地球科学进展 ›› 2025, Vol. 40 ›› Issue (1): 21 -38. doi: 10.11867/j.issn.1001-8166.2025.002

大气海洋 上一篇    下一篇

我国短时强降水研究进展
赵强1,2(), 郑永光3(), 井宇1, 冯典1, 刘菊菊1   
  1. 1.陕西省气象台,陕西 西安 710014
    2.中国气象科学研究院 灾害天气国家重点实验室,北京 100081
    3.国家气象中心,北京 100081
  • 收稿日期:2024-10-16 修回日期:2024-12-30 出版日期:2025-01-10
  • 通讯作者: 郑永光 E-mail:zhaoq66@sina.com;zhengyg@cma.gov.cn
  • 基金资助:
    国家自然科学基金项目(42175017);灾害天气国家重点实验室开放课题(2024LASW-B29);陕西省自然科学基础研究计划项目(2023-JC-QN-0367)

Research Progress on Short-Duration Heavy Precipitation in China

Qiang ZHAO1,2(), Yongguang ZHENG3(), Yu JING1, Dian FENG1, Juju LIU1   

  1. 1.Shaanxi Meteorological Observatory, Xi’an 710014, China
    2.State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
    3.National Meteorological Center, Beijing 100081, China
  • Received:2024-10-16 Revised:2024-12-30 Online:2025-01-10 Published:2025-03-24
  • Contact: Yongguang ZHENG E-mail:zhaoq66@sina.com;zhengyg@cma.gov.cn
  • About author:ZHAO Qiang, research areas include mechanism and forecasting methods of disastrous weather. E-mail: zhaoq66@sina.com
  • Supported by:
    the National Natural Science Foundation of China(42175017);Open Grants of the State Key Laboratory of Severe Weather(2024LASW-B29);Natural Science Basic Research Program of Shaanxi(2023-JC-QN-0367)

短时强降水是我国最主要的强对流灾害天气之一,易造成城市内涝和山洪、泥石流以及滑坡等次生地质灾害。回顾了近年来我国短时强降水的主要研究进展,并简要对比了美国和欧洲的相关研究成果,涵盖了短时强降水的时空分布特征、大气环流形势和环境条件、雷达回波特征和雨滴谱特征以及地形和城市化对短时强降水的影响及其机制;总结了人工智能在我国短时强降水潜势预报和短时临近预报中的应用。随着全球变暖,短时强降水频次和强度都呈增加趋势,今后需要进一步研究其形成机制和环境条件,提升观测时空分辨率,加强新型观测资料应用,通过融合分析多源且稠密的观测资料,提升高分辨率的快速更新循环同化数值模式预报能力,改进和发展深度学习预报模型和算法,尤其是研发深度学习大模型来提升短时强降水的预报预警能力。

Short-duration heavy precipitation is one of the most substantial severe convective disasters in China and is prone to causing urban waterlogging and secondary geological disasters, such as mountain torrents, mudslides, and landslides. This paper reviews recent progress in short-duration heavy precipitation research in China and briefly compares relevant findings from the United States and Europe. It covers the spatiotemporal distribution characteristics and diurnal variation patterns of short-duration heavy precipitation, atmospheric circulation patterns and environmental conditions that influence its occurrence and development in major regions of China, radar echo characteristics and raindrop distributions, impact of topography and urbanization on its formation and development, and application of artificial intelligence in potential forecasting, short-term forecasting, and nowcasting of short-duration heavy precipitation in China. With global warming, the frequency and intensity of short-duration heavy precipitation events have increased. In the future, further research will be required to enhance understanding of the formation mechanisms and environmental conditions, improve the spatiotemporal resolution of observations, expand the use of new observation data, and enhance forecasting capabilities in high-resolution, rapid-update cycle assimilation numerical weather prediction models through the fusion and analysis of dense multisource observation data. Additionally, optimizing deep learning models and algorithms—particularly in the development of largescale deep learning models—will be crucial for improving forecasting and early warning capabilities for short-duration heavy precipitation.

中图分类号: 

图1 19512021年全国平均小时降水不同百分位阈值降水频次占比日变化 46
降水频次占比=(该时次达到阈值的降水次数/所有时次即24 h达到阈值的降水次数)×100%
Fig. 1 Diurnal variation of the hourly precipitation frequency proportion at different percentile thresholds averaged over China from 1951 to 2021 46
Frequency percentage=(Number of times precipitation reaches the threshold at a given time/Total number of times precipitation reaches the threshold in 24 hours)×100%
图2 利用 201120185~8月我国东部地区 850 hPa位势高度(单位: gpm)、风场(风羽)和温度(红实线,单位: )建立的 9种天气类型 44
HHR为该天气类型产生短时强降水事件日的天数及百分比,Total为该天气类型出现的百分比
Fig. 2 The established nine synoptic weather types by the geopotential height of 850 hPaunitgpm), wind fieldbarband temperaturered solid lineunitover eastern China during May-August of 2011-201844
HHR is the number of days and the percentage of days with short-term heavy precipitation events for that synoptic type, Total is the percentage of occurrences for that synoptic type
表1 短时强降水的对流参数的平均值 61
Table 1 Average values of parameters of short-term heavy rainfall 61
图3 大陆型强对流和热带海洋型强对流实例 1
(a)大陆型强对流雷达回波剖面;(b)热带海洋型强对流雷达回波剖面
Fig. 3 Examples of continental severe convection and tropical oceanic severe convection 1
(a) Radar echo profile of continental severe convection;(b) Radar echo profile of tropical oceanic severe convection
图4 2021720日郑州极端暴雨过程中 0630-0959雨滴谱特征量的时间变化 75
红线、蓝线和黑线分别表示粒子数浓度 Nt (单位:m -3)、质量加权平均直径 Dm (单位:mm)和降水率 R(单位:mm/h);lg( Nt )表示粒子数浓度的对数值。其中灰色矩形区域是07:43-09:08时段,即降水率超过100 mm/h的时段
Fig. 4 Time series of rain drop size distribution parameters during the extreme rainfall in Zhengzhou at 0630 UTC-0959 UTC July 20202175
Red, blue, and black lines represent total number concentration ( Nt, units:m -3), mass-weighted mean diameter ( Dm, units:mm), and rain rate ( R, units:mm/h), respectively; lg( Nt ) represents the logarithmic value of total number concentration. The gray box is the period with a rain rate larger than 100 mm/h, namely, 0743 UTC-0908 UTC
图5 21·7”郑州极端降水过程的多尺度天气系统与地形相互作用过程示意图 76
红色粗箭头表示天气尺度的气流,蓝色细箭头表示中尺度的气流。北风气流起源于太行山东坡的阻挡急流,该急流发生在天气东风气流受阻并形成阻塞高压的时候。南风气流与郑州以西的低层β中尺度涡旋有关。低层北风和南风之间达到了总体平衡。此外,东风流入阻止了冷池的向东传播。因此,郑州的对流风暴几乎停滞,导致创纪录的小时强降水
Fig. 5 Schematic diagram illustrating the multiscale dynamical processes responsible for maintaining the “21·7” Zhengzhou extreme rainfall 76
Synoptic-scale flows are denoted by the thick red arrows, whereas thin blue arrows indicate mesoscale flows. The extreme-rain-producing convective storm was fed by the moisture supply from the ocean(denoted by the red arrow labeled as “moisture conveyor belt”) and maintained by the dynamical lifting of low-level converging flows. The northerly flow originated from a mesoscale barrier jet on the eastern slope of the Taihang Mountains, which occurred as the synoptic easterly flow was blocked and formeda blocking high. The southerly flow was associated with a low-level, meso-β-scale vortex west of Zhengzhou. An overall balance was reached between the low-level northerly and southerly winds. Moreover, the easterly inflow prevented the eastward propagation of the rain-induced cold pool. Thus, the convective storm was nearly stagnant in Zhengzhou, resulting in record-breaking hourly precipitation
图6 19812014年上海暖季( 4~9月)极端小时降水( a)发生频次和( b)降水量变化趋势的空间分布图 86
Fig. 6 Spatial distribution of the trend of theafrequency andbtotal precipitation amount of hourly rainstorms during the warm seasonApril-Septemberin Shanghai from 1981 to 201486
图7 预报极端降水的 NowcastNet模型 130
Fig. 7 NowcastNet model for extreme-precipitation nowcasting 130
34 汤彬, 王宗明, 胡文婷, 等. 2021年河南省一次罕见暴雨过程的降水特征及成因[J]. 大气科学202347( 2): 517- 533.
