地球科学进展 ›› 2025, Vol. 40 ›› Issue (1): 68 -81. doi: 10.11867/j.issn.1001-8166.2024.087

大气海洋 上一篇    下一篇

海水碱度提升技术综述及协同实施路径展望
黄宝蓉1,2(), 周哲3,4(), 褚华强1,2, 代朝猛5, 杨守业3,4, 张亚雷1,2   
  1. 1.同济大学 环境科学与工程学院,上海 200092
    2.同济大学 污染控制与资源化研究国家重点实验室,上海 200092
    3.同济大学 海洋地质全国重点实验室,上海 200092
    4.同济大学 海洋与 地球科学学院,上海 200092
    5.同济大学 土木工程学院,上海 200092
  • 收稿日期:2024-10-25 修回日期:2024-12-23 出版日期:2025-01-10
  • 通讯作者: 周哲 E-mail:hbr@tongji.edu.cn;zhezhou_research@tongji.edu.cn
  • 基金资助:
    国家重点研发计划项目(2022YFF0800504);同济大学交叉学科项目(2023-1-YB-04);国家自然科学基金项目(42306052)

Ocean Alkalinity Enhancement Technology and Outlook of Synergistic Application Pathways: A Review

Baorong HUANG1,2(), Zhe ZHOU3,4(), Huaqiang CHU1,2, Chaomeng DAI5, Shouye YANG3,4, Yalei ZHANG1,2   

  1. 1.College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
    2.State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China
    3.State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
    4.School of Ocean and Earth Science, Tongji University, Shanghai 200092, China
    5.College Civil Engineering, Tongji University, Shanghai 200092, China
  • Received:2024-10-25 Revised:2024-12-23 Online:2025-01-10 Published:2025-03-24
  • Contact: Zhe ZHOU E-mail:hbr@tongji.edu.cn;zhezhou_research@tongji.edu.cn
  • About author:HUANG Baorong, research areas include environmental geochemistry and water pollution control. E-mail: hbr@tongji.edu.cn
  • Supported by:
    the National Key Research and Development Program of China(2022YFF0800504);The Interdisciplinary Project of Tongji University(2023-1-YB-04);The National Natural Science Foundation of China(42306052)

碳中和是应对全球气候变化的重要手段,而负排放技术是实现碳中和目标的关键一环。海洋作为地球上最大的活跃碳库,在负排放技术开发中有着巨大潜力,为实现碳中和目标提供了重要支撑。其中,海水碱度提升技术被认为是一种高效且兼具生态效益的负排放技术,即通过人为投加碱性物质提高表层海水碱度,在促进海洋吸收CO2的同时,缓解海洋酸化。基于海洋碳酸盐平衡体系等理论基础,概述了海水碱度提升技术的基本原理,并结合国内外研究进展,总结了不同尺度的研究。从多维度对比评估了该技术的碳汇潜力和成本,指出其在实施路径、生态影响评估和公众接受度等方面的挑战。结合海水碱度提升技术特点和我国沿海地区实际情况,提出了耦合污水处理厂基础设施和海岸带工程等的协同实施路径,为推动海水碱度提升技术的工程应用提供创新思路,进一步丰富了发展海洋蓝色碳汇的科学内涵和路径。

Carbon neutrality is a crucial strategy for combating global warming, and negative emissions technologies are key to achieving this goal. As the largest carbon reservoir on Earth, the ocean plays an irreplaceable role in regulating global carbon cycling and holds significant potential for negative emissions. Ocean alkalinity enhancement is a highly efficient and ecologically beneficial negative emissions technology. This technology increases ocean alkalinity by adding alkaline minerals to seawater, thereby enhancing the absorption of atmospheric CO2 and improving the buffer capacity to resist ocean acidification. This study introduces the mechanisms and advancements in ocean alkalinity enhancement research at multiple scales based on the dissolution theory of carbonates in the ocean. Assessing the potential for negative emissions and associated costs reveals several challenges regarding implementation pathways, environmental impacts, and public acceptance. Considering the specific conditions of China’s coastal regions and the characteristics of ocean alkalinity enhancement technology, this study proposes a pathway integrated with wastewater treatment plants and coastal engineering. Furthermore, it provides an innovative concept on the application of ocean alkalinity enhancement and enriches the scientific understanding of blue carbon sinks.

