1 |
TETT S F B, STOTT P A, ALLEN M R, et al. Causes of twentieth-century temperature change near the Earth’s surface[J]. Nature, 1999, 399: 569- 572.
|
2 |
Intergovernmental Panel on Climate Change. Detection and attribution of climate change: from global to regional[M]// Climate change 2013—the physical science basis. Cambridge: Cambridge University Press, 2014: 867- 952.
|
3 |
LI Q X, SUN W B, HUANG B Y, et al. Consistency of global warming trends strengthened since 1880s[J]. Science Bulletin, 2020, 65( 20): 1 709- 1 712.
|
4 |
LI Z C, LI Q X, CHEN T Y. Record-breaking high-temperature outlook for 2023: an assessment based on the China Global Merged Temperature (CMST) dataset[J]. Advances in Atmospheric Sciences, 2024, 41( 2): 369- 376.
|
5 |
IPCC AR 6 Synthesis Report: climate change 2023[EB/OL]. [ 2024-06-07]. .
|
6 |
HARTMANN D L. Global physical climatology[M]. Cambridge: Academic Press, 2015.
|
7 |
BROWN P T, LI W H, LI L F, et al. Top-of-atmosphere radiative contribution to unforced decadal global temperature variability in climate models[J]. Geophysical Research Letters, 2014, 41( 14): 5 175- 5 183.
|
8 |
STOTT P A, TETT S F B. Scale-dependent detection of climate change[J]. Journal of Climate, 1998, 11( 12): 3 282- 3 294.
|
9 |
QIAN G Z, LI Q X, LI C, et al. A novel statistical decomposition of the historical change in global mean surface temperature[J]. Environmental Research Letters, 2021, 16( 5). DOI: 10.1088/1748-9326/abea34 .
|
10 |
PACHAURI R K, MEYE L A. Climate change 2014 synthesis report. contribution of working groups I, II, and III to the fifth assessment report of the Intergovernmental Panel on Climate Change [M]. Cambridge, UK, and New York, USA: Cambridge University Press, 2014.
|
11 |
LI X Q, LI Q X, WILD M, et al. An intensification of surface Earth’s energy imbalance since the late 20th century[J]. Communications Earth & Environment, 2024, 5. DOI: 10.1038/s43247-024-01802-z .
|
12 |
WILD M. The global energy balance as represented in CMIP6 climate models[J]. Climate Dynamics, 2020, 55( 3): 553- 577.
|
13 |
WILD M, FOLINI D, HAKUBA M Z, et al. The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models[J]. Climate Dynamics, 2015, 44( 11): 3 393- 3 429.
|
14 |
WILD M, HAKUBA M Z, FOLINI D, et al. The cloud-free global energy balance and inferred cloud radiative effects: an assessment based on direct observations and climate models[J]. Climate Dynamics, 2019, 52( 7/8): 4 787- 4 812.
|
15 |
TRENBERTH K E. Understanding climate change through Earth’s energy flows[J]. Journal of the Royal Society of New Zealand, 2020, 50( 2): 331- 347.
|
16 |
KATO S, ROSE F G, RUTAN D A, et al. Surface irradiances of edition 4.0 Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced And Filled (EBAF) data product[J]. Journal of Climate, 2018, 31( 11): 4 501- 4 527.
|
17 |
STEPHENS G L, LI J, WILD M, et al. An update on Earth’s energy balance in light of the latest global observations[J]. Nature Geoscience, 2012, 5: 691- 696.
|
18 |
国家能源局. 2023年全社会用电量92241亿千瓦时同比增长6.7%[EB/OL].( 2024-01-26)[ 2024-07-20]. .
|
19 |
IEA. Electricity market report 2023[R/OL]. [ 2024-06-03]. .
|
20 |
von SCHUCKMANN K, MINIÈRE A, GUES F, et al. Heat stored in the Earth system 1960-2020: where does the energy go?[J]. Earth System Science Data, 2023, 15( 4): 1 675- 1 709.
|
21 |
CHENG L J, von SCHUCKMANN K, ABRAHAM J P, et al. Past and future ocean warming[J]. Nature Reviews Earth & Environment, 2022, 3( 11): 776- 794.
