地球科学进展 ›› 2025, Vol. 40 ›› Issue (1): 39 -56. doi: 10.11867/j.issn.1001-8166.2025.005

大气海洋 上一篇    下一篇

太赫兹大气临边探测技术研究进展
王文煜(), 许健, 王振占(), 陆浩, 刘璟怡, 张德海   
  1. 中国科学院国家空间科学中心 微波遥感技术重点实验室,北京 100190
  • 收稿日期:2024-07-01 修回日期:2024-10-25 出版日期:2025-01-10
  • 通讯作者: 王振占 E-mail:wangwenyu@mirslab.cn;wangzhenzhan@mirslab.cn
  • 基金资助:
    国家自然科学基金项目(42105130)

Advances in Terahertz Atmospheric Limb Sounding Techniques

Wenyu WANG(), Jian XU, Zhenzhan WANG(), Hao LU, Jingyi LIU, Dehai ZHANG   

  1. Key Laboratory of Microwave Remote Sensing, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2024-07-01 Revised:2024-10-25 Online:2025-01-10 Published:2025-03-24
  • Contact: Zhenzhan WANG E-mail:wangwenyu@mirslab.cn;wangzhenzhan@mirslab.cn
  • About author:WANG wenyu, research areas include microwave/terahertz atmospheric remote sensing. E-mail: wangwenyu@mirslab.cn
  • Supported by:
    the National Natural Science Foundation of China(42105130)

地球中高层大气是研究大气过程乃至气候变化的重要区域,目前对中高层大气的长时间观测和数据分析仍然非常欠缺。太赫兹临边探测技术能够全天时、近乎全天候地获得较高垂直分辨率(1~5 km)的大气廓线,特别是对部分臭氧损耗相关的卤素气体敏感,成为测量地球中高层大气参数的重要手段。围绕太赫兹临边探测技术,系统回顾了太赫兹载荷的技术发展历程和现状:太赫兹临边探测已成功实现中高层大气中多种痕量气体的高垂直分辨率廓线测量,但现有载荷仍面临系统体积庞大、噪声抑制能力不足等瓶颈问题;基于最新预研的载荷方案,下一代太赫兹探测系统主要侧重于低噪声和小型化技术的发展;当前主流的物理反演算法计算效率较低,通过引入人工智能技术,可在保证精度的前提下显著提升反演效率;未来亟需突破太赫兹低噪声接收机和高分辨率数字谱仪等核心技术,进一步推动我国太赫兹临边探测技术的发展。

Long-term observations and data analysis of the Earth's middle and upper atmosphere, an important region for studying atmospheric processes and even climate change for studying human activities and climate change, are still insufficient. Terahertz limb-sounding technology can obtain atmospheric profiles all day and near all weather with high vertical resolution (approximately 1~5 km) and is particularly sensitive to some of the halogen gases associated with ozone depletion, making it an important method for measuring the Earth's middle and upper atmospheric parameters. The basic principles and advantages of terahertz limb sounding are summarized, the basic framework of the terahertz radiometer is introduced, the development of terahertz limb sounding technology domestically and internationally in the past three decades is discussed, the latest research status is reviewed, the future development direction is discussed, and terahertz limb sounding technology is summarized and outlooked to provide a reference basis for related research.