中图分类号: 

图1 海洋碳循环示意图(据参考文献[24-25]修改)
Fig. 1 Ocean carbon cycle processes and ocean carbonate chemistry mechanismsmodified after references24-25])
图2 海水碱度提升技术主要路径
Fig. 2 Ocean alkalinity enhancement technology path
表1 主要硅酸盐碱性矿物组成及理论CO2 消耗量48
Table 1 Theoretical CO2 drawdown of rockmineralfor common basalt forming minerals and basalt48
表2 海水碱度提升技术与部分负排放技术能源和成本对比表
Table 2 Comparison of energy and costs in ocean alkalinity enhancement technology and other negative carbon emissions technologies
表3 国内外从事海水碱度提升研究的部分机构及主要进展
Table 3 Domestic and international institutions engaged in research on ocean alkalinity enhancement and research advances
序号机构名称投料研究时间研究内容应用情况参考文献
1卡内基科学研究所氢氧化钠2016年小规模投加氢氧化钠以评估大堡礁珊瑚生态系统对缓解海洋酸化的反应原位实验研究90
2比利时布鲁塞尔自由大学橄榄石2017年研究橄榄石在天然海水中的溶解速率,及封存海水CO2的效果实验室研究71
3GEOMAR、加纳利群岛拉斯帕尔马斯大学熟石灰和橄榄石2021年研究海洋碱化对海洋生物群落的潜在风险和副作用,以及不同碱性材料对捕获大气CO2的潜能中试研究3891-92
4澳大利亚南十字星大学氧化钙和氢氧化钙2022年天然海水碱性钙化物溶解性机理研究,钙基碱性物质吸收CO2最佳投料量研究实验室研究56
5Vesta橄榄石2022年研究橄榄石风化原理及影响增强风化吸收大气CO2的因素原位实验研究93-94
6山东大学和厦门大学橄榄石2022年研究海水橄榄石增汇效应及其对微生物群落结构的影响实验室及原位实验研究95
7德国汉堡大学碳酸盐;钙、镁和钠氢氧化物2023年研究不同碱性投料的应用特点实验室研究39
8美国迈阿密大学水镁石2023年研究Mg(OH)2的动力学特征及在海水碱度提升的应用稳定性和耐久性实验室研究50
9Planetary Technologies水镁石2023年研究向海洋中添加碱性药剂是否是海水脱酸和大气CO2捕获的有效方法原位实验研究96
10美国夏威夷大学2023年向海水中添加碱度和示踪剂,以评估海洋碱度提升对去除大气CO2的效率原位实验研究97
11赫瑞—瓦特大学Ikaite(六水合碳酸钙)2023年使用溶解快速、纯度高、能源成本低的Ikaite作为海水碱度提升投料实验室研究98
12加拿大麦克马斯特大学和多伦多大学2023年电化学海水碱度提升膜工艺可以通过降低资本支出和能耗,将每吨CO2的电化学去除成本减半实验室研究99-100
13伍兹霍尔海洋研究所2023—2026年设计安全部署船舶碱性原料的最佳位点,开展碱度释放和羽流跟踪的实地试验原位实验研究101
14荷兰代尔夫特理工大学和比利时安特卫普大学碳酸盐;钙和钠氢氧化物(溶液)2024年对比不同路径的海水碱度提升技术应用的有效性和持久性中试研究102
图3 沿海污水处理厂出水碱度调控路径
(a)复合碱性矿物生态滤床;(b)可渗透加碱墙
Fig. 3 Schematic illustration of alkalinity control approaches of the coastal wastewater treatment plant effluent
(a) Compound alkalinity minerals ecological filter bed; (b) Permeable alkalinity enhancement barrier
1 PÖRTNER H. Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view[J]. Marine Ecology Progress Series2008373: 203-217.
2 JIAO Nianzhi. Developing ocean negative carbon emission technology to support national carbon neutralization[J]. Bulletin of Chinese Academy of Sciences202136(2): 179-187.
焦念志. 研发海洋“负排放”技术支撑国家“碳中和” 需求[J]. 中国科学院院刊202136(2): 179-187.
3 WANG F, HARINDINTWALI J D, YUAN Z Z, et al. Technologies and perspectives for achieving carbon neutrality[J]. The Innovation20212(4). DOI: 10.1016/j.xinn.2021.100180 .
