地球科学进展 ›› 2024, Vol. 39 ›› Issue (12): 1299 -1310. doi: 10.11867/j.issn.1001-8166.2024.095

研究论文 上一篇    下一篇

19792022年三江源地区大气冻融指数时空变化特征分析
倪杰1,2(), 吴通华2(), 张雪1, 朱小凡2, 陈杰2, 杜宜臻1   
  1. 1.枣庄学院 旅游与资源环境学院,山东 枣庄 277000
    2.中国科学院西北生态环境资源研究院 冰冻圈科学与冻土工程重点实验室 青海藏北高原冰冻圈特殊环境与灾害 国家野外科学观测研究站,甘肃 兰州 730000
  • 收稿日期:2024-10-13 修回日期:2024-11-28 出版日期:2024-12-10
  • 通讯作者: 吴通华 E-mail:nijie8960@163.com;thuawu@lzb.ac.cn
  • 基金资助:
    中国科学院“西部之光”交叉团队项目—重点实验室合作研究专项(xbzg-zdsys-202304);甘肃省科技重大专项(22ZD6FA005)

Variation Characteristics of Air Freezing and Thawing Indices in the Three Rivers Source Region from 1979 to 2022

Jie NI1,2(), Tonghua WU2(), Xue ZHANG1, Xiaofan ZHU2, Jie CHEN2, Yizhen DU1   

  1. 1.College of Tourism and Resources Environment, Zaozhuang University, Zaozhuang Shandong 277000, China
    2.Cryosphere Research Station on the Qinghai-Tibet Plateau, Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2024-10-13 Revised:2024-11-28 Online:2024-12-10 Published:2025-02-28
  • Contact: Tonghua WU E-mail:nijie8960@163.com;thuawu@lzb.ac.cn
  • About author:NI Jie, research areas include climate change and permafrost environments. E-mail: nijie8960@163.com
  • Supported by:
    the “Western Light” Interdisciplinary Team Project of the Chinese Academy of Sciences(xbzg-zdsys-202304);The Science and Technology Program of Gansu Province(22ZD6FA005)

三江源地区是我国重要的水源涵养地与生态保护区,揭示其冻融指数特征变化可为当地多年冻土环境评估以及应对气候变化提供科学依据。利用第三极地区地面气象要素驱动数据集TPMFD的逐日气温数据,通过大气冻融指数等方法分析了该地区1979—2022年大气冻融指数的时空变化特征。结果表明,近44年三江源地区大气冻结指数平均为1 930.23 ℃·d,在空间上呈现自西向东逐渐降低的特征;融化指数表现出相反的空间格局,平均值为879.25 ℃·d。总体来看,近44年三江源地区大气冻结指数以-10.01 ℃·d/a的速率呈波动减少趋势,且在2001年发生突变;融化指数以6.29 ℃·d/a的速度呈波动上升趋势,没有发生显著的突变。海拔作为关键影响因子,对三江源地区冻融指数表现出显著的相关性,海拔每升高100 m,研究区融化指数约减少87 ℃·d,冻结指数约增加107 ℃·d。

The Three Rivers Source Region (TRSR) is an important water source and ecological reserve in China, and analyzing the variation characteristics of its freeze-thaw index provides a scientific basis for assessing the local permafrost environment and its response to climate change. In this study, the temporal and spatial characteristics of the air freezing and thawing indices in the TRSR from 1979 to 2022 were analyzed using daily air temperature data from a high-resolution near-surface meteorological forcing dataset for the Third Pole region, applying the air freezing and thawing index and other methods. The results show that the mean freezing index in the TRSR over the past 44 years was 1 930.23 °C·d, exhibiting a spatial pattern of gradual decrease from west to east. By contrast, the thawing index displayed an opposite spatial pattern with an average value of 879.25 °C·d. Overall, the freezing index in the TRSR has shown a fluctuating downward trend at a rate of -10.01 °C·d/a over the past 44 years, with an abrupt change in 2001, whereas the thawing index has exhibited a fluctuating upward trend at a rate of 6.29 °C·d/a, with no significant abrupt change. Altitude, a key factor influencing freezing and thawing indices in the TRSR, showed significant correlations. For every 100 m increase in altitude, the thawing index decreased by approximately 87 °C·d, whereas the freezing index increased by approximately 107 °C·d.