35 ZHENG Y G, XUE M, LI B, et al. Spatial characteristics of extreme rainfall over China with hourly through 24-hour accumulation periods based on national-level hourly rain gauge data[J]. Advances in Atmospheric Sciences201633( 11): 1 218- 1 232.
36 ZHOU Xuan, LUO Yali, GUO Xueliang. Application of a CMORPH-aws merged hourly gridded precipitation product in analyzing characteristics of short-duration heavy rainfall over Southern China[J]. Journal of Tropical Meteorology201531( 3): 333- 344.
周璇, 罗亚丽, 郭学良. CMORPH卫星—地面自动站融合降水数据在中国南方短时强降水分析中的应用[J]. 热带气象学报201531( 3): 333- 344.
37 MAO Dongyan, CAO Yancha, ZHU Wenjian, et al. Climatic characteristics of short-time severe precipitation in southwest China[J]. Meteorological Monthly201844( 8): 1 042- 1 050.
毛冬艳, 曹艳察, 朱文剑, 等. 西南地区短时强降水的气候特征分析[J]. 气象201844( 8): 1 042- 1 050.
38 ZHAO Yufei, ZHANG Qiang, JU Xiaohui, et al. Analysis of the characteristics of short-term extreme precipitation in China in the last 30 years[J]. Chinese Journal of Atmospheric Sciences202448( 3): 1 144- 1 156.
赵煜飞, 张强, 鞠晓慧, 等. 中国近30年短时极端降水特征分析[J]. 大气科学202448( 3): 1 144- 1 156.
39 JIANG Fan, WANG Donghai, ZENG Zhilin. Spatiotemporal evolution characteristics and causes of short-duration heavy rainfall in the presummer rainy season over the Pearl River Delta Region before and after the South China Sea summer monsoon onset in the past 20 years[J]. Chinese Journal of Atmospheric Sciences202448( 2): 715- 734.
江帆, 王东海, 曾智琳. 近20年季风爆发前后珠江三角洲前汛期短时强降水的时空演变特征与成因[J]. 大气科学202448( 2): 715- 734.
40 YU Pei. Temporal and spatial distribution characteristics of short-time heavy rainfall in Zhejiang Province[J]. Climatic and Environmental Research202227( 3): 397- 407.
俞佩. 浙江省短时强降水的时空分布特征[J]. 气候与环境研究202227( 3): 397- 407.
41 BAI Xiaoping, JIN Shuanglong, WANG Shigong, et al. Spatio-temporal characteristics of the short-time heavy rainfall in the east of northwest China[J]. Journal of Desert Research201838( 2): 410- 417.
白晓平, 靳双龙, 王式功, 等. 中国西北地区东部短时强降水时空特征[J]. 中国沙漠201838( 2): 410- 417.
42 WANG Jingyu, LI Zhe, WANG Xiaokang, et al. Temporal and spatial distribution characteristics of flash heavy rain in Henan during rainy season[J]. Torrential Rain and Disasters201938( 2): 152- 160.
王婧羽, 李哲, 汪小康, 等. 河南省雨季短时强降水时空分布特征[J]. 暴雨灾害201938( 2): 152- 160.
43 LI Yurui, CHEN Chaoping, CHEN Quanliang, et al. Temporal and spatial evolution characteristics of the short-duration strong rainfall events in Sichuan[J]. Plateau and Mountain Meteorology Research202141( 3): 42- 49.
李昱锐, 陈朝平, 陈权亮, 等. 四川地区短时强降水事件时空演变特征研究[J]. 高原山地气象研究202141( 3): 42- 49.
44 WU Zhaoxian, LUO Yali, LIU Xi, et al. Statistical characteristics of the hourly heavy rainfall events over Anhui Province during the 2011-2018 warm seasons and the associated synoptic circulation patterns[J]. Meteorological Monthly202248( 8): 963- 978.
吴照宪, 罗亚丽, 刘希, 等. 2011—2018年安徽暖季短时强降水及其环流背景统计特征[J]. 气象202248( 8): 963- 978.
45 YANG Lijie, CAO Yanchao, LIU Weicheng, et al. Research on spatio-temporal distribution characteristics of short-term heavy rainfall and terrain influence in the Loess Plateau arid region of eastern Gansu[J]. Journal of Arid Meteorology202240( 6): 945- 953.
杨丽杰, 曹彦超, 刘维成, 等. 陇东黄土高原旱区短时强降水的时空分布特征及地形影响研究[J]. 干旱气象202240( 6): 945- 953.
46 WANG Xiaokang, CUI Chunguang, LIU Ke, et al. Spatio-temperal distribution and diurnal variation of extreme hourly precipitation in China during the main rainy season[J]. Meteorological Monthly202450( 4): 393- 406.
汪小康, 崔春光, 刘柯, 等. 中国主雨季极端小时降水时空分布和日变化特征[J]. 气象202450( 4): 393- 406.