4 Ministry of Ecology and Environment the People’s Republic of China. Responding to climate change: China’s policies and actions in 2023[Z]. 2023.
中华人民共和国生态环境部. 《中国应对气候变化的政策与行动2023年度报告》[Z]. 2023.
5 CAO Long. Climate system response to carbon dioxide removal[J]. Climate Change Research202117(6): 664-670.
曹龙. IPCC AR6报告解读: 气候系统对二氧化碳移除响应[J]. 气候变化研究进展202117(6): 664-670.
6 ZHANG C L, SHI T, LIU J H, et al. Eco-engineering approaches for ocean negative carbon emission[J]. Science Bulletin202267(24): 2 564-2 573.
7 SABINE C L, FEELY R A, GRUBER N, et al. The oceanic sink for anthropogenic CO2 [J]. Science2004305(5 682): 367-371.
8 KHATIWALA S, PRIMEAU F, HALL T. Reconstruction of the history of anthropogenic CO2 concentrations in the ocean[J]. Nature2009462: 346-349.
9 FRIEDLINGSTEIN P, O’SULLIVAN M, JONES M W, et al. Global carbon budget 2023[J]. Earth System Science Data202315(12): 5 301-5 069.
10 JIAO Nianzhi, DAI Minhan, JIAN Zhimin, et al. Research strategies for ocean carbon storage mechanisms and effects[J]. Chinese Science Bulletin202267(15): 1 600-1 606.
焦念志, 戴民汉, 翦知湣, 等. 海洋储碳机制及相关生物地球化学过程研究策略[J]. 科学通报202267(15): 1 600-1 606.
11 GUO Xuefei, ZHANG Minji, ZHOU Wei, et al. Technology development and future directions of ocean alkalinity enhancement[J]. Ocean Development and Management202340(9): 30-36.
郭雪飞, 张敏吉, 周微, 等. 海洋碱性矿物增汇技术发展方向研究[J]. 海洋开发与管理202340(9): 30-36.
12 JIAO Nianzhi, LUO Tingwei, LIU Jihua, et al. Ocean negative carbon emissions in the context of Earth system science[J]. Bulletin of Chinese Academy of Sciences202338(9): 1 294-1 305.
焦念志, 骆庭伟, 刘纪化, 等. 海洋负排放: 基于地球系统科学思维的海洋科技变革[J]. 中国科学院院刊202338(9): 1 294-1 305.
13 RAVEN J A, FALKOWSKI P G. Oceanic sinks for atmospheric CO2 [J]. Plant, Cell & Environment, 199922(6): 741-755.
14 SARMIENTO J L, GRUBER N. Sinks for anthropogenic carbon[J]. Physics Today200255(8): 30-36.
15 Intergovernmental Panel on Climate. Climate Change 2013—the physical science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2014.
16 BEERLING D J, LEAKE J R, LONG S P, et al. Farming with crops and rocks to address global climate, food and soil security[J]. Nature Plants20184(3): 138-147.
17 JIANG L Q, CARTER B R, FEELY R A, et al. Surface ocean pH and buffer capacity: past, present and future[J]. Scientific Reports20199(1). DOI: 10.1038/s41598-019-55039-4 .
18 CAI W J, JIAO N Z. Wastewater alkalinity addition as a novel approach for ocean negative carbon emissions[J]. Innovation (Cambridge (Mass))20223(4). DOI: 10.1016/j.xinn.2022.100272 .
19 HANSELL D A. Recalcitrant dissolved organic carbon fractions[J]. Annual Review of Marine Science20135: 421-445.
20 CARROLL D, MENEMENLIS D, DUTKIEWICZ S, et al. Attribution of space-time variability in global-ocean dissolved inorganic carbon[J]. Global Biogeochemical Cycles202236(3). DOI:10.1029/2021GB007162 .
21 LIU Jihua, ZHENG Qiang. From the frontier theory of marine carbon sink to China’s scheme of marine negative emissions[J]. Science China: Earth Sciences202151(4): 644-652.
刘纪化, 郑强. 从海洋碳汇前沿理论到海洋负排放中国方案[J]. 中国科学: 地球科学202151(4): 644-652.