|
22 |
CHENG L J, TRENBERTH K E, FASULLO J, et al. Improved estimates of ocean heat content from 1960 to 2015[J]. Science Advances, 2017, 3( 3). DOI: 10.1126/sciadv.1601545 .
|
23 |
ABRAM N, GATTUSO J P, MASSON-DELMOTTE V, et al. Special report on the ocean and cryosphere in a changing climate[M]. Cambridge: Cambridge University Press, 2019: 73- 129.
|
24 |
NEREM R S, BECKLEY B D, FASULLO J T, et al. Climate-change-driven accelerated sea-level rise detected in the altimeter era[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115( 9): 2 022- 2 025.
|
25 |
LOEB N G, MAYER M, KATO S, et al. Evaluating twenty-year trends in Earth’s energy flows from observations and reanalyses[J]. Journal of Geophysical Research: Atmospheres, 2022, 127( 12). DOI: 10.1029/2022JD036686 .
|
26 |
SMITH D M, ALLAN R P, COWARD A C, et al. Earth’s energy imbalance since 1960 in observations and CMIP5 models[J]. Geophysical Research Letters, 2015, 42( 4): 1 205- 1 213.
|
27 |
CHENG L, FOSTER G, HAUSFATHER Z, et al. Improved quantification of the rate of ocean warming[J]. Journal of Climate, 2022, 35( 14): 4 827- 4 840.
|
28 |
RAGHURAMAN S P, PAYNTER D, RAMASWAMY V. Anthropogenic forcing and response yield observed positive trend in Earth’s energy imbalance[J]. Nature Communications, 2021, 12( 1). DOI: 10.1038/s41467-021-24544-4 .
|
29 |
HODNEBROG Ø, MYHRE G, JOUAN C, et al. Recent reductions in aerosol emissions have increased Earth’s energy imbalance[J]. Communications Earth & Environment, 2024, 5. DOI: 10.1038/s41467-021-24544-4 .
|
30 |
MINIÈRE A, von SCHUCKMANN K, SALLÉE J B, et al. Robust acceleration of Earth system heating observed over the past six decades[J]. Scientific Reports, 2023, 13( 1). DOI: 10.1038/s41598-023-49353-1 .
|
31 |
BARKSTROM B R. The Earth Radiation Budget Experiment (ERBE)[J]. Bulletin of the American Meteorological Society, 1984, 65( 11): 1 170- 1 185.
|
32 |
JIAO B Y, LI Q X, SUN W B, et al. Uncertainties in the global and continental surface solar radiation variations: inter-comparison of in situ observations, reanalyses, and model simulations[J]. Climate Dynamics, 2022, 59( 7): 2 499- 2 516.
|
33 |
OHMURA A, GILGEN H, HEGNER H, et al. Baseline surface radiation network (BSRN/WCRP): new precision radiometry for climate research[J]. Bulletin of the American Meteorological Society, 1998, 79( 10): 2 115- 2 136.
|
34 |
GILGEN H, WILD M, OHMURA A. Means and trends of shortwave irradiance at the surface estimated from global energy balance archive data[J]. Journal of Climate, 1998, 11( 8): 2 042- 2 061.
|
35 |
AUGUSTINE J A, DELUISI J J, LONG C N. SURFRAD: a national surface radiation budget network for atmospheric research[J]. Bulletin of the American Meteorological Society, 2000, 81( 10): 2 341- 2 357.
|
36 |
WILD M, OHMURA A, SCHÄR C, et al. The Asian Surface Radiation Budget Network (ASRB)[J]. Journal of Geophysical Research: Atmospheres, 2017, 122( 1): 265- 286.
|
37 |
TRENBERTH K E. The ASRB and its contribution to understanding the global energy balance[J]. Journal of Climate, 2020, 33( 4): 1 351- 1 362.
|
38 |
YU L S, JIN X Z, WELLER R. Multidecade global flux datasets from the Objectively Analyzed air-sea Fluxes (OAFlux) project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables[R]. Woods Hole Oceanographic Institution, 2008.
