). DOI:10.1088/1748-9326/11/2/024007 .
|
76 |
MILLWARD G E, KADAM S, JHA A N. Tissue-specific assimilation, depuration and toxicity of nickel in Mytilus edulis [J]. Environmental Pollution, 2012, 162: 406-412.
|
77 |
BLEWETT T A, GLOVER C N, FEHSENFELD S, et al. Making sense of nickel accumulation and sub-lethal toxic effects in saline waters: fate and effects of nickel in the green crab, Carcinus maenas [J]. Aquatic Toxicology, 2015, 164: 23-33.
|
78 |
ZHU T Q, ZHENG L W, LI F, et al. Sustainable carbon sequestration via olivine based ocean alkalinity enhancement in the east and South China Sea: adhering to environmental norms for nickel and chromium[J]. Science of the Total Environment, 2024, 930. DOI: 10.1016/j.scitotenv.2024.172853 .
|
79 |
FUJII M, YEUNG A C Y, WAITE T D. Competitive effects of calcium and magnesium ions on the photochemical transformation and associated cellular uptake of iron by the freshwater cyanobacterial phytoplankton Microcystis aeruginosa [J]. Environmental Science & Technology, 2015, 49(15): 9 133-9 142.
|
80 |
RENFORTH P, JENKINS B G, KRUGER T. Engineering challenges of ocean liming[J]. Energy, 2013, 60: 442-452.
|
81 |
GAO Weibin, CHEN Yang, WANG Haoxian. Enhanced silicate rock weathering—a new path of “carbon neutrality”[J]. Advances in Earth Science, 2023, 38(2): 137-150.
|
|
高伟斌, 陈旸, 王浩贤. 增强硅酸盐岩风化: “碳中和” 之新路径[J]. 地球科学进展, 2023, 38(2): 137-150.
|
82 |
STREFLER J, AMANN T, BAUER N, et al. Potential and costs of carbon dioxide removal by enhanced weathering of rocks[J]. Environmental Research Letters, 2018, 13(3). DOI:10.1088/1748-9326/aaa9c4 .
|
83 |
HOUSE K Z, BACLIG A C, RANJAN M, et al. Economic and energetic analysis of capturing CO2 from ambient air[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(51): 20 428-20 433.
|
84 |
SMITH P. Soil carbon sequestration and biochar as negative emission technologies[J]. Global Change Biology, 2016, 22(3): 1 315-1 324.
|
85 |
BEERLING D J, KANTZAS E P, LOMAS M R, et al. Potential for large-scale CO2 removal via enhanced rock weathering with croplands[J]. Nature, 2020, 583(7 815): 242-248.
|
86 |
FUSS S, LAMB W F, CALLAGHAN M W, et al. Negative emissions: part 2: costs, potentials and side effects[J]. Environmental Research Letters, 2018, 13(6). DOI:10.1088/1748-9326/aabf9f .
|
87 |
HARRISON D P. A method for estimating the cost to sequester carbon dioxide by delivering iron to the ocean[J]. International Journal of Global Warming, 2013, 5(3). DOI:10.1504/IJGW.2013.055360 .
|
88 |
Carbon Pricing Dashboard[EB/OL]. The World Bank,2024.[2024-07-06]. .
|
89 |
SLATER H, de BOER D, QIAN Guoqiang, et al. 2020 China carbon pricing survey[R]. China Carbon Forum,2020.
|
|
Slater H, de Boer D,钱国强,等. 2020年中国碳价调查报告[R]. 中国碳论坛, 2020.
|
90 |
ALBRIGHT R, CALDEIRA L, HOSFELT J, et al. Reversal of ocean acidification enhances net coral reef calcification[J]. Nature, 2016, 531(7 594): 362-365.
|
91 |
OceanNETs public engagement event on Gran Canaria[Z]. OceanNETs, 2021.
|
92 |
GEOMAR. Ocean alkalinity enhancement [Z]. GEOMAR, 2022.
|
93 |
Carbon-Removing Shoreline Protection[Z]. Vesta, 2022.
|
94 |
TOLLEFSON J. Start-ups are adding antacids to the ocean to slow global warming. Will it work?[J]. Nature, 2023, 618(7 967): 902-904.
|
95 |
REN Hongwei. Study on carbon sequestration by seawater olivine addition and its impact on microbial community structure[D]. Jinan: Shandong University, 2022.
|
|
任宏伟. 海水橄榄石增汇效应及其对微生物群落结构影响研究[D]. 济南:山东大学, 2022.
|
96 |
Planetary’s OAE-We remove carbon from the atmosphere safely and permanently[Z]. Planetary Technologies, 2023.
|
97 |
GRABOWSKI M. $4M for UH-led marine carbon removal projects[Z]. UH News, 2023.
|
98 |
RENFORTH P, BALTRUSCHAT S, PETERSON K, et al. Using ikaite and other hydrated carbonate minerals to increase ocean alkalinity for carbon dioxide removal and environmental remediation[J]. Joule, 2022, 6(12): 2 674-2 679.