中图分类号: 

图1 临边探测的卫星观测几何
Fig. 1 Satellite geometry for limb sounding
图2 典型分子吸收频率及线强20
Fig. 2 Line frequencies and intensities of typical molecules20
图3 太赫兹临边探测仪技术体制
Fig. 3 System diagram of terahertz limb sounder
表1 已发射的大气临边观测卫星及载荷信息
Table 1 Information on observation satellites and payloads launched
表2 UARS/MLS探测频率与探测目标
Table 2 UARS/MLS measurement frequencies and targets
表3 UARS/MLS系统参数
Table 3 UARS/MLS system parameters
表4 Odin/SMR探测频率与探测目标
Table 4 Odin/SMR measurement frequencies and targets
表5 Odin/SMR系统参数
Table 5 Odin/SMR system parameters
图4 Aura/MLS载荷及观测示意图(https://mls.jpl.nasa.gov/eos/instrument.php
Fig. 4 Schematic diagram of Aura/MLS payloads and observationshttps://mls.jpl.nasa.gov/eos/instrument.php
表6 Aura/MLS探测频率与探测目标
Table 6 Aura/MLS measurement frequencies and targets
表7 Aura/MLS系统参数
Table 7 Aura/MLS system parameters
表8 JEM/SMILES探测频率与探测目标
Table 8 JEM/SMILES measurement frequencies and targets
表9 JEM/SMILES系统参数
Table 9 JEM/SMILES system parameters
图5 SIW载荷示意图57
Fig. 5 Schematic of SIW payload57
图6 SMILES-2双天线观测示意图60
Fig. 6 Schematic of SMILES-2 dual-antenna observation60
表10 TELISSIW以及SMILES-2的系统参数
Table 10 TELISSIW and SMILES-2 system parameters
图7 TLS双天线扫描示意图62
Fig. 7 Schematic of TLS dual antenna scanning62
图8 SMLS二维扫描示意图64
Fig. 8 Schematic diagram of SMLS 2D scanning64
图9 TALIS地面样机73
Fig. 9 TALIS ground prototype73
图10 TALIS系统组成和信号流程73
Fig. 10 TALIS system composition and signal flow73
图11 TALIS结构示意图
Fig. 11 TALIS structural diagram
图12 TALIS探测目标及频段(点线为平均后有效的高度)
Fig. 12 TALIS observation targets and frequency bandsthe dotted line is the effective height after averaging
1 CHEN Hongbin. An overview of the space-based observations for upper atmospheric research[J]. Advances in Earth Science200924(3): 229-241.
陈洪滨. 中高层大气研究的空间探测[J]. 地球科学进展200924(3): 229-241.
2 XU J. Inversion for limb infrared atmospheric sounding[M]. Munich: Technische Universit at Munchen, 2016.
3 AUSTIN J, SCINOCCA J, PLUMMER D, et al. Decline and recovery of total column ozone using a multimodel time series analysis[J]. Journal of Geophysical Research: Atmospheres2010115(D3). DOI:10.1029/2010JD013857 .
4 SHIOTANI M, MASUKO H. JEM/SMILES mission plan v2.1[R]. National Space Development Agency, 2002.
5 SHI Ying. Study on radiation characteristics and inversion algorithm of terahertz edge detection for trace gases[D]. Wuhan: Huazhong University of Science and Technology, 2020.
石颖. 痕量气体太赫兹临边探测辐射特性和反演算法研究[D]. 武汉: 华中科技大学, 2020.
6 WANG Wenyu. Simulation study on application of terahertz atmospheric edge detection radiometer[D]. Beijing: National Space Science Center, Chinese Academy of Sciences, 2020.
王文煜. 太赫兹大气临边探测辐射计应用仿真研究[D]. 北京: 中国科学院国家空间科学中心, 2020.
7 LI Shulei, LIU Lei, GAO Taichang, et al. Research progress of THz technology application in the atmospheric sounding field[J]. Infrared and Laser Engineering201645(11). DOI: 10.3788/IRLA201645.1125001 .
李书磊, 刘磊, 高太长, 等. THz技术在大气探测领域的应用研究进展[J]. 红外与激光工程201645(11). DOI: 10.3788/IRLA201645.1125001 .
8 WATERS J W, FROIDEVAUX L, HARWOOD R S, et al. The Earth Observing System Microwave Limb Sounder (EOS MLS) on the aura satellite[J]. IEEE Transactions on Geoscience and Remote Sensing200644(5): 1 075-1 092.
9 WANG Hongmei, LI Xiaoying, CHEN Liangfu, et al. Simulating sensitivity of O3 and HCl with THz limb sounding[J]. Journal of Remote Sensing201721(5): 653-664.
王红梅, 李小英, 陈良富, 等. 太赫兹临边探测O3与HCl敏感性分析[J]. 遥感学报201721(5): 653-664.
10 LI Xiaoying, CHEN Liangfu, SU Lin, et al. Overview of sub-millimeter limb sounding[J]. Journal of Remote Sensing201317(6): 1 325-1 344.