|
39 |
CURRY J A, SCHRAMM J L, ROSSOW W B, et al. Overview of Arctic cloud and radiation characteristics[J]. Journal of Climate, 1996, 9( 8): 1 731- 1 764.
|
40 |
ROBERTS J B, CLAYSON C A, ROBERTSON F R, et al. Predicting near-surface atmospheric variables from special sensor microwave/imager using neural networks with a first-guess approach[J]. Journal of Geophysical Research: Atmospheres, 2010, 115( D19). DOI: 10.1029/2009JD013099 .
|
41 |
WORLEY S J, WOODRUFF S D, REYNOLDS R W, et al. ICOADS release 2.1 data and products[J]. International Journal of Climatology, 2005, 25( 7): 823- 842.
|
42 |
LOEB N G, WIELICKI B A, DOELLING D R, et al. Toward optimal closure of the Earth’s top-of-atmosphere radiation budget[J]. Journal of Climate, 2009, 22( 3): 748- 766.
|
43 |
L’ECUYER T S, BEAUDOING H K, RODELL M, et al. The observed state of the energy budget in the early twenty-first century[J]. Journal of Climate, 2015, 28( 21): 8 319- 8 346.
|
44 |
WILD M, OHMURA A, SCHÄR C, et al. The Global Energy Balance Archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes[J]. Earth System Science Data, 2017, 9( 2): 601- 613.
|
45 |
GCOS. The 2022 GCOS implementation plan [EB/OL]. ( 2022) [ 2024-07-16]. .
|
46 |
LEVITUS S, ANTONOV J I, BOYER T P, et al. Warming of the world ocean[J]. Science, 2000, 287( 5 461): 2 225- 2 229.
|
47 |
MARTI F, BLAZQUEZ A, MEYSSIGNAC B, et al. Monitoring the ocean heat content change and the Earth energy imbalance from space altimetry and space gravimetry[J]. Earth System Science Data, 2022, 14( 1): 229- 249.
|
48 |
von SCHUCKMANN K, PALMER M D, TRENBERTH K E, et al. An imperative to monitor Earth’s energy imbalance[J]. Nature Climate Change, 2016, 6: 138- 144.
|
49 |
LOEB N G, DOELLING D R, WANG H L, et al. Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-Of-Atmosphere (TOA) edition-4.0 data product[J]. Journal of Climate, 2018, 31( 2): 895- 918.
|
50 |
STAMMER D, BALMASEDA M, HEIMBACH P, et al. Ocean data assimilation in support of climate applications: status and perspectives[J]. Annual Review of Marine Science, 2016, 8: 491- 518.
|
51 |
PALMER M D, ROBERTS C D, BALMASEDA M, et al. Ocean heat content variability and change in an ensemble of ocean reanalyses[J]. Climate Dynamics, 2017, 49( 3): 909- 930.
|
52 |
MEYSSIGNAC B, BOYER T, ZHAO Z X, et al. Measuring global ocean heat content to estimate the Earth energy imbalance[J]. Frontiers in Marine Science, 2019, 6. DOI: 10.3389/fmars.2019.00432 .
|
53 |
HAKUBA M Z, FREDERIKSE T, LANDERER F W. Earth’s energy imbalance from the ocean perspective (2005-2019)[J]. Geophysical Research Letters, 2021, 48( 16). DOI: 10.1029/2021GL093624 .
|
54 |
KIEHL J T, TRENBERTH K E. Earth’s annual global mean energy budget[J]. Bulletin of the American Meteorological Society, 1997, 78( 2): 197- 208.
|
55 |
PALMER M D, MCNEALL D J. Internal variability of Earth’s energy budget simulated by CMIP5 climate models[J]. Environmental Research Letters, 2014, 9( 3). DOI: 10.1088/1748-9326/9/3/034016 .
|
56 |
EYRING V, COX P M, FLATO G M, et al. Taking climate model evaluation to the next level[J]. Nature Climate Change, 2019, 9: 102- 110.
|
57 |
DONG X, JIN J B, LIU H L, et al. CAS-ESM2.0 model datasets for the CMIP6 Ocean Model Intercomparison Project phase 1 (OMIP1)[J]. Advances in Atmospheric Sciences, 2021, 38( 2): 307- 316.