47 ZHENG Y G, GONG Y D, CHEN J, et al. Warm-season diurnal variations of total, stratiform, convective, and extreme hourly precipitation over central and Eastern China[J]. Advances in Atmospheric Sciences201936( 2): 143- 159.
48 SHI Juan, ZHENG Yan, KE Yuanhui, et al. Characteristics of weather patterns and environmental parameters of short-term heavy rainfall from April to September over Hainan Island[J]. Meteorological Science and Technology202452( 1): 55- 65.
石娟, 郑艳, 柯元惠, 等. 海南岛4—9月短时强降水的天气型和环境参数特征[J]. 气象科技202452( 1): 55- 65.
49 DOSWELL C A III. The distinction between large-scale and mesoscale contribution to severe convection: a case study example[J]. Weather and Forecasting19872( 1): 3- 16.
50 HAO Ying, YAO Yeqing, ZHENG Yuanyuan, et al. Multi-scale analysis and nowcasting of short-time heavy rainfall[J]. Meteorological Monthly201238( 8): 903- 912.
郝莹, 姚叶青, 郑媛媛, 等. 短时强降水的多尺度分析及临近预警[J]. 气象201238( 8): 903- 912.
51 BROWNING K A. Towards the more effective use of radar and satellite imagery in weather forecasting [M]. Dordrecht: Meteorological office Radar Research Laboratory, 1985.
52 CHEN Yuanzhao, YU Xiaoding, CHEN Xunlai. Characteristics of short-time severe rainfall events based on weather flow and key environmental parameters in Pearl River Delta[J]. Meteorological Monthly201642( 2): 144- 155.
陈元昭, 俞小鼎, 陈训来. 珠江三角洲地区重大短时强降水的基本流型与环境参量特征[J]. 气象201642( 2): 144- 155.
53 ZHANG Yiping, QIAO Chungui, LIANG Junping. Tentative discussion on synoptic type and physical diagnostic threshold of short-time strong precipitation in upper reaches of the Huaihe River[J]. Torrential Rain and Disasters201433( 2): 129- 138.
张一平, 乔春贵, 梁俊平. 淮河上游短时强降水天气学分型与物理诊断量阈值初探[J]. 暴雨灾害201433( 2): 129- 138.
54 ZHOU Fang, ZHANG Ying, CHEN Xiangxiang, et al. Weather system classification of local hourly heavy rainfall in Jiangxi Province[J]. Torrential Rain and Disasters202443( 3): 352- 362.
1 YU Xiaoding. Nowcasting thinking and method of flash heavy rain[J]. Torrential Rain and Disasters201332( 3): 202- 209.
俞小鼎. 短时强降水临近预报的思路与方法[J]. 暴雨灾害201332( 3): 202- 209.
2 LUO Y L, WU M W, REN F M, et al. Synoptic situations of extreme hourly precipitation over China[J]. Journal of Climate201629( 24): 8 703- 8 719.
3 XIAO C, WU P L, ZHANG L X, et al. Robust increase in extreme summer rainfall intensity during the past four decades observed in China[J]. Scientific Reports2016, 6. DOI: 10.1038/srep38506 .
4 WU M W, LUO Y L, CHEN F, et al. Observed link of extreme hourly precipitation changes to urbanization over coastal South China[J]. Journal of Applied Meteorology and Climatology201958( 8): 1 799- 1 819.
5 WU M W, WU C C, YEN T H, et al. Synoptic analysis of extreme hourly precipitation in Taiwan during 2003-12[J]. Monthly Weather Review2017145( 12): 5 123- 5 140.
6 YU R C, LI J. Hourly rainfall changes in response to surface air temperature over eastern contiguous China[J]. Journal of Climate201225( 19): 6 851- 6 861.
7 WU Mengwen, LUO Yali. Extreme hourly precipitation over China: research progress from 2010 to 2019[J]. Torrential Rain and Disasters201938( 5): 502- 514.
吴梦雯, 罗亚丽. 中国极端小时降水2010—2019年研究进展[J]. 暴雨灾害201938( 5): 502- 514.
8 CHEN Jiong, ZHENG Yongguang, ZHANG Xiaoling, et al. Analysis of the climatological distribution and diurnal variations of the short-duration heavy rain and its relation with diurnal variations of the MCSs over China during the warm season[J]. Acta Meteorologica Sinica201371( 3): 367- 382.
陈炯, 郑永光, 张小玲, 等. 中国暖季短时强降水分布和日变化特征及其与中尺度对流系统日变化关系分析[J]. 气象学报201371( 3): 367- 382.
9 ZHOU Xiaomin, TIAN Fuyou, ZHENG Yongguang, et al. Contribution of short-duration heavy rainfall to rainstorm in China[J]. Meteorological Monthly202349( 3): 267- 278.
54 周芳, 张瑛, 陈翔翔, 等. 江西局地短时强降水的天气学分型研究[J]. 暴雨 灾害202443( 3): 352- 362.
55 MIN Jingjing, DENG Changju, CAO Xiaozhong, et al. Synoptic circulation pattern clustering analysis of severe convective weather based on Self-Organizing Maps(SOM)[J]. Meteorological Science and Technology201543( 2): 244- 249.
闵晶晶, 邓长菊, 曹晓钟, 等. 强对流天气形势聚类分析中SOM方法应用[J]. 气象科技201543( 2): 244- 249.
56 YANG Bo, SUN Jisong, MAO Xu, et al. Multi-scale characteristics of atmospheric circulation related to short-time strong rainfall events in Beijing[J]. Acta Meteorologica Sinica201674( 6): 919- 934.
杨波, 孙继松, 毛旭, 等. 北京地区短时强降水过程的多尺度环流特征[J]. 气象学报201674( 6): 919- 934.
57 BAI Xiaoping, WANG Shigong, ZHAO Lu, et al. Conceptual models of short-time heavy rainfall in the east of northwest China[J]. Plateau Meteorology201635( 5): 1 248- 1 256.
白晓平, 王式功, 赵璐, 等. 西北地区东部短时强降水概念模型[J]. 高原气象201635( 5): 1 248- 1 256.
58 ROY B S K, ROY S SEN, KUNDU P K. Analysis of large-scale conditions associated with convection over the Indian Monsoon region[J]. International Journal of Climatology200828( 6): 797- 821.
59 SUN Jisong, DAI Jianhua, HE Lifu, et al. Basic principles and technical methods of severe convective weather forecast: manual of severe convective weather forecast in China[M]. Beijing: China Meteorological Press, 2014.
孙继松, 戴建华, 何立富, 等. 强对流天气预报的基本原理与技术方法: 中国强对流天气预报手册[M]. 北京: 气象出版社, 2014.