中图分类号: 

图1 三江源地理位置及气象站点分布图
Fig. 1 The location of the Three Rivers Source RegionTRSRand the distribution of meteorological station
表1 三江源地区国家气象站信息
Table 1 Information of national meteorological stations in the Three Rivers Source Region
图2 TPMFD逐月气温与国家气象站数据的对比验证
Fig. 2 Comparison and verification of monthly air temperature between TPMFD and the meteorological stations
图3 19792022年三江源地区平均冻融指数空间分布图
Fig. 3 Spatial pattern of air freezing and thawing indices in the Three Rivers Source Region during 1979-2022
表2 三江源地区各源区空气冻融指数关键指标 (℃·d)
Table 2 The key indicators of air freezing and thawing indices in each source region of the Three Rivers Source Region
图4 三江源地区多年平均大气冻融指数变化趋势的空间分布图
Fig. 4 Spatial distribution of the variation trend of annual average air freezing and thawing indices in the Three Rivers Source Region
表3 三江源各源区大气冻融指数变化趋势关键指标
Table 3 The key indicators of the change trend of air freezing and thawing indices in each source region of the Three Rivers Source Region
图5 三江源地区19792022年冻融指数年际变化特征
Fig. 5 Interannual variation of air freezing and thawing indices in the Three Rivers Source Region during 1979-2022
图6 三江源地区19792022年大气冻融指数Mann-Kendall突变检验图
Fig. 6 Mann-Kendall abrupt change test of air freezing and thawing indices in the Three Rivers Source Region during 1979-2022
表4 不同地区大气冻融指数的变化率对比
Table 4 Comparison of the change rate of air freezing and thawing indices in different regions
图7 三江源地区大气冻融指数与海拔的关系
Fig. 7 Relationship between air freezing/thawing indices and altitude in the Three Rivers Source Region
图8 三江源地区活动层厚度与大气冻融指数的相关关系
Fig. 8 The correlations between active layer thickness and air freezing/thawing indices in the Three Rivers Source Region
1 CHENG Guodong, WANG Shaoling. On the zonation of high-altitude permafrost in China[J]. Journal of Glaciology and Geocryology19824(2): 1-17.
程国栋, 王绍令. 试论中国高海拔多年冻土带的划分[J]. 冰川冻土19824(2): 1-17.
2 ZHOU Youwu, GUO Dongxin, QIU Guoqing, et al. Frozen soil in China[M]. Beijing: Science Press, 2000.
周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000.
3 CHENG Guodong, ZHAO Lin, LI Ren, et al. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau[J]. Chinese Science Bulletin201964(27): 2 783-2 795.
程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征、变化及影响[J]. 科学通报201964(27): 2 783-2 795.
4 CHEN Chunyang, TAO Zexing, WANG Huanjiong, et al. Ecosystem service assessment of grasslands in the Sanjiangyuan Region[J]. Progress in Geography201231(7): 978-984.
陈春阳, 陶泽兴, 王焕炯, 等. 三江源地区草地生态系统服务价值评估[J]. 地理科学进展201231(7): 978-984.
5 FENG Xiaoli, LI Hongmei, LUO Siqiong, et al. Freeze-thaw characteristics of seasonally frozen ground in the Three River Source Region from 1961 to 2020[J]. Plateau Meteorology202241(2): 295-305.
冯晓莉, 李红梅, 罗斯琼, 等. 1961—2020年三江源地区季节性冻土冻融特征分析[J]. 高原气象202241(2): 295-305.
6 LUO Siqiong, LI Hongmei, MA Di, et al. Review and prospects of frozen soil-vegetation interaction and climate effects in the Three Rivers Source Region[J]. Plateau Meteorology202241(2): 255-267.
罗斯琼, 李红梅, 马迪, 等. 三江源冻土—植被相互作用及气候效应研究现状及展望[J]. 高原气象202241(2): 255-267.
7 LI Ren, ZHAO Lin, DING Yongjian, et al. Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region[J]. Chinese Science Bulletin201257(30): 2 864-2 871.