李小英, 陈良富, 苏林, 等. 亚毫米波临边探测发展现状[J]. 遥感学报201317(6): 1 325-1 344.
11 WU D L, JIANG J H, DAVIS C P. EOS MLS cloud ice measurements and cloudy-sky radiative transfer model[J]. IEEE Transactions on Geoscience and Remote Sensing200644(5): 1 156-1 165.
12 BUEHLER S A, JIMÉNEZ C, EVANS K F, et al. A concept for a satellite mission to measure cloud ice water path, ice particle size, and cloud altitude[J]. Quarterly Journal of the Royal Meteorological Society2007133(): 109-128.
13 LIU Lei, WENG Chensi, LI Shulei, et al. Review of terahertz passive remote sensing of ice clouds[J]. Advances in Earth Science202035(12): 1 211-1 221.
刘磊, 翁陈思, 李书磊, 等. 太赫兹波被动遥感冰云研究现状及进展[J]. 地球科学进展202035(12): 1 211-1 221.
14 WU D L, YEE J H, SCHLECHT E, et al. THz Limb Sounder (TLS) for lower thermospheric wind, oxygen density, and temperature[J]. Journal of Geophysical Research: Space Physics2016121(7): 7 301-7 315.
15 WANG W Y, XU J, WANG Z Z. Feasibility analysis of optimal terahertz (THz) bands for passive limb sounding of middle and upper atmospheric wind[J]. Atmospheric Measurement Techniques202316(17): 4 137-4 153.
16 YEE J H, GJERLOEV J, WU D, et al. First application of the Zeeman technique to remotely measure auroral electrojet intensity from space[J]. Geophysical Research Letters201744(20): 10 134-10 139.
17 MIYOSHI Y, FUJIWARA H, JIN H, et al. A global view of gravity waves in the thermosphere simulated by a general circulation model[J]. Journal of Geophysical Research: Space Physics2014119(7): 5 807-5 820.
18 MIYOSHI Y, FUJIWARA H, JIN H, et al. Impacts of sudden stratospheric warming on general circulation of the thermosphere[J]. Journal of Geophysical Research: Space Physics2015120(12): 10 897-10 912.
19 CARLOTTI M, DINELLI B M, RASPOLLINI P, et al. Geo-fit approach to the analysis of limb-scanning satellite measurements[J]. Applied Optics200140(12): 1 872-1 885.
20 WATERS J W, HARDY J C, JARNOT R F, et al. Chlorine monoxide radical, ozone, and hydrogen peroxide: stratospheric measurements by microwave limb sounding[J]. Science1981214(4 516): 61-64.
21 SHI Guangyu. Atmospheric radiation science[M]. Beijing: Science Press, 2007.
石广玉. 大气辐射学[M]. 北京: 科学出版社, 2007.
22 GORDON I E, ROTHMAN L S, HARGREAVES R J, et al. The HITRAN2020 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer2022, 277. DOI:10.1016/j.jqsrt.2021.107949 .
23 SCHOEBERL M R, DOUGLASS A R, JACKMAN C H. Overview and highlights of the Upper Atmosphere Research Satellite (UARS) mission[C]// Optical spectroscopic techniques and instrumentation for atmospheric and space research. San Diego, CA: SPIE, 1994.
24 BARATH F T, CHAVEZ M C, COFIELD R E, et al. The upper atmosphere research satellite microwave limb sounder instrument[J]. Journal of Geophysical Research: Atmospheres199398(D6): 10 751-10 762.
25 WATERS J W, FROIDEVAUX L, MANNEY G L, et al. MLS observations of lower stratospheric ClO and O3 in the 1992 southern hemisphere winter[J]. Geophysical Research Letters199320(12): 1 219-1 222.
26 WATERS J W, FROIDEVAUX L, READ W G, et al. Stratospheric CIO and ozone from the microwave limb sounder on the upper atmosphere research satellite[J]. Nature1993362: 597-602.
27 WATERS J W, READ W G, FROIDEVAUX L, et al. Validation of UARS microwave limb sounder ClO measurements[J]. Journal of Geophysical Research: Atmospheres1996101(D6): 10 091-10 127.