60 TIAN F Y, ZHENG Y G, ZHANG T, et al. Statistical characteristics of environmental parameters for warm season short-duration heavy rainfall over central and Eastern China[J]. Journal of Meteorological Research201529( 3): 370- 384.
61 FAN Limiao, YU Xiaoding. Characteristic analyses on environmental parameters in short-term severe convective weather in China[J]. Plateau Meteorology201332( 1): 156- 165.
樊李苗, 俞小鼎. 中国短时强对流天气的若干环境参数特征分析[J]. 高原气象201332( 1): 156- 165.
62 ZHENG Yuanyuan, YAO Chen, HAO Ying, et al. The short-time forecasting and early-warning reasearch on severe convective weather under different types of large-scale circulation background[J]. Meteorological Monthly201137( 7): 795- 801.
9 周晓敏, 田付友, 郑永光, 等. 中国短时强降雨对暴雨的贡献特征[J]. 气象202349( 3): 267- 278.
10 RAN Jinjiang, QI Yulei, LONG Zhiping, et al. Characteristics of short-time heavy rainfall in the Sichuan basin based on high-density station observations[J]. Plateau Meteorology202342( 4): 949- 961.
冉津江, 齐玉磊, 龙治平, 等. 基于高密度站点的四川盆地短时强降水特征分析[J]. 高原气象202342( 4): 949- 961.
11 YANG Hao, ZHOU Wen, WANG Xiaokang, et al. Analysis on extremity and characteristics of the “21·7” severe torrential rain in Henan Province[J]. Meteorological Monthly202248( 5): 571- 579.
杨浩, 周文, 汪小康, 等. “ 21·7” 河南特大暴雨降水特征及极端性分析[J]. 气象202248( 5): 571- 579.
12 CHEN Tao, CHEN Yun, FANG Chong, et al. Fine characteristics of the July 2023 extreme rainfall in North China and associated synoptic weather patterns[J]. Acta Meteorologica Sinica202482( 5): 600- 614.
陈涛, 谌芸, 方翀, 等.“ 23.7”华北极端暴雨精细特征和天气学成因分析[J]. 气象学报202482( 5): 600- 614.
13 SMITH B K, SMITH J A. The flashiest watersheds in the contiguous United States[J]. Journal of Hydrometeorology201516( 6): 2 365- 2 381.
14 MUSCHINSKI T, KATZ J I. Trends in hourly rainfall statistics in the United States under a warming climate[J]. Nature Climate Change20133( 6): 577- 580.
15 YU L J, ZHONG S Y, PEI L S, et al. Contribution of large-scale circulation anomalies to changes in extreme precipitation frequency in the United States[J]. Environmental Research Letters201611( 4). DOI: 10.1088/1748-9326/11/4/044003 .
16 HITCHENS N M, BROOKS H E, SCHUMACHER R S. Spatial and temporal characteristics of heavy hourly rainfall in the United States[J]. Monthly Weather Review2013141( 12): 4 564- 4 575.
17 YU L J, ZHONG S Y, HEILMAN W E, et al. A comparison of the effects of El Niño and El Niño Modoki on subdaily extreme precipitation occurrences across the contiguous United States[J]. Journal of Geophysical Research: Atmospheres2017122( 14): 7 401- 7 415.
62 郑媛媛, 姚晨, 郝莹, 等. 不同类型大尺度环流背景下强对流天气的短时临近预报预警研究[J]. 气象201137( 7): 795- 801.
63 HUANG Yan, YU Xiaoding, CHEN Tianyu, et al. Analysis of conceptual models and ambient parameter of short-time severe rainfall in south Xinjiang[J]. Meteorological Monthly201844( 8): 1 033- 1 041.
黄艳, 俞小鼎, 陈天宇, 等. 南疆短时强降水概念模型及环境参数分析[J]. 气象201844( 8): 1 033- 1 041.
64 ZHANG Wulong, KANG Lan, YANG Kangquan, et al. Comparative analysis on characteristics of physical quantity of flash-rain under different intensities in Sichuan Basin[J]. Meteorological Monthly202147( 4): 439- 449.
张武龙, 康岚, 杨康权, 等. 四川盆地不同强度短时强降水物理量特征对比分析[J]. 气象202147( 4): 439- 449.
65 HE Yu, CHEN Xiaohua, LI Yaosun, et al. Radar echo characteristics of short-time severe rainfall in the periphery of subtropical high in Yunnan Province[J]. Meteorological Monthly202147( 4): 450- 462.
何钰, 陈小华, 李耀孙, 等. 云南省副热带高压外围类短时强降水的雷达回波特征[J]. 气象202147( 4): 450- 462.
66 DUAN He, XIA Wenmei, SU Xiaoli, et al. Features statistics and warning of flash heavy rains[J]. Meteorological Monthly201440( 10): 1 194- 1 206.
段鹤, 夏文梅, 苏晓力, 等. 短时强降水特征统计及临近预警[J]. 气象201440( 10): 1 194- 1 206.
67 SUN Jisong, LEI Lei, YU Bo, et al. The fundamental features of the extreme severe rain events in the recent 10 years in the Beijing area[J]. Acta Meteorologica Sinica201573( 4): 609- 623.
孙继松, 雷蕾, 于波, 等. 近10年北京地区极端暴雨事件的基本特征[J]. 气象学报201573( 4): 609- 623.
68 MA Li, MIAO Aimei, DONG Chunqing, et al. Analysis of the potential and triggering characteristics of short-term heavy precipitation in Shanxi on July 13, 2018[J]. Transactions of Atmospheric Sciences202043( 4): 663- 672.
18 LOPEZ-CANTU T, PREIN A F, SAMARAS C. Uncertainties in future U.S. extreme precipitation from downscaled climate projections[J]. Geophysical Research Letters202047( 9). DOI: 10.1029/2019GL086797 .
19 KIM J, SHU E, LAI K, et al. Assessment of the standard precipitation frequency estimates in the United States[J]. Journal of Hydrology: Regional Studies2022, 44. DOI: 10.1016/j.ejrh.2022.101276 .
20 HOERLING M, EISCHEID J, PERLWITZ J, et al. Characterizing recent trends in U.S. heavy precipitation[J]. Journal of Climate201629( 7): 2 313- 2 332.
21 HOWARTH M E, THORNCROFT C D, BOSART L F. Changes in extreme precipitation in the northeast United States: 1979-2014[J]. Journal of Hydrometeorology201920( 4): 673- 689.
22 DAVIS R S. Flash flood forecast and detection methods[J]. Meteorological Monographs200150: 481- 526.
23 DOSWELL C A III, BROOKS H E, MADDOX R A. Flash flood forecasting: an ingredients-based methodology[J]. Weather and Forecasting199611( 4): 560- 581.