李韧, 赵林, 丁永建, 等. 青藏公路沿线多年冻土区活动层动态变化及区域差异特征[J]. 科学通报201257(30): 2 864-2 871.
8 NI J, WU T H, ZHU X F, et al. Simulation of the present and future projection of permafrost on the Qinghai-Tibet Plateau with statistical and machine learning models[J]. Journal of Geophysical Research: Atmospheres2021126(2). DOI:10.1029/2020JD033402 .
9 LI Wanzhi, MA Hailing, PANG Xinwei, et al. Study on the characteristics of freezing and thawing of the seasonally frozen ground in the Three-River Source Region of Qinghai under warming climate[J]. Journal of Glaciology and Geocryology202345(4): 1 233-1 241.
李万志, 马海玲, 庞昕玮, 等. 气候变暖背景下青海三江源区季节冻土冻融特征研究[J]. 冰川冻土202345(4): 1 233-1 241.
10 TANG Yunqi, WANG Lingxiao, ZHAO Lin, et al. Changes of lakes and ponds in the Three Rivers Source Region and their links to permafrost[J]. Progress in Geography202443(7): 1 441-1 455.
汤芸淇, 汪凌霄, 赵林, 等. 三江源地区湖塘变化及其与多年冻土联系[J]. 地理科学进展202443(7): 1 441-1 455.
11 BAI Xiaolan, WEI Jiahua, XIE Hongwei. Characteristics of wetness/dryness variation and their influences in the Three-River headwaters region[J]. Acta Ecologica Sinica201737(24): 8 397-8 410.
白晓兰, 魏加华, 解宏伟. 三江源区干湿变化特征及其影响[J]. 生态学报201737(24): 8 397-8 410.
12 LOU P Q, WU T H, YIN G A, et al. A novel framework for multiple thermokarst hazards risk assessment and controlling environmental factors analysis on the Qinghai-Tibet Plateau[J]. CATENA2024, 246. DOI:10.1016/j.catena.2024.108367 .
13 ZHANG T J, FRAUENFELD O W, SERREZE M C, et al. Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin[J]. Journal of Geophysical Research: Atmospheres2005110(D16). DOI:10.1029/2004JD005642 .
14 QIN Yanhui, WU Tonghua, LI Ren, et al. The applicability of ERA-Interim land surface temperature dataset to map the permafrost distribution over the Tibetan Plateau[J]. Journal of Glaciology and Geocryology201537(6): 1 534-1 543.
秦艳慧, 吴通华, 李韧, 等. ERA-Interim地表温度数据集在青藏高原冻土分布制图应用的适用性评估[J]. 冰川冻土201537(6): 1 534-1 543.
15 WANG Bingquan, RAN Youhua. Decadal dataset of the seasonal maximum freezing depth with 1 km resolution from 1961 to 2020 in northwest China, Tibet and surrounding area[J]. Advances in Earth Science202136(11): 1 137-1 145.
王冰泉, 冉有华. 中国西北、西藏和周边地区1961—2020年每十年1 km季节冻土最大冻结深度数据集[J]. 地球科学进展202136(11): 1 137-1 145.
16 WU T H, ZHU X F, WANG P L, et al. Climate warming in the Qinghai-Tibet Plateau and Mongolia as indicated by air freezing and thawing indices[J]. Ecological Indicators2022, 138. DOI:10.1016/j.ecolind.2022.108836 .
17 ZHANG Zhichao, YOU Zhilang, XU Jian, et al. Temporal and spatial variation characteristics of air freezing and thawing index along the Moscow-Kazan high-speed railway[J/OL]. Journal of Changsha University of Science & Technology (Natural Science)2025: 1-12. DOI:10.19951/j.cnki.1672-9331.2023122900 .
张志超, 游志浪, 许健, 等, 2024. 莫斯科—喀山高速铁路沿线大气冻融指数时空变化特征[J/OL]. 长沙理工大学学报(自然科学版), 2025: 1-12. DOI:10.19951/j.cnki.1672-9331.2023122900 .
18 ZHAO L, ZOU D F, HU G J, et al. Changing climate and the permafrost environment on the Qinghai-Tibet (Xizang) Plateau[J]. Permafrost and Periglacial Processes202031(3): 396-405.