22 HURD C L, HEPBURN C D, CURRIE K I, et al. Testing the effects of ocean acidification on algal metabolism: considerations for experimental designs(1)[J]. Journal of Phycology200945(6): 1 236-1 251.
23 National Academies of Sciences E, Medicine, Division on E, et al. A research strategy for ocean-based carbon dioxide removal and sequestration[M]// A research strategy for ocean-based carbon dioxide removal and sequestration. Washington (DC): National Academies Press, 2021.
24 TURLEY C, NIGHTINGALE P, RILEY N, et al. Literature review: environmental impacts of a gradual or catastrophic release of CO2 into the marine environment following carbon dioxide capture[R]. UK Department for Environment, 2004.
25 RAYMOND P A, HAMILTON S K. Anthropogenic influences on riverine fluxes of dissolved inorganic carbon to the oceans[J]. Limnology and Oceanography Letters20183(3): 143-155.
26 YU Lei, LI Sanzhong, SUO Yanhui, et al. Carbon cycling in costal ocean and CO2 negative emissions[J]. Journal of Marine Sciences202341(1): 14-25.
于雷, 李三忠, 索艳慧, 等. 海岸海洋碳循环过程与CO2负排放[J]. 海洋学研究202341(1): 14-25.
27 BAUER J E, CAI W J, RAYMOND P A, et al. The changing carbon cycle of the coastal ocean[J]. Nature2013504(7 478): 61-70.
28 BOIX CANADELL M, ESCOFFIER N, ULSETH A J, et al. Alpine glacier shrinkage drives shift in dissolved organic carbon export from quasi-chemostasis to transport limitation[J]. Geophysical Research Letters201946(15): 8 872-8 881.
29 TIAN H Q, YAO Y Z, LI Y, et al. Increased terrestrial carbon export and CO2 evasion from global inland waters since the preindustrial era[J]. Global Biogeochemical Cycles202337(10). DOI:10.1029/2023GB007776 .
30 YU Z T, WANG X J, HAN G X, et al. Organic and inorganic carbon and their stable isotopes in surface sediments of the Yellow River Estuary[J]. Scientific Reports2018, 8. DOI:10.1038/s41598-018-29200-4 .
31 KWAK K, SONG H, MARSHALL J, et al. Suppressed pCO2 in the Southern Ocean due to the interaction between current and wind[J]. Journal of Geophysical Research: Oceans2021126(12). DOI:10.1029/2021JC017884 .
32 LI Y X, XUE L, YANG X F, et al. Wastewater inputs reduce the CO2 uptake by coastal oceans[J]. Science of the Total Environment2023, 901. DOI:10.1016/j.scitotenv.2023.165700 .
33 CHEN T Y, ROBINSON L F, LI T, et al. Radiocarbon evidence for the stability of polar ocean overturning during the Holocene[J]. Nature Geoscience202316: 631-636.
34 HÖNISCH B, RIDGWELL A, SCHMIDT D N, et al. The geological record of ocean acidification[J]. Science2012335(6 072): 1 058-1 063.
35 LIANG H D, LUNSTRUM A M, DONG S J, et al. Constraining CaCO3 export and dissolution with an ocean alkalinity inverse model[J]. Global Biogeochemical Cycles202337(2). DOI: 10.1029/2022gb007535 .
36 JELTSCH-THÖMMES A, TRAN G, LIENERT S, et al. Earth system responses to carbon dioxide removal as exemplified by ocean alkalinity enhancement: tradeoffs and lags[J]. Environmental Research Letters202419(5). DOI:10.1088/1748-9326/ad4401 .
37 KHESHGI H S. Sequestering atmospheric carbon dioxide by increasing ocean alkalinity[J]. Energy199520(9): 915-922.
38 PLOCAN hosts the OceanNETs 2021 study: making the ocean an ally in climate protection[Z]. Plataforma Oceánica de Canarias, 2021.
39 HARTMANN J, SUITNER N, LIM C, et al. Stability of alkalinity in Ocean Alkalinity Enhancement (OAE) approaches-consequences for durability of CO2 storage[J]. Biogeosciences202320(4): 781-802.
40 PAN S Y, CHEN Y H, FAN L S, et al. CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction[J]. Nature Sustainability20203: 399-405.