24 MADDOX R A, CHAPPELL C F, HOXIT L R. Synoptic and meso-α scale aspects of flash flood events[J]. Bulletin of the American Meteorological Society197960( 2): 115- 123.
25 HOSSEINZADEHTALAEI P, TABARI H, WILLEMS P. Climate change impact on short-duration extreme precipitation and intensity-duration-frequency curves over Europe[J]. Journal of Hydrology2020, 590. DOI: 10.1016/j.jhydrol.2020.125249 .
26 HOSSEINZADEHTALAEI P, TABARI H, WILLEMS P. Regionalization of anthropogenically forced changes in 3 hourly extreme precipitation over Europe[J]. Environmental Research Letters201914( 12). DOI: 10.1088/1748-9326/ab5638 .
27 SCHAFFER A, LICHTENEGGER T, TRUHETZ H, et al. Drivers of cold frontal hourly extreme precipitation: a climatological study over Europe[J]. Geophysical Research Letters202451( 20). DOI: 10.1029/2024GL111025 .
28 YANG L, NI G H, TIAN F Q, et al. Urbanization exacerbated rainfall over European suburbs under a warming climate[J]. Geophysical Research Letters202148( 21). DOI: 10.1029/2021GL095987 .
29 YU Xiaoding. Ingredients based forecasting methodology[J]. Meteorological Monthly201137( 8): 913- 918.
68 马丽, 苗爱梅, 董春卿, 等. “ 0713"山西短时强降水天气的潜势及触发条件分析[J]. 大气科学学报202043( 4): 663- 672.
69 LI Dejun, TANG Renmao, XIONG Shouquan, et al. Radar features and nowcasting of severe hail and short-time heavy rainfall[J]. Meteorological Monthly201137( 4): 474- 480.
李德俊, 唐仁茂, 熊守权, 等. 强冰雹和短时强降水天气雷达特征及临近预警[J]. 气象201137( 4): 474- 480.
70 ZHUANG Xiaocui, ZHANG Yunhui, ZHOU Xueying, et al. Radar echo characteristics of short-time severe precipitation in Xinjiang[J]. Meteorological Monthly202147( 11): 1 402- 1 415.
庄晓翠, 张云惠, 周雪英, 等. 新疆短时强降水天气雷达回波特征[J]. 气象202147( 11): 1 402- 1 415.
71 WANG Jun, WANG Wenqing, WANG Hong, et al. Characteristics of the raindrop size distribution during a short-time heavy rainfall and a squall line accompanied by hail[J]. Plateau Meteorology202140( 5): 1 071- 1 086.
王俊, 王文青, 王洪, 等. 短时强降水和冰雹云降水个例雨滴谱特征分析[J]. 高原气象202140( 5): 1 071- 1 086.
72 CHEN G, ZHAO K, WEN L, et al. Microphysical characteristics of three convective events with intense rainfall observed by polarimetric radar and disdrometer in Eastern China[J]. Remote Sensing201911( 17). DOI: 10.3390/rs11172004 .
73 LI Shanshan, WANG Xiaofang, LI Guoping, et al. Comparative analysis on characteristics of raindrop spectrum of short-term and persistent heavy rain[J]. Torrential Rain and Disasters202342( 1): 1- 12.
李山山, 王晓芳, 李国平, 等. 短时强降水和持续性强降水的雨滴谱特征对比[J]. 暴雨灾害202342( 1): 1- 12.
74 CHEN B J, WANG J, GONG D L. Raindrop size distribution in a midlatitude continental squall line measured by thies optical disdrometers over East China[J]. Journal of Applied Meteorology and Climatology201655( 3): 621- 634.
75 ZHANG Zhe, QI Youcun, LI Donghuan, et al. Raindrop size distribution characteristics of the extreme rainstorm event in Zhengzhou 20 July, 2021 and its impacts on radar quantitative precipitation estimation[J]. Chinese Journal of Atmospheric Sciences202246( 4): 1 002- 1 016.
29 俞小鼎. 基于构成要素的预报方法: 配料法[J]. 气象201137( 8): 913- 918.
30 YU Xiaoding, ZHENG Yongguang. Advances in severe convective weather research and operational service in China[J]. Acta Meteorologica Sinica202078( 3): 391- 418.
俞小鼎, 郑永光. 中国当代强对流天气研究与业务进展[J]. 气象学报202078( 3): 391- 418.
31 BERG P, HAERTER J O. Unexpected increase in precipitation intensity with temperature: a result of mixing of precipitation types?[J]. Atmospheric Research2013119: 56- 61.
32 SUN Jisong. Differences and relationship between flash heavy rain and heavy rainfall[J]. Torrential Rain and Disasters201736( 6): 498- 506.
孙继松. 短时强降水和暴雨的区别与联系[J]. 暴雨灾害201736( 6): 498- 506.
33 ZHANG H, ZHAI P M. Temporal and spatial characteristics of extreme hourly precipitation over Eastern China in the warm season[J]. Advances in Atmospheric Sciences201128( 5): 1 177- 1 183.
34 TANG Bin, WANG Zongming, HU Wenting, et al. Characteristics and causes of precipitation for a rare rainstorm process in Henan Province in 2021[J]. Chinese Journal of Atmospheric Sciences202347( 2): 517- 533.
75 张哲, 戚友存, 李东欢, 等. 2021年郑州“7·20”极端暴雨雨滴谱特征及其对雷达定量降水估测的影响[J]. 大气科学202246( 4): 1 002- 1 016.
76 WEI P, XU X, XUE M, et al. On the key dynamical processes supporting the 21.7 Zhengzhou record-breaking hourly rainfall in China[J]. Advances in Atmospheric Sciences202340( 3): 337- 349.
77 BI Baogui, LIU Yuewei, LI Zechun. The effect of surface thermal forcing on the extremely heavy rainfall in the southern Shaanxi province during June 8 and 9, 2002[J]. Geographical Research200524( 5): 681- 691.
毕宝贵, 刘月巍, 李泽椿. 地表热通量对陕南强降水的影响[J]. 地理研究200524( 5): 681- 691.
78 RAN Lingkun, LI Shuwen, ZHOU Yushu, et al. Observational analysis of the dynamic, thermal, and water vapor characteristics of the“7.20” extreme rainstorm event in Henan Province, 2021[J]. Chinese Journal of Atmospheric Sciences202145( 6): 1 366- 1 383.
冉令坤, 李舒文, 周玉淑, 等. 2021年河南“7.20”极端暴雨动、热力和水汽特征观测分析[J]. 大气科学202145( 6): 1 366- 1 383.