28 WATERS J W, READ W G, FROIDEVAUX L, et al. The UARSand EOS Microwave Limb Sounder (MLS) experiments[J]. Journal of the Atmospheric Sciences199956(2): 194-218.
29 MURTAGH D, FRISK U, MERINO F, et al. An overview of the Odin atmospheric mission[J]. Canadian Journal of Physics200280(4): 309-319.
30 URBAN J, LAUTIÉ N, le FLOCHMOËN E, et al. Odin/SMR limb observations of stratospheric trace gases: validation of N2O[J]. Journal of Geophysical Research: Atmospheres2005110(D9). DOI 10.1029/2004JD005394.
31 URBAN J, LAUTIÉ N, le FLOCHMOËN E, et al. Odin/SMR limb observations of stratospheric trace gases: level 2 processing of ClO, N2O, HNO3, and O3 [J]. Journal of Geophysical Research: Atmospheres2005110(D14). DOI: 10.1029/2004JD005741 .
32 ERIKSSON P, EKSTRÖM M, RYDBERG B, et al. First Odin sub-mm retrievals in the tropical upper troposphere: ice cloud properties[J]. Atmospheric Chemistry and Physics20077(2): 471-483.
33 FRISK U, HAGSTRÖM M, ALA-LAURINAHO J, et al. The Odin satellite-I. radiometer design and test[J]. Astronomy & Astrophysics2003402(3): L27-L34.
34 OLBERG M, FRISK U, LECACHEUX A, et al. The Odin satellite-II. radiometer data processing and calibration[J]. Astronomy & Astrophysics2003402(3): L35-L38.
35 MERINO F, MURTAGH D P, RIDAL M, et al. Studies for the Odin sub-millimetre radiometer: III. performance simulations[J]. Canadian Journal of Physics200280(4): 357-373.
36 SCHOEBERL M R, DOUGLASS A R, HILSENRATH E, et al. Overview of the EOS aura mission[J]. IEEE Transactions on Geoscience and Remote Sensing200644(5): 1 066-1 074.
37 WATERS J W, FROIDEVAUX L, JARNOT R F, et al. An overview of the EOS MLS experiment, version 2.0 D-15745[R]. Pasadena, California: Jet Propulsion Laboratory, 2004.
38 FILIPIAK M J, HARWOOD R S, JIANG J H, et al. Carbon monoxide measured by the EOS microwave limb sounder on aura: first results[J]. Geophysical Research Letters200532(14). DOI:10.1029/2005GL022762 .
39 FROIDEVAUX L, LIVESEY N J, READ W G, et al. Early validation analyses of atmospheric profiles from EOS MLS on the aura Satellite[J]. IEEE Transactions on Geoscience and Remote Sensing200644(5): 1 106-1 121.
40 WU D L, PICKETT H M, LIVESEY N J. Aura MLS THz observations of global cirrus near the tropopause[J]. Geophysical Research Letters200835(15). DOI: 10.1029/2008GL034233 .
41 WU D L, SCHWARTZ M J, WATERS J W, et al. Mesospheric Doppler wind measurements from aura Microwave Limb Sounder (MLS)[J]. Advances in Space Research200842(7): 1 246-1 252.
42 COFIELD R E, STEK P C. Design and field-of-view calibration of 114-660-GHz optics of the Earth observing system microwave limb sounder[J]. IEEE Transactions on Geoscience and Remote Sensing200644(5): 1 166-1 181.
43 JARNOT R F, PERUN V S, SCHWARTZ M J. Radiometric and spectral performance and calibration of the GHz bands of EOS MLS[J]. IEEE Transactions on Geoscience and Remote Sensing200644(5): 1 131-1 143.
44 PICKETT H M. Microwave limb sounder THz module on aura[J]. IEEE Transactions on Geoscience and Remote Sensing200644(5): 1 122-1 130.
45 KIKUCHI K I, NISHIBORI T, OCHIAI S, et al. Overview and early results of the superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES)[J]. Journal of Geophysical Research: Atmospheres2010115(D23). DOI: 10.1029/2010JD014379 .
46 KASAI Y J, URBAN J, TAKAHASHI C, et al. Stratospheric ozone isotope enrichment studied by submillimeter wave heterodyne radiometry: the observation capabilities of SMILES[J]. IEEE Transactions on Geoscience and Remote Sensing200644(3): 676-693.