|
58 |
QIAO L, ZUO Z Y, XIAO D. Evaluation of soil moisture in CMIP6 simulations[J]. Journal of Climate, 35( 2): 779- 800.
|
59 |
BURKE E J, ZHANG Y, KRINNER G. Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change[J]. The Cryosphere, 2020, 14( 9): 3 155- 3 174.
|
60 |
BODAS-SALCEDO A, WILLIAMS K D, RINGER M A, et al. Evaluation of cloud-related radiative properties in the Hadley Centre climate model using CALIPSO data[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D 00A 13).
|
61 |
WILD M. Short-wave and long-wave surface radiation budgets in GCMs: a reviewbased on the IPCC-AR4/CMIP3 models[J]. Tellus A: Dynamic Meteorology and Oceanography, 2008, 60( 5). DOI: 10.1111/j.1600-0870.2008.00342.x .
|
62 |
TANG T, SHINDELL D, FALUVEGI G, et al. Comparison of effective radiative forcing calculations using multiple methods, drivers, and models[J]. Journal of Geophysical Research: Atmospheres, 2019, 124( 8): 4 382- 4 394.
|
63 |
XU Z F, HOU Z L, HAN Y, et al. A diagram for evaluating multiple aspects of model performance in simulating vector fields[J]. Geoscientific Model Development, 2016, 9( 12): 4 365- 4 380.
|
64 |
TEBALDI C, KNUTTI R. The use of the multi-model ensemble in probabilistic climate projections[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365( 1 857): 2 053- 2 075.
|
65 |
RANDALL D A, WOOD R A, BONY S, et al. Climate models and their evaluation [M]// Climate change 2007: the physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2007.
|
66 |
COLLINS M, GROUPS T C M. El Niño- or La Niña-like climate change?[J]. Climate Dynamics, 2005, 24( 1): 89- 104.
|
67 |
FLATO G, MAROTZKE J, ABIODUN B, et al. Evaluation of climate models[M]// Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2013.
|
68 |
WILD M, FOLINI D, SCHÄR C, et al. The global energy balance from a surface perspective[J]. Climate Dynamics, 2013, 40( 11): 3 107- 3 134.
|
69 |
WANG Q Y, ZHANG H, YANG S, et al. An assessment of land energy balance over East Asia from multiple lines of evidence and the roles of the Tibet Plateau, aerosols, and clouds[J]. Atmospheric Chemistry and Physics, 2022, 22( 24): 15 867- 15 886.
|
70 |
KNUTTI R. The end of model democracy?[J]. Climatic Change, 2010, 102( 3): 395- 404.
|
71 |
SANDERSON B M, WEHNER M, KNUTTI R. Skill and independence weighting for multi-model assessments[J]. Geoscientific Model Development, 2017, 10( 6): 2 379- 2 395.
|
72 |
MISHRA N, PRODHOMME C, GUEMAS V. Multi-model skill assessment of seasonal temperature and precipitation forecasts over Europe[J]. Climate Dynamics, 2019, 52( 7): 4 207- 4 225.
|
73 |
RUANE A C, MCDERMID S P. Selection of a representative subset of global climate models that captures the profile of regional changes for integrated climate impacts assessment[J]. Earth Perspectives, 2017, 4( 1). DOI: 10.1186/s40322-017-0036-4 .
|
74 |
MERRIFIELD A L, BRUNNER L, LORENZ R, et al. Climate model Selection by Independence, Performance, and Spread (ClimSIPS v1.0.1) for regional applications[J]. Geoscientific Model Development, 2023, 16( 16): 4 715- 4 747.
|
75 |
LIU Z. Bayesian assessment of CMIP6 surface net radiation predictions for Köppen-Geiger climate zones[J]. International Journal of Climatology, 2023, 43( 12): 5 387- 5 400.
|
76 |
TEBALDI C, MEARNS L O, NYCHKA D, et al. Regional probabilities of precipitation change: a Bayesian analysis of multimodel simulations[J]. Geophysical Research Letters, 2004, 31( 24). DOI: 10.1029/2004GL021276 .
|