|
99 |
Carbon to Sea announces first grants to advance OAE Research and Technology[Z]. Carbon to Sea Initiative,2023.
|
100 |
EISAMAN M D, RIVEST J L B, KARNITZ S D, et al. Indirect ocean capture of atmospheric CO2: part II. understanding the cost of negative emissions[J]. International Journal of Greenhouse Gas Control, 2018, 70: 254-261.
|
101 |
LOC-NESS: a research program to study ocean alkalinity enhancement on the Northeast Shelf and Slope of the U.S[Z]. Woods Hole Oceanographic Institution, 2023.
|
102 |
RIEBESELL U, BASSO D, GEILERT S, et al. Mesocosm experiments in ocean alkalinity enhancement research[J]. State Planet Discuss, 2023, 2-oae-2023(6): 1-21.
|
103 |
FUHR M, GEILERT S, SCHMIDT M, et al. Kinetics of olivine weathering in seawater: an experimental study[J]. Frontiers in Climate, 2022, 4. DOI: 10.3389/fclim.2022.831587 .
|
104 |
LAWFORD-SMITH H, CURRIE A. Accelerating the carbon cycle: the ethics of enhanced weathering[J]. Biology Letters, 2017, 13(4). DOI: 10.1098/rsbl.2016.0859 .
|
105 |
NAWAZ S, LEZAUN J, VALENZUELA J M, et al. Broaden research on ocean alkalinity enhancement to better characterize social impacts[J]. Environmental Science & Technology, 2023, 57(24): 8 863-8 869.
|
106 |
RIEBESELL U, GATTUSO J P. Lessons learned from ocean acidification research[J]. Nature Climate Change, 2015, 5: 12-14.
|
107 |
GATTUSO J P, MAGNAN A K, BOPP L, et al. Ocean solutions to address climate change and its effects on marine ecosystems[J]. Frontiers in Marine Science, 2018, 5. DOI:10.3389/fmars.2018.00337 .
|
108 |
BORGES A V, DELILLE B, FRANKIGNOULLE M. Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts[J]. Geophysical Research Letters, 2005, 32(14). DOI:10.1029/2005GL023053 .
|
109 |
CAI W J, DAI M H, WANG Y C. Air-sea exchange of carbon dioxide in ocean margins: a province-based synthesis[J]. Geophysical Research Letters, 2006, 33(12). DOI:10.1029/2006GL026219 .
|
110 |
ZHANG Y Y, ZHANG J H, LIANG Y T, et al. Carbon sequestration processes and mechanisms in coastal mariculture environments in China[J]. Science China Earth Sciences, 2017, 60(12): 2 097-2 107.
|
111 |
PARK J H, NAYNA O K, BEGUM M S, et al. Reviews and syntheses: anthropogenic perturbations to carbon fluxes in Asian river systems-concepts, emerging trends, and research challenges[J]. Biogeosciences, 2018, 15(9): 3 049-3 069.
|
112 |
DAI M H, SU J Z, ZHAO Y Y, et al. Carbon fluxes in the coastal ocean: synthesis, boundary processes, and future trends[J]. Annual Review of Earth and Planetary Sciences, 2022, 50: 593-626.
|
113 |
YANG X F, XUE L, LI Y X, et al. Treated wastewater changes the export of dissolved inorganic carbon and its isotopic composition and leads to acidification in coastal oceans[J]. Environmental Science & Technology, 2018, 52(10): 5 590-5 599.
|
114 |
LU L, GUEST J S, PETERS C A, et al. Wastewater treatment for carbon capture and utilization[J]. Nature Sustainability, 2018, 1: 750-758.
|
115 |
Biodiversity conservation in China[Z]. The State Council Information Office of the People’s Republic of China, 2021.
|
|
中国的生物多样性保护[Z]. 国务院新闻办公室, 2021.
|
116 |
National maritime development for 12th Five-Year Plan [Z]. General Office of the State Council of the People’s Republic of China,2012. [国家海洋事业发展“十二五”规划[Z]. 国务院办公厅, 2012.]
|
117 |
WANG Faming, TANG Jianwu, YE Siyuan, et al. Blue carbon sink function of Chinese coastal wetlands and carbon neutrality strategy[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(3): 241-251.
|
|
王法明, 唐剑武, 叶思源, 等. 中国滨海湿地的蓝色碳汇功能及碳中和对策[J]. 中国科学院院刊, 2021, 36(3): 241-251.
|
118 |
SHAO Chao, TANG Yingying, SUN Wei, et al. Current situation and application prospect of beach nourishment evaluation in China[J]. Coastal Engineering, 2023, 42(1): 75-87.
|
|
邵超, 唐迎迎, 孙伟, 等. 我国海滩养护效果评价的现状分析与应用展望[J]. 海岸工程, 2023, 42(1): 75-87.
|