47 KASAI Y J, BARON P, OCHIAI S, et al. JEM/SMILES observation capability[C]// Sensors, systems, and next-generation satellites XIII. Berlin, Germany: SPIE, 2009.
48 MILLÁN L, READ W, KASAI Y, et al. SMILES ice cloud products[J]. Journal of Geophysical Research: Atmospheres2013118(12): 6 468-6 477.
49 OCHIAI S, KIKUCHI K I, NISHIBORI T, et al. Gain nonlinearity calibration of submillimeter radiometer for JEM/SMILES[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing20125(3): 962-969.
50 OCHIAI S, KIKUCHI K I, NISHIBORI T, et al. Receiver performance of the superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the international space station[J]. IEEE Transactions on Geoscience and Remote Sensing201351(7): 3 791-3 802.
51 de LANGE A, BIRK M, de LANGE G, et al. HCl and ClO in activated Arctic air; first retrieved vertical profiles from TELIS submillimetre limb spectra[J]. Atmospheric Measurement Techniques20125(2): 487-500.
52 XU J, SCHREIER F, WETZEL G, et al. Performance assessment of balloon-borne trace gas sounding with the terahertz channel of TELIS[J]. Remote Sensing201810(2). DOI:10.3390/rs10020315 .
53 MAIR U, KROCKA M, WAGNER G, et al. TELIS-development of a new balloon borne THz/submm heterodyne limb sounder[C]// The 14th international symposium on space terahertz technology, 2003.
54 KOSHELETS V P, ERMAKOV A B, FILIPPENKO L V, et al. Superconducting integrated submillimeter receiver for TELIS[J]. IEEE Transactions on Applied Superconductivity200717(2): 336-342.
55 HOOGEVEEN R W M, YAGOUBOV P A, de LANGE G, et al. Balloon-borne heterodyne stratospheric limb sounder TELIS ready for flight[C]// Sensors, systems, and next-generation satellites XI. Florence, Italy: SPIE, 2007.
56 BIRK M, WAGNER G, LANGE G, et al. TELIS: TErahertz and subMMW LImb Sounder-Project summary after first successful flight[C]// The 21st international symposium on space terahertz technology. Oxford: 2010.
57 BARON P, MURTAGH D, ERIKSSON P, et al. Simulation study for the Stratospheric Inferred Winds (SIW) sub-millimeter limb sounder[J]. Atmospheric Measurement Techniques201811(7): 4 545-4 566.
58 OCHIAI S, BARON P, NISHIBORI T, et al. SMILES-2 mission for temperature, wind, and composition in the whole atmosphere[J]. Sola201713A: 13-18.
59 SHIOTANI M, OYAMA S, SAITO A, et al. A proposal for satellite observation of the whole atmosphere-superconducting submillimeter-wave limb-emission sounder (smiles-2)[C]// IGARSS 2019-2019 IEEE international geoscience and remote sensing symposium. Yokohama, Japan: IEEE, 2019.
60 BARON P, OCHIAI S, DUPUY E, et al. Potential for the measurement of Mesosphere and Lower Thermosphere (MLT) wind, temperature, density and geomagnetic field with Superconducting Submillimeter-Wave Limb-Emission Sounder 2 (SMILES-2)[J]. Atmospheric Measurement Techniques202013(1): 219-237.
61 BARON P, OCHIAI S, MANAGO N, et al. Smiles-2 band selection study for chemical species[C]// IGARSS 2019-2019 IEEE international geoscience and remote sensing symposium. Yokohama, Japan: IEEE, 2019.
62 WANG W B, ZHANG Y L. Space physics and aeronomy, upper atmosphere dynamics and energetics[M]. Washington, D.C.: American Geophysical Union, 2021.
63 WATERS J, LIVESEY N, SANTEE M, et al. Composition of the Atmosphere from Mid-Earth Orbit (CAMEO): observations for air quality studies[R]. Community workshop on “Air Quality Remote Sensing from Space”. NCAR, 2006.