41 DING Z S, ZHANG X, CHENG T L, et al. Unlocking high carbonation efficiency: direct CO2 mineralization with fly ash and seawater[J]. Chemical Engineering Science2023, 282. DOI:10.1016/j.ces.2023.119349 .
42 RAU G H, CALDEIRA K. Enhanced carbonate dissolution: a means of sequestering waste CO2 as ocean bicarbonate[J]. Energy Conversion and Management199940(17): 1 803-1 813.
43 CHOU W C, GONG G C, HSIEH P S, et al. Potential impacts of effluent from accelerated weathering of limestone on seawater carbon chemistry: a case study for the hoping power plant in northeastern Taiwan [J]. Marine Chemistry2015168: 27-36.
44 RAU G H. Electrochemical splitting of calcium carbonate to increase solution alkalinity: implications for mitigation of carbon dioxide and ocean acidity[J]. Environmental Science & Technology200842(23): 8 935-8 940.
45 HOUSE K Z, HOUSE C H, SCHRAG D P, et al. Electrochemical acceleration of chemical weathering as an energetically feasible approach to mitigating anthropogenic climate change[J]. Environmental Science & Technology200741(24): 8 464-8 470.
46 EISAMAN M D, PARAJULY K, TUGANOV A, et al. CO2 extraction from seawater using bipolar membrane electrodialysis[J]. Energy & Environmental Science20125(6): 7 346-7 352.
47 PHIL R. The negative emission potential of alkaline materials[J]. Nature Communications201910(1). DOI:10.1038/s41467-019-09475-5 .
48 RINDER T, von HAGKE C. The influence of particle size on the potential of enhanced basalt weathering for carbon dioxide removal-Insights from a regional assessment[J]. Journal of Cleaner Production2021, 315. DOI: 10.1016/j.jclepro.2021.128178 .
49 RENFORTH P. The potential of enhanced weathering in the UK[J]. International Journal of Greenhouse Gas Control201210: 229-243.
50 YANG B, LEONARD J, LANGDON C. Seawater alkalinity enhancement with magnesium hydroxide and its implication for carbon dioxide removal[J]. Marine Chemistry2023, 253. DOI: 10.1016/j.marchem.2023.104251 .
51 FOTEINIS S, CAMPBELL J S, RENFORTH P. Life cycle assessment of coastal enhanced weathering for carbon dioxide removal from air[J]. Environmental Science & Technology202357(15): 6 169-6 178.
52 OELKERS E H, DECLERCQ J, SALDI G D, et al. Olivine dissolution rates: a critical review[J]. Chemical Geology2018500: 1-19.
53 SHIROKOVA L S, BÉNÉZETH P, POKROVSKY O S, et al. Effect of the heterotrophic bacterium Pseudomonas reactans on olivine dissolution kinetics and implications for CO2 storage in basalts[J]. Geochimica et Cosmochimica Acta201280: 30-50.
54 WANG F, GIAMMAR D E. Forsterite dissolution in saline water at elevated temperature and high CO2 pressure[J]. Environmental Science & Technology201347(1): 168-173.
55 GESAMP. High level review of a wide range of proposed marine geoengineering techniques[Z]. GESAMP2019.
56 MORAS C A, BACH L T, CYRONAK T, et al. Ocean alkalinity enhancement-avoiding runaway CaCO3 precipitation during quick and hydrated lime dissolution[J]. Biogeosciences202219(15): 3 537-3 557.
57 HARTMANN J, WEST A J, RENFORTH P, et al. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification[J]. Reviews of Geophysics201351(2): 113-149.
58 RENFORTH P, HENDERSON G. Assessing ocean alkalinity for carbon sequestration[J]. Reviews of Geophysics201755(3): 636-674.
59 KÖHLER P, ABRAMS J F, VÖLKER C, et al. Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology[J]. Environmental Research Letters20138(1). DOI 10.1088/1748-9326/8/1/014009.
60 ADKINS J, DONG S J, BERELSON W. Accelerated weathering of limestone on cargo ships[C]//Goldschmidt 2021 abstracts. France: European Association of Geochemistry, 2021.
61 MEYSMAN F J R, MONTSERRAT F. Negative CO2 emissions via enhanced silicate weathering in coastal environments[J]. Biology Letters201713(4). DOI:10.1098/rsbl.2016.0905 .