79 LUO Y H, DU Y. The roles of low-level jets in “21·7” Henan extremely persistent heavy rainfall event[J]. Advances in Atmospheric Sciences202340( 3): 350- 373.
80 LIU Yulu, DU Qicheng, HUANG Yong. The topograpical enhancement mechanism of short-time heavy rainfall in Huangshan Mountain[J]. Meteorological Monthly201743( 2): 181- 188.
刘裕禄, 杜其成, 黄勇. 黄山地区短时强降雨的地形增幅机制[J]. 气象201743( 2): 181- 188.
81 WANG Congmei, YU Xiaoding, LI Zhixia, et al. Investigation of extreme flash-rain events on the impact of Taihang Mountain[J]. Meteorological Monthly201743( 4): 425- 433.
王丛梅, 俞小鼎, 李芷霞, 等. 太行山地形影响下的极端短时强降水分析[J]. 气象201743( 4): 425- 433.
82 WANG J, FENG J M, YAN Z W, et al. Nested high-resolution modeling of the impact of urbanization on regional climate in three vast urban agglomerations in China[J]. Journal of Geophysical Research: Atmospheres2012117( D21). DOI: 10.1029/2012JD018226 .
83 ZHANG Y, SMITH J A, LUO L F, et al. Urbanization and rainfall variability in the Beijing metropolitan region[J]. Journal of Hydrometeorology201415( 6): 2 219- 2 235.
84 MIAO S G, CHEN F, LI Q C, et al. Impacts of urban processes and urbanization on summer precipitation: a case study of heavy rainfall in Beijing on 1 August 2006[J]. Journal of Applied Meteorology and Climatology201150( 4): 806- 825.
85 DOU J J, WANG Y C, BORNSTEIN R, et al. Observed spatial characteristics of Beijing urban climate impacts on summer thunderstorms[J]. Journal of Applied Meteorology and Climatology201554( 1): 94- 105.
86 LIANG P, DING Y H. The long-term variation of extreme heavy precipitation and its link to urbanization effects in Shanghai during 1916-2014[J]. Advances in Atmospheric Sciences201734( 3): 321- 334.
87 JIANG X L, LUO Y L, ZHANG D L, et al. Urbanization enhanced summertime extreme hourly precipitation over the Yangtze River Delta[J]. Journal of Climate202033( 13): 5 809- 5 826.
88 JIANG X L, ZHANG D L, LUO Y L. Influences of urbanization on an afternoon heavy rainfall event over the Yangtze River Delta region[J]. Monthly Weather Review2023151( 3): 815- 832.
89 LI W B, CHEN S, CHEN G X, et al. Urbanization signatures in strong versus weak precipitation over the Pearl River Delta metropolitan regions of China[J]. Environmental Research Letters20116( 3). DOI: 10.1088/1748-9326/6/3/034020 .
90 HUANG S H, WEN Z P, CHEN X D, et al. The Henan extreme rainfall in July 2021: modulation of the northward-shift monsoon trough on the synoptic-scale wave train[J]. Advances in Climate Change Research202213( 6): 819- 825.
91 von GLASOW R, JICKELLS T D, BAKLANOV A, et al. Megacities and large urban agglomerations in the coastal zone: interactions between atmosphere, land, and marine ecosystems[J]. AMBIO201342( 1): 13- 28.
92 MILLER S T K, KEIM B D, TALBOT R W, et al. Sea breeze: structure, forecasting, and impacts[J]. Reviews of Geophysics200341( 3). DOI: 10.1029/2003RG000124 .
93 GU Wen, ZHANG Jing, TAN Jianguo, et al. Characteristics and circulation background of Shanghai summer sea breeze front and its induced convection[J]. Journal of Tropical Meteorology201733( 5): 644- 653.
顾问, 张晶, 谈建国, 等. 上海夏季海风锋及其触发对流的时空分布和环流背景分析[J]. 热带气象学报201733( 5): 644- 653.
94 CHEN Lei, WANG Fuxia, YU Yinghua, et al. Evolution characteristics of heavy precipitation supercell under the influence of the multi-cell strong storm[J]. Meteorological Monthly202450( 8): 966- 980.
陈磊, 王福侠, 尉英华, 等. 多单体强风暴影响下的一次强降水超级单体演变特征分析[J]. 气象202450( 8): 966- 980.
95 YI Xiaoyuan, CHEN Hong, ZHANG Qing, et al. Causes of an extreme local short-time heavy precipitation event along the west coast of Bohai Bay[J]. Journal of Marine Meteorology202444( 3): 1- 13.
易笑园, 陈宏, 张庆, 等. 渤海湾西岸一次局地极端短时强降水事件的成因分析[J]. 海洋气象学报202444( 3): 1- 13.
96 DONG Gaohong, LIU Yiwei, SUN Mina, et al. Effect of urban heat island and sea breeze front superimposition on a local heavy rainfall[J]. Meteorological Monthly201339( 11): 1 422- 1 430.
东高红, 刘一玮, 孙蜜娜, 等. 城市热岛与海风锋叠加作用对一次局地强降水的影响[J]. 气象201339( 11): 1 422- 1 430.
97 WU Qingmei, GUO Hu, YANG Bo, et al. Effects of topography and urban heat circulation on a meso-β torrential rain in Beijing area[J]. Meteorological Monthly200935( 12): 58- 64.
吴庆梅, 郭虎, 杨波, 等. 地形和城市热力环流对北京地区一次β中尺度暴雨的影响[J]. 气象200935( 12): 58- 64.
98 WALSER A, LÜTHI D, SCHÄR C. Predictability of precipitation in a cloud-resolving model[J]. Monthly Weather Review2004132( 2): 560- 577.
99 ZHENG Yongguang, ZHOU Kanghui, SHENG Jie, et al. Advances in techniques of monitoring, forecasting and warning of severe convective weather[J]. Journal of Applied Meteorological Science201526( 6): 641- 657.
郑永光, 周康辉, 盛杰, 等. 强对流天气监测预报预警技术进展[J]. 应用气象学报201526( 6): 641- 657.
100 YU Xiaoding, ZHOU Xiaogang, WANG Xiuming. The advances in the nowcasting techniques on thunderstorms and severe convection[J]. Acta Meteorologica Sinica201270( 3): 311- 337.
俞小鼎, 周小刚, 王秀明. 雷暴与强对流临近天气预报技术进展[J]. 气象学报201270( 3): 311- 337.
101 TANG Wenyuan, ZHENG Yongguang. Improvement of hourly precipitation forecast using a time-lagged ensemble based on rapid refresh assimilation and forecast[J]. Meteorological Monthly201945( 3): 305- 317.