64 WATERS J, LIVESEY N, SANTEE M, et al. Composition of the Atmosphere from Mid-Earth Orbit (CAMEO) Scanning Microwave Limb Sounder (SMLS)[R]. Community workshop on “Air Quality Remote Sensing from Space”. NCAR, 2006.
65 WATERS J W, LIVESEY N J, SANTEE M L, et al. A conical-scanning microwave limb sounder for atmospheric measurements[J]. IEEE Journal of Microwaves20244(4): 836-846.
66 WINIBERG F, LIVESEY N J, CHATTOPADHYAY G, et al. The Continuity Microwave Limb Sounder (C-MLS)-capitalizing on new technology to continue the MLS record of daily global middle atmosphere composition observations[R]. Jet Propulsion Laboratory, 2023.
67 REBURN W J, SIDDANS R, KERRIDGE B J, et al. Study on upper troposphere/lower stratosphere sounding[R]. European Space Agency, 1999.
68 BÜHLER S, von ENGELN A, KÜNZI K, et al. The retrieval of data from sub-millimeter limb sounding[R]. Final report, technical report, contract 11979/97/NL/CN, European Space Research and Technology Centre, Noordwijk, Netherlands, 1999.
69 VERDES C, BÜHLER S, von ENGELN A, et al. Pointing and temperature retrieval from millimeter-submillimeter limb soundings[J]. Journal of Geophysical Research: Atmospheres2002107(D16). DOI: 10.1029/2001JD000777 .
70 REA S, ELLISON B, SWINYARD B, et al. The Low-Cost Upper-Atmosphere Sounder (LOCUS)[C]// The 26th international symposium on space terahertz technology. Cambridge, 2015.
71 ZHAO Yuefeng. Research and design of microwave edge detector system[D]. Beijing:Center for Space Science and Applied Research, Chinese Academy of Sciences, 2011.
赵月凤. 微波临边探测仪系统研究与设计[D].北京: 中国科学院空间研究所, 2011.
72 CEN Juhui, HE Wenying, CHEN Hongbin. Simulation and sensitivity study of brightness temperatures for a millimeter and sub-millimeter microwave limb sounder[J]. Remote Sensing Technology and Application201429(4): 557-566.
岑炬辉, 何文英, 陈洪滨. 临边微波辐射计亮度温度的模拟与敏感性分析[J]. 遥感技术与应用201429(4): 557-566.
73 XU H W, LU H, WANG Z Z, et al. The system design and preliminary tests of the THz Atmospheric Limb Sounder (TALIS)[J]. IEEE Transactions on Instrumentation and Measurement2021, 71. DOI:10.1109/TIM.2021.3135008 .
74 WANG Zhenzhan, WANG Wenyu, TONG Xiaolin, et al. Progress in spaceborne passive microwave remote sensing technology and its application[J]. Chinese Journal of Space Science202343(6): 986-1 015.
王振占, 王文煜, 佟晓林, 等. 星载被动微波遥感技术及其应用进展[J]. 空间科学学报202343(6): 986-1 015.
75 XU H W, LU H, WANG Z Z, et al. Performance analysis on wideband fast Fourier transform spectrometer of THz Atmospheric Limb Sounder (TALIS)[J]. Measurement2021, 185. DOI: 10.1016/j.measurement.2021.109927 .
76 WANG W Y, WANG Z Z, DUAN Y Q. Performance evaluation of THz Atmospheric Limb Sounder (TALIS) of China[J]. Atmospheric Measurement Techniques202013(1): 13-38.
77 GELARO R, MCCARTY W, SUÁREZ M J, et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2)[J]. Journal of Climate201730(13): 5 419-5 454.
78 CHRISTENSEN O M, ERIKSSON P, URBAN J, et al. Tomographic retrieval of water vapour and temperature around polar mesospheric clouds using Odin-SMR[J]. Atmospheric Measurement Techniques20158(5): 1 981-1 999.
79 SATO T O, KURIBAYASHI K, YOSHIDA N, et al. Diurnal variation of oxygen isotopic enrichment in asymmetric-18 ozone observed by the SMILES from space[J]. Geophysical Research Letters201744(12): 6 399-6 406.
80 PICKETT H M, POYNTER R L, COHEN E A, et al. Submillimeter, millimeter, and microwave spectral line catalog[J]. Journal of Quantitative Spectroscopy and Radiative Transfer199860(5): 883-890.