62 CASERINI S, PAGANO D, CAMPO F, et al. Potential of maritime transport for ocean liming and atmospheric CO2 removal[J]. Frontiers in Climate2021, 3. DOI: 10.3389/fclim.2021.575900 .
63 HARVEY L D D. Mitigating the atmospheric CO2 increase and ocean acidification by adding limestone powder to upwelling regions[J]. Journal of Geophysical Research: Oceans2008113(C4). DOI: 10.1029/2007JC004373 .
64 BACH L T, GILL S J, RICKABY R E M, et al. CO2 removal with enhanced weathering and ocean alkalinity enhancement: potential risks and co-benefits for marine pelagic ecosystems[J]. Frontiers in Climate2019, 1. DOI:10.3389/fdim.2019.00007 .
65 RAU G H, CARROLL S A, BOURCIER W L, et al. Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production[J]. Proceedings of the National Academy of Sciences of the United States of America2013110(25): 10 095-10 100.
66 HANGX S J T, SPIERS C J. Coastal spreading of olivine to control atmospheric CO2 concentrations: a critical analysis of viability[J]. International Journal of Greenhouse Gas Control20093(6): 757-767.
67 BURT D J, FRÖB F, ILYINA T. The sensitivity of the marine carbonate system to regional ocean alkalinity enhancement[J]. Frontiers in Climate2021, 3. DOI: 10.3389/fclim.2021.624075 .
68 RIEBESELL U, BACH L, BELLERBY R, et al. Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification[J]. Nature Geoscience201710: 19-23.
69 LaROWE D E, ARNDT S, BRADLEY J A, et al. The fate of organic carbon in marine sediments—new insights from recent data and analysis[J]. Earth-Science Reviews2020, 204. DOI: 10.1016/j.earscirev.2020.103146 .
70 KROEKER K J, KORDAS R L, CRIM R N, et al. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms[J]. Ecology Letters201013(11): 1 419-1 434.
71 MONTSERRAT F, RENFORTH P, HARTMANN J, et al. Olivine dissolution in seawater: implications for CO2 sequestration through enhanced weathering in coastal environments[J]. Environmental Science & Technology201751(7): 3 960-3 972.
72 ANDERSON M A, MOREL F M M. The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii[J]. Limnology and Oceanography198227(5): 789-813.
73 NELSON D M, TRÉGUER P, BRZEZINSKI M A, et al. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation[J]. Global Biogeochemical Cycles19959(3): 359-372.
74 HUMBORG C, ITTEKKOT V, COCIASU A, et al. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure[J]. Nature1997386: 385-388.
75 HAUCK J, KÖHLER P, WOLF-GLADROW D, et al. Iron fertilisation and century-scale effects of open ocean dissolution of olivine in a simulated CO2 removal experiment[J]. Environmental Research Letters201611(2). DOI:10.1088/1748-9326/11/2/024007 .
76 MILLWARD G E, KADAM S, JHA A N. Tissue-specific assimilation, depuration and toxicity of nickel in Mytilus edulis [J]. Environmental Pollution2012162: 406-412.
77 BLEWETT T A, GLOVER C N, FEHSENFELD S, et al. Making sense of nickel accumulation and sub-lethal toxic effects in saline waters: fate and effects of nickel in the green crab, Carcinus maenas [J]. Aquatic Toxicology2015164: 23-33.
78 ZHU T Q, ZHENG L W, LI F, et al. Sustainable carbon sequestration via olivine based ocean alkalinity enhancement in the east and South China Sea: adhering to environmental norms for nickel and chromium[J]. Science of the Total Environment2024, 930. DOI: 10.1016/j.scitotenv.2024.172853 .
79 FUJII M, YEUNG A C Y, WAITE T D. Competitive effects of calcium and magnesium ions on the photochemical transformation and associated cellular uptake of iron by the freshwater cyanobacterial phytoplankton Microcystis aeruginosa [J]. Environmental Science & Technology201549(15): 9 133-9 142.
80 RENFORTH P, JENKINS B G, KRUGER T. Engineering challenges of ocean liming[J]. Energy201360: 442-452.
81 GAO Weibin, CHEN Yang, WANG Haoxian. Enhanced silicate rock weathering—a new path of “carbon neutrality”[J]. Advances in Earth Science202338(2): 137-150.