唐文苑, 郑永光. 基于快速更新同化数值预报的小时降水量时间滞后集合订正技术[J]. 气象201945( 3): 305- 317.
102 LIU Guozhong, HUANG Kaigang, LUO Jianying, et al. Research on the short-term forecasting technique of persistent rainstorm with conceptual model and ingredients-based method[J]. Meteorological Monthly201339( 1): 20- 27.
刘国忠, 黄开刚, 罗建英, 等. 基于概念模型及配料法的持续性暴雨短期预报技术探究[J]. 气象201339( 1): 20- 27.
103 ZHANG Hualong, WU Zhifang, XIAO Liusi, et al. A probabilistic forecast model of short-time heavy rainfall in Guangdong Province based on factor analysis and its operational experiments[J]. Acta Meteorologica Sinica202179( 1): 15- 30.
张华龙, 伍志方, 肖柳斯, 等. 基于因子分析的广东省短时强降水预报模型及其业务试验[J]. 气象学报202179( 1): 15- 30.
104 TIAN Fuyou, ZHENG Yongguang, SUN Jianhua, et al. Forecasting system for short-term multi-category convective phenomena combining physical understanding and fuzzy logic part Ⅰ: system construction[J]. Meteorological Monthly202450( 5): 521- 531.
田付友, 郑永光, 孙建华, 等. 融合物理理解与模糊逻辑的分类强对流客观短期预报系统: (1)系统构成[J]. 气象202450( 5): 521- 531.
105 HAN Feng, YANG Lu, ZHOU Chuxuan, et al. An experimental study of the short-time heavy rainfall event forecast based on ensemble learning and sounding data[J]. Journal of Applied Meteorological Science202132( 2): 188- 199.
韩丰, 杨璐, 周楚炫, 等. 基于探空数据集成学习的短时强降水预报试验[J]. 应用气象学报202132( 2): 188- 199.
106 ZHU Yan, ZHAI Danhua, WU Zhipeng, et al. A method of short-duration heavy rain forecast based on XGBoost algorithm[J]. Meteorological Science and Technology202149( 3): 406- 418.
朱岩, 翟丹华, 吴志鹏, 等. 基于XGBoost算法的短时强降水预报方法[J]. 气象科技202149( 3): 406- 418.
107 ZHI Xiefei, ZHANG Kejun, TIAN Ye, et al. Probabilistic precipitation forecast in East and South China based on neural network and geographic information[J]. Transactions of Atmospheric Sciences202144( 3): 381- 393.
智协飞, 张珂珺, 田烨, 等. 基于神经网络和地理信息的华东及华南地区降水概率预报[J]. 大气科学学报202144( 3): 381- 393.
108 LI W D, GAO X, HAO Z H, et al. Using deep learning for precipitation forecasting based on spatio-temporal information: a case study[J]. Climate Dynamics202258( 1): 443- 457.
109 LIU X, ZHENG Y, ZHUANG X R, et al. Spatiotemporal convolutional approach for the short-term forecast of hourly heavy rainfall probability integrating numerical weather predictions and surface observations[J]. Weather and Forecasting202439( 3): 597- 612.
110 HOFFMAN R N, KALNAY E. Lagged average forecasting, an alternative to Monte Carlo forecasting[J]. Tellus A198335A( 2): 100- 118.
111 STEINHEIMER M, HAIDEN T. Improved nowcasting of precipitation based on convective analysis fields[J]. Advances in Geosciences200710: 125- 131.
112 PULKKINEN S, NERINI D, PÉREZ HORTAL A A, et al. Pysteps: an open-source Python library for probabilistic precipitation nowcasting (v1.0)[J]. Geoscientific Model Development201912( 10): 4 185- 4 219.
113 CAO Chunyan, CHEN Yuanzhao, LIU Donghua, et al. The optical flow method and its application to nowcasting[J]. Acta Meteorologica Sinica201573( 3): 471- 480.
曹春燕, 陈元昭, 刘东华, 等. 光流法及其在临近预报中的应用[J]. 气象学报201573( 3): 471- 480.
114 GERMANN U, ZAWADZKI I. Scale dependence of the predictability of precipitation from continental radar images. part II: probability forecasts[J]. Journal of Applied Meteorology200443( 1): 74- 89.
115 CHEN X L, WANG M J, WANG S X, et al. Weather radar nowcasting for extreme precipitation prediction based on the temporal and spatial generative adversarial network[J]. Atmosphere202213( 8). DOI: 10.3390/atmos13081291 .
116 SCHMIDHUBER J. Deep learning in neural networks: an overview[J]. Neural Networks201561: 85- 117.
117 SHI X J, GAO Z H, LAUSEN L, et al. Deep learning for precipitation nowcasting: a benchmark and a new model[C]// Proceedings of the 31st international conference on neural information processing systems. Long Beach: Curran Associates Inc., 2017: 5 622-5 632.
118 ZHOU Kanghui, ZHENG Yongguang, HAN Lei, et al. Advances in application of machine learning to severe convective weather monitoring and forecasting[J]. Meteorological Monthly202147( 3): 274- 289.
周康辉, 郑永光, 韩雷, 等. 机器学习在强对流监测预报中的应用进展[J]. 气象202147( 3): 274- 289.
119 CAO Weihua, Gangqiang NAN, CHEN Mingxuan, et al. A study on fine scale precipitation nowcasting in Beijing-Tianjin-Hebei region based on deep learning[J]. Acta Meteorologica Sinica202280( 4): 546- 564.
曹伟华, 南刚强, 陈明轩, 等. 基于深度学习的京津冀地区精细尺度降水临近预报研究[J]. 气象学报202280( 4): 546- 564.
120 LIU J, XU L, CHEN N C. A spatiotemporal deep learning model ST-LSTM-SA for hourly rainfall forecasting using radar echo images[J]. Journal of Hydrology2022, 609. DOI: 10.1016/j.jhydrol.2022.127748 .
121 SHI X J, CHEN Z R, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]// Proceedings of the 28th international conference on neural information processing systems. Montreal: MIT Press, 2015: 802- 810.
122 WANG Y B, LONG M S, WANG J M, et al. PredRNN[C]// Proceedings of the 31st international conference on neural information processing systems. Long Beach, California, USA: ACM, 2017: 879- 888.
123 WANG Y B, GAO Z F, LONG M S, et al. PredRNN++: towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning[EB/OL]. 2018. [ 2024-09-15]. .
124 BOUGET V, BÉRÉZIAT D, BRAJARD J, et al. Fusion of rain radar images and wind forecasts in a deep learning model applied to rain nowcasting[J]. Remote Sensing202113( 2). DOI: 10.3390/rs13020246 .
125 AYZEL G, SCHEFFER T, HEISTERMANN M. RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting[J]. Geoscientific Model Development202013( 6): 2 631- 2 644.