81 PERRIN A, PUZZARINI C, COLMONT J M, et al. Molecular line parameters for the “MASTER” (millimeter wave acquisitions for stratosphere/troposphere exchange research) database[J]. Journal of Atmospheric Chemistry200551(2): 161-205.
82 DELAHAYE T, ARMANTE R, SCOTT N A, et al. The 2020 edition of the GEISA spectroscopic database[J]. Journal of Molecular Spectroscopy2021, 380. DOI:10.1016/j.jms.2021.111510 .
83 ERIKSSON P, MERINO F, MURTAGH D, et al. Studies for the Odin sub-millimetre radiometer: I. radiative transfer and instrument simulation[J]. Canadian Journal of Physics200280(4): 321-340.
84 BARON P, RICAUD P, NOË J, et al. Studies for the Odin sub-millimetre radiometer. II. retrieval methodology[J]. Canadian Journal of Physics200280(4): 341-356.
85 URBAN J, BARON P, LAUTIÉ N, et al. Moliere (v5): a versatile forward- and inversion model for the millimeter and sub-millimeter wavelength range[J]. Journal of Quantitative Spectroscopy and Radiative Transfer200483(3/4): 529-554.
86 BUEHLER S A, ERIKSSON P, KUHN T, et al. ARTS, the atmospheric radiative transfer simulator[J]. Journal of Quantitative Spectroscopy and Radiative Transfer200591(1): 65-93.
87 ERIKSSON P, JIMÉNEZ C, BUEHLER S A. Qpack, a general tool for instrument simulation and retrieval work[J]. Journal of Quantitative Spectroscopy and Radiative Transfer200591(1): 47-64.
88 RODGERS C D. Inverse methods for atmospheric sounding: theory and practice[M]. Singapore: World Scientific, 2000.
89 RIDAL M, MURTAGH D P, MERINO F, et al. Microwave temperature and pressure measurements with the Odin satellite: II. retrieval method[J]. Canadian Journal of Physics200280(4): 455-467.
90 URBAN J, LAUTIÉ N, MURTAGH D, et al. Global observations of middle atmospheric water vapour by the Odin satellite: an overview[J]. Planetary and Space Science200755(9): 1 093-1 102.
91 READ W G, SHIPPONY Z, SCHWARTZ M J, et al. The clear-sky unpolarized forward model for the EOS aura Microwave Limb Sounder (MLS)[J]. IEEE Transactions on Geoscience and Remote Sensing200644(5): 1 367-1 379.
92 SCHWARTZ M J, READ W G, van SNYDER W. EOS MLS forward model polarized radiative transfer for Zeeman-split oxygen lines[J]. IEEE Transactions on Geoscience and Remote Sensing200644(5): 1 182-1 191.
93 LIVESEY N J, van SNYDER W, READ W G, et al. Retrieval algorithms for the EOS Microwave Limb Sounder (MLS)[J]. IEEE Transactions on Geoscience and Remote Sensing200644(5): 1 144-1 155.
94 SCHWARTZ M J, LAMBERT A, MANNEY G L, et al. Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements[J]. Journal of Geophysical Research: Atmospheres2008113(D15). DOI: 10.1029/2007JD008783 .
95 WARGAN K, WEIR B, MANNEY G L, et al. M2-SCREAM: a stratospheric composition reanalysis of Aura MLS data with MERRA-2 transport[J]. Earth and Space Science202310(2). DOI:10.1029/2022EA002632 .
96 FROIDEVAUX L, JIANG Y B, LAMBERT A, et al. Validation of Aura Microwave Limb Sounder stratospheric ozone measurements[J]. Journal of Geophysical Research: Atmospheres2008113(D15). DOI: 10.1029/2007JD008771 .
97 READ W G, LAMBERT A, BACMEISTER J, et al. Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H2O and relative humidity with respect to ice validation[J]. Journal of Geophysical Research: Atmospheres2007112(D24). DOI: 10.1029/2007JD008752 .
98 LAMBERT A, READ W G, LIVESEY N J, et al. Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements[J]. Journal of Geophysical Research: Atmospheres2007112(D24). DOI: 10.1029/2007JD008724 .