高伟斌, 陈旸, 王浩贤. 增强硅酸盐岩风化: “碳中和” 之新路径[J]. 地球科学进展202338(2): 137-150.
82 STREFLER J, AMANN T, BAUER N, et al. Potential and costs of carbon dioxide removal by enhanced weathering of rocks[J]. Environmental Research Letters201813(3). DOI:10.1088/1748-9326/aaa9c4 .
83 HOUSE K Z, BACLIG A C, RANJAN M, et al. Economic and energetic analysis of capturing CO2 from ambient air[J]. Proceedings of the National Academy of Sciences of the United States of America2011108(51): 20 428-20 433.
84 SMITH P. Soil carbon sequestration and biochar as negative emission technologies[J]. Global Change Biology201622(3): 1 315-1 324.
85 BEERLING D J, KANTZAS E P, LOMAS M R, et al. Potential for large-scale CO2 removal via enhanced rock weathering with croplands[J]. Nature2020583(7 815): 242-248.
86 FUSS S, LAMB W F, CALLAGHAN M W, et al. Negative emissions: part 2: costs, potentials and side effects[J]. Environmental Research Letters201813(6). DOI:10.1088/1748-9326/aabf9f .
87 HARRISON D P. A method for estimating the cost to sequester carbon dioxide by delivering iron to the ocean[J]. International Journal of Global Warming20135(3). DOI:10.1504/IJGW.2013.055360 .
88 Carbon Pricing Dashboard[EB/OL]. The World Bank2024.[2024-07-06]. .
89 SLATER H, de BOER D, QIAN Guoqiang, et al. 2020 China carbon pricing survey[R]. China Carbon Forum,2020.
Slater H, de Boer D,钱国强,等. 2020年中国碳价调查报告[R]. 中国碳论坛, 2020.
90 ALBRIGHT R, CALDEIRA L, HOSFELT J, et al. Reversal of ocean acidification enhances net coral reef calcification[J]. Nature2016531(7 594): 362-365.
91 OceanNETs public engagement event on Gran Canaria[Z]. OceanNETs, 2021.
92 GEOMAR. Ocean alkalinity enhancement [Z]. GEOMAR2022.
93 Carbon-Removing Shoreline Protection[Z]. Vesta, 2022.
94 TOLLEFSON J. Start-ups are adding antacids to the ocean to slow global warming. Will it work?[J]. Nature2023618(7 967): 902-904.
95 REN Hongwei. Study on carbon sequestration by seawater olivine addition and its impact on microbial community structure[D]. Jinan: Shandong University, 2022.
任宏伟. 海水橄榄石增汇效应及其对微生物群落结构影响研究[D]. 济南:山东大学, 2022.
96 Planetary’s OAE-We remove carbon from the atmosphere safely and permanently[Z]. Planetary Technologies, 2023.
97 GRABOWSKI M. $4M for UH-led marine carbon removal projects[Z]. UH News2023.
98 RENFORTH P, BALTRUSCHAT S, PETERSON K, et al. Using ikaite and other hydrated carbonate minerals to increase ocean alkalinity for carbon dioxide removal and environmental remediation[J]. Joule20226(12): 2 674-2 679.
99 Carbon to Sea announces first grants to advance OAE Research and Technology[Z]. Carbon to Sea Initiative2023.
100 EISAMAN M D, RIVEST J L B, KARNITZ S D, et al. Indirect ocean capture of atmospheric CO2: part II. understanding the cost of negative emissions[J]. International Journal of Greenhouse Gas Control201870: 254-261.
101 LOC-NESS: a research program to study ocean alkalinity enhancement on the Northeast Shelf and Slope of the U.S[Z]. Woods Hole Oceanographic Institution2023.
102 RIEBESELL U, BASSO D, GEILERT S, et al. Mesocosm experiments in ocean alkalinity enhancement research[J]. State Planet Discuss20232-oae-2023(6): 1-21.
103 FUHR M, GEILERT S, SCHMIDT M, et al. Kinetics of olivine weathering in seawater: an experimental study[J]. Frontiers in Climate2022, 4. DOI: 10.3389/fclim.2022.831587 .
104 LAWFORD-SMITH H, CURRIE A. Accelerating the carbon cycle: the ethics of enhanced weathering[J]. Biology Letters201713(4). DOI: 10.1098/rsbl.2016.0859 .