126 ROSENFELD D, ULBRICH C W. Cloud microphysical properties, processes, and rainfall estimation opportunities[J]. Meteorological Monographs200330( 52). DOI: 10.1175/0065-9401(2003)030<0237:CMPPAR>2.0.CO;2 .
127 ZHANG F H, WANG X D, GUAN J P, et al. RN-net: a deep learning approach to 0-2 hour rainfall nowcasting based on radar and automatic weather station data[J]. Sensors202121( 6). DOI: 10.3390/s21061981 .
128 CASERI A N, LIMA S L B, STEPHANY S. A convolutional recurrent neural network for strong convective rainfall nowcasting using weather radar data in Southeastern Brazil[J]. Artificial Intelligence in Geosciences20223: 8- 13.
129 OH S G, SON S W, KIM Y H, et al. Deep learning model for heavy rainfall nowcasting in South Korea[J]. Weather and Climate Extremes2024, 44. DOI: 10.1016/j.wace.2024.100652 .
130 ZHANG Y C, LONG M S, CHEN K Y, et al. Skilful nowcasting of extreme precipitation with NowcastNet[J]. Nature2023619( 7 970): 526- 532.
131 RITVANEN J, HARNIST B, ALDANA M, et al. Advection-free convolutional neural network for convective rainfall nowcasting[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing202316: 1 654- 1 667.
132 KIM W, JEONG C H, KIM S. Improvements in deep learning-based precipitation nowcasting using major atmospheric factors with radar rain rate[J]. Computers & Geosciences2024, 184. DOI: 10.1016/j.cageo.2024.10552 .
133 ZHUANG Xiaoran, ZHENG Yu, WANG Yaqiang, et al. A deep learning-based precipitation nowcast model and its application over East China[J]. Acta Meteorologica Sinica202381( 2): 286- 303.
庄潇然, 郑玉, 王亚强, 等. 基于深度学习的融合降水临近预报方法及其在中国东部地区的应用研究[J]. 气象学报202381( 2): 286- 303.
134 YANG Lu, CHEN Min, CHEN Mingxuan, et al. Fusion of 3D high temporal and spatial resolution wind field and its application in nowcasting of severe convective weather[J]. Acta Meteorologica Sinica201977( 2): 243- 255.
杨璐, 陈敏, 陈明轩, 等. 高时空分辨率三维风场在强对流天气临近预报中的融合应用研究[J]. 气象学报201977( 2): 243- 255.
135 ZHANG Hanbin, LI Yuhuan, CHEN Min, et al. Implementation of hybrid en-3DVAR assimilation scheme in rapid cycling assimilation system[J]. Chinese Journal of Atmospheric Sciences202044( 6): 1 349- 1 363.
张涵斌, 李玉焕, 陈敏, 等. 集合变分混合同化方案在快速循环同化系统中的应用研究[J]. 大气科学202044( 6): 1 349- 1 363.
136 CUI Chunguang, DU Muyun, XIAO Yanjiao, et al. Study on data assimilation and approaching forecast of severe convective weather[J]. Meteorological Monthly202147( 8): 901- 918.
崔春光, 杜牧云, 肖艳姣, 等. 强对流天气资料同化和临近预报技术研究[J]. 气象202147( 8): 901- 918.
137 SUN J Z, ZHANG Y, BAN J M, et al. Impact of combined assimilation of radar and rainfall data on short-term heavy rainfall prediction: a case study[J]. Monthly Weather Review2020148( 5): 2 211- 2 232.
138 PRICE I, SANCHEZ-GONZALEZ A, ALET F, et al. Probabilistic weather forecasting with machine learning[J]. Nature2025637( 8 044): 84- 90.
139 XIAHOU Jie, XIAO An, NIE Daoyang. Observation based deep learning model for short-duration heavy rain nowcasting[J]. Plateau Meteorology202342( 4): 1 005- 1 017.
夏侯杰, 肖安, 聂道洋. 基于观测的短时强降水深度学习预报模型[J]. 高原气象202342( 4): 1 005- 1 017.
[1] 黄婉彬,鄢春华,张晓楠,邱国玉. 城市化对地下水水量、水质与水热变化的影响及其对策分析[J]. 地球科学进展, 2020, 35(5): 497-512.
[2] 陈亮, 段建平, 马柱国. 大气环流形势客观分型及其与中国降水的联系[J]. 地球科学进展, 2018, 33(4): 396-403.
[3] 吴曼. 海水中过氧化氢的研究进展[J]. 地球科学进展, 2014, 29(7): 765-773.
[4] 朱亚乔,刘元波. 地面雨滴谱观测技术及特征研究进展[J]. 地球科学进展, 2013, 28(6): 685-694.
[5] 吴巧燕. “海洋混合层日变化的分布和成因研究”研究成果介绍[J]. 地球科学进展, 2013, 28(10): 1175-1176.
[6] 薛羽君,白爱娟,李 典. 四川盆地降水日变化特征分析和个例模拟[J]. 地球科学进展, 2012, 27(8): 885-894.
[7] 余珊珊,辛晓洲,柳钦火. 大气下行长波辐射参数化模型的比较[J]. 地球科学进展, 2011, 26(7): 751-762.
[8] 孙维君,秦翔,徐跃通,吴秀平,刘宇硕,任贾文. 祁连山老虎沟12号冰川辐射各分量年变化特征[J]. 地球科学进展, 2011, 26(3): 347-354.
[9] 刘新,刘晓汝,马耀明,李伟平. 喜马拉雅北部地区春季大气特征及日变化分析[J]. 地球科学进展, 2010, 25(8): 836-843.
[10] 陈泮勤,程邦波,王芳,曲建升. 全球气候变化的几个关键问题辨析[J]. 地球科学进展, 2010, 25(1): 69-75.
[11] 黄安宁,张耀存,朱坚. 物理过程参数化方案对中国夏季降水日变化模拟的影响[J]. 地球科学进展, 2008, 23(11): 1174-1184.
[12] 施斌,刘春,王宝军,赵理政. 城市热岛效应对土的工程性质影响及灾害效应分析[J]. 地球科学进展, 2008, 23(11): 1167-1173.
[13] 任国玉. 气候变暖成因研究的历史、现状和不确定性[J]. 地球科学进展, 2008, 23(10): 1084-1091.
[14] 刘新,吴国雄,李伟平. 夏季青藏高原加热和环流场的日变化[J]. 地球科学进展, 2006, 21(12): 1273-1282.
[15] 陈德章;王明星. 稻田CH4排放和土壤、大气条件的关系[J]. 地球科学进展, 1993, 8(5): 37-46.
阅读次数
全文


摘要