99 SANTEE M L, LAMBERT A, READ W G, et al. Validation of the aura microwave limb sounder ClO measurements[J]. Journal of Geophysical Research: Atmospheres2008113(D15). DOI: 10.1029/2007JD008762 .
100 FROIDEVAUX L, JIANG Y B, LAMBERT A, et al. Validation of aura microwave limb sounder HCl measurements[J]. Journal of Geophysical Research: Atmospheres2008113(D15). DOI: 10.1029/2007JD009025 .
101 LIVESEY N J, WILLIAM G R, WAGNER P A, et al. MLS Version 5.0x level 2 and 3 data quality and description document[Z]. 2020.
102 WERNER F, LIVESEY N J, MILLÁN L F, et al. Applying machine learning to improve the near-real-time products of the Aura Microwave Limb Sounder[J]. Atmospheric Measurement Techniques202316(11): 2 733-2 751.
103 WERNER F, LIVESEY N J, SCHWARTZ M J, et al. Improved cloud detection for the aura Microwave Limb Sounder (MLS): training an artificial neural network on colocated MLS and aqua MODIS data[J]. Atmospheric Measurement Techniques202114(12): 7 749-7 773.
104 MELSHEIMER C, VERDES C, BUEHLER S A, et al. Intercomparison of general purpose clear sky atmospheric radiative transfer models for the millimeter/submillimeter spectral range[J]. Radio Science200540(1): 1-25.
105 BARON P, MENDROK J, YASUKO K, et al. AMATERASU: model for atmospheric TeraHertz radiation analysis and simulation[J]. Journal of the National Institute of Information and Communications Technology200855(1): 109-121.
106 TAKAHASHI C, OCHIAI S, SUZUKI M. Operational retrieval algorithms for JEM/SMILES level 2 data processing system[J]. Journal of Quantitative Spectroscopy and Radiative Transfer2010111(1): 160-173.
107 BARON P, URBAN J, SAGAWA H, et al. The level 2 research product algorithms for the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES)[J]. Atmospheric Measurement Techniques20114(10): 2 105-2 124.
108 TAKAHASHI C, SUZUKI M, MITSUDA C, et al. Capability for ozone high-precision retrieval on JEM/SMILES observation[J]. Advances in Space Research201148(6): 1 076-1 085.
109 SATO T O, SAGAWA H, KREYLING D, et al. Strato-mesospheric ClO observations by SMILES: error analysis and diurnal variation[J]. Atmospheric Measurement Techniques20125(11): 2 809-2 825.
110 NARA S, SATO T O, YAMADA T, et al. Validation of SMILES HCl profiles over a wide range from the stratosphere to the lower thermosphere[J]. Atmospheric Measurement Techniques202013(12): 6 837-6 852.
111 MITSUDA C, SUZUKI M, IWATA Y, et al. Current status of level 2 product of superconducting submillimeter-wave limb-emission sounder (SMILES)[C]// Sensors, systems, and next-generation satellites XV. Prague, Czech Republic: SPIE, 2011.
112 SCHREIER F, GIMENO G S, HEDELT P, et al. GARLIC: a general purpose atmospheric radiative transfer line-by-line infrared-microwave code: implementation and evaluation[J]. Journal of Quantitative Spectroscopy and Radiative Transfer2014137: 29-50.
113 SCHREIER F, GIMENO G S, HOCHSTAFFL P, et al. Py4CAtS: python for computational atmospheric spectroscopy[J]. Atmosphere201910(5). DOI: 10.3390/atmos10050262 .
114 XU J, SCHREIER F, DOICU A, et al. Assessment of Tikhonov-type regularization methods for solving atmospheric inverse problems[J]. Journal of Quantitative Spectroscopy and Radiative Transfer2016184: 274-286.
[1] 徐凯, 姚志刚, 韩志刚, 赵增亮, 方涵先. 临近空间重力波强扰动的卫星观测研究进展[J]. 地球科学进展, 2017, 32(1): 66-74.
[2] 陈洪滨. 中高层大气研究的空间探测[J]. 地球科学进展, 2009, 24(3): 229-241.
阅读次数
全文


摘要