105 NAWAZ S, LEZAUN J, VALENZUELA J M, et al. Broaden research on ocean alkalinity enhancement to better characterize social impacts[J]. Environmental Science & Technology202357(24): 8 863-8 869.
106 RIEBESELL U, GATTUSO J P. Lessons learned from ocean acidification research[J]. Nature Climate Change20155: 12-14.
107 GATTUSO J P, MAGNAN A K, BOPP L, et al. Ocean solutions to address climate change and its effects on marine ecosystems[J]. Frontiers in Marine Science2018, 5. DOI:10.3389/fmars.2018.00337 .
108 BORGES A V, DELILLE B, FRANKIGNOULLE M. Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts[J]. Geophysical Research Letters200532(14). DOI:10.1029/2005GL023053 .
109 CAI W J, DAI M H, WANG Y C. Air-sea exchange of carbon dioxide in ocean margins: a province-based synthesis[J]. Geophysical Research Letters200633(12). DOI:10.1029/2006GL026219 .
110 ZHANG Y Y, ZHANG J H, LIANG Y T, et al. Carbon sequestration processes and mechanisms in coastal mariculture environments in China[J]. Science China Earth Sciences201760(12): 2 097-2 107.
111 PARK J H, NAYNA O K, BEGUM M S, et al. Reviews and syntheses: anthropogenic perturbations to carbon fluxes in Asian river systems-concepts, emerging trends, and research challenges[J]. Biogeosciences201815(9): 3 049-3 069.
112 DAI M H, SU J Z, ZHAO Y Y, et al. Carbon fluxes in the coastal ocean: synthesis, boundary processes, and future trends[J]. Annual Review of Earth and Planetary Sciences202250: 593-626.
113 YANG X F, XUE L, LI Y X, et al. Treated wastewater changes the export of dissolved inorganic carbon and its isotopic composition and leads to acidification in coastal oceans[J]. Environmental Science & Technology201852(10): 5 590-5 599.
114 LU L, GUEST J S, PETERS C A, et al. Wastewater treatment for carbon capture and utilization[J]. Nature Sustainability20181: 750-758.
115 Biodiversity conservation in China[Z]. The State Council Information Office of the People’s Republic of China, 2021.
中国的生物多样性保护[Z]. 国务院新闻办公室, 2021.
116 National maritime development for 12th Five-Year Plan [Z]. General Office of the State Council of the People’s Republic of China2012. [国家海洋事业发展“十二五”规划[Z]. 国务院办公厅, 2012.]
117 WANG Faming, TANG Jianwu, YE Siyuan, et al. Blue carbon sink function of Chinese coastal wetlands and carbon neutrality strategy[J]. Bulletin of Chinese Academy of Sciences202136(3): 241-251.
王法明, 唐剑武, 叶思源, 等. 中国滨海湿地的蓝色碳汇功能及碳中和对策[J]. 中国科学院院刊202136(3): 241-251.
118 SHAO Chao, TANG Yingying, SUN Wei, et al. Current situation and application prospect of beach nourishment evaluation in China[J]. Coastal Engineering202342(1): 75-87.
邵超, 唐迎迎, 孙伟, 等. 我国海滩养护效果评价的现状分析与应用展望[J]. 海岸工程202342(1): 75-87.
[1] 张井勇. 面向碳中和的气候变化预估与风险研究新框架[J]. 地球科学进展, 2025, 40(1): 15-20.
[2] 王建事, 王成新, 任婉侠, 赵彦志, 薛冰. 地理学视角下“双碳”研究:主题、成效及展望[J]. 地球科学进展, 2023, 38(7): 757-768.
[3] 高伟斌, 陈旸, 王浩贤. 增强硅酸盐岩风化——“碳中和”之新路径[J]. 地球科学进展, 2023, 38(2): 137-150.
[4] 潘晨, 周哲, 杨黎彬, 褚华强, 周雪飞, 杨守业, 张亚雷. 海洋负排放技术及“人工灰尘”耦合技术概念[J]. 地球科学进展, 2023, 38(12): 1297-1310.
[5] 陈小刚, 李凌, 杜金洲. 红树林和盐沼湿地间隙水交换过程及其碳汇潜力[J]. 地球科学进展, 2022, 37(9): 881-898.
阅读次数
全文


摘要