19 ZHAO Xinquan, ZHOU Huakun. Eco-environmental degradation vegetation regeneration and sustainable development in the headwaters of Three Rivers on Tibetan Plateau[J]. Bulletin of Chinese Academy of Sciences200520(6): 471-476.
赵新全, 周华坤. 三江源区生态环境退化、恢复治理及其可持续发展[J]. 中国科学院院刊200520(6): 471-476.
20 MENG Xianhong, CHEN Hao, LI Zhaoguo, et al. Review of climate change and its environmental influence on the Three-River Regions[J]. Plateau Meteorology202039(6): 1 133-1 143.
孟宪红, 陈昊, 李照国, 等. 三江源区气候变化及其环境影响研究综述[J]. 高原气象202039(6): 1 133-1 143.
21 XU Xiaoming, WU Qingbai. Research on the variation characteristics of active layer thickness of permafrost in the Three River Source Region[J]. Journal of Glaciology and Geocryology202446(5): 1 579-1 593.
徐晓明, 吴青柏. 三江源多年冻土活动层厚度变化特征研究[J]. 冰川冻土202446(5): 1 579-1 593.
22 GUO Yang, ZHANG Tingjun, CAO Lin, et al. Relationship between surface freezing/thawing index and runoff in upper reaches of Heihe River[J]. Bulletin of Soil and Water Conservation201838(3): 222-227.
郭阳, 张廷军, 曹琳, 等. 黑河上游地表冻融指数与径流关系[J]. 水土保持通报201838(3): 222-227.
23 LIU Lei, LUO Dongliang. Spatial and temporal characteristics of air/ground freezing and thawing index in the middle and lower reaches of the Yarlung Zangbo River during 1977-2017[J]. Journal of Glaciology and Geocryology202042(3): 812-822.
刘磊, 罗栋梁. 1977—2017年雅江流域中下游大气/地面冻融指数时空变化特征[J]. 冰川冻土202042(3): 812-822.
24 LIAO Ying, FAN Jihui, LI Yiying, et al. Spatiotemporal variations in freezing and thawing indices on the Tibetan Plateau during 1978-2017[J]. Pratacultural Science202138(6): 1 035-1 046.
廖莹, 范继辉, 李怡颖, 等. 1978—2017年西藏高原冻融指数时空变化特征[J]. 草业科学202138(6): 1 035-1 046.
25 CHEN Fangfang, LUO Dongliang, LIU Lei, et al. Variations of air freezing/thawing index during 1901-2018 in the Three-River Source Region[J]. Journal of Glaciology and Geocryology202143(2): 417-426.
陈方方, 罗栋梁, 刘磊, 等. 1901—2018年三江源地区大气冻融指数变化特征[J]. 冰川冻土202143(2): 417-426.
26 SHI Y Y, NIU F J, LIN Z J, et al. Freezing/thawing index variations over the circum-Arctic from 1901 to 2015 and the permafrost extent[J]. Science of the Total Environment2019660: 1 294-1 305.
27 CHEN Cong, PENG Xiaoqing, LI Xuanjia, et al. Study on the change of global air freezing/thawing index based on observations[J]. Journal of Glaciology and Geocryology202345(2): 509-520.
陈聪, 彭小清, 李璇佳, 等. 基于观测数据的全球大气冻融指数变化研究[J]. 冰川冻土202345(2): 509-520.
28 RAN Youhua. Permafrost stability type map for Sanjiangyuan in 2010s[DB]. National Tibetan Plateau/Third Pole Environment Data Center2019.
冉有华. 2010年代三江源多年冻土稳定型分布图[DB]. 国家青藏高原数据中心/时空三极环境大数据平台2019.
29 YANG Kun, JIANG Yaozhi, TANG Wenjun, et al. A high-resolution near-surface meteorological forcing dataset for the Third Pole region (TPMFD, 1979-2022)[DB]. National Tibetan Plateau/Third Pole Environment Data Center2023.
阳坤, 姜尧志, 唐文君, 等. 第三极地区长时间序列高分辨率地面气象要素驱动数据集(TPMFD, 1979-2022)[DB]. 国家青藏高原数据中心/时空三极环境大数据平台2023.
30 JIANG Y Z, YANG K, QI Y C, et al. TPHiPr: a long-term (1979-2020) high-accuracy precipitation dataset (1/30°, daily) for the Third Pole region based on high-resolution atmospheric modeling and dense observations[J]. Earth System Science Data202315(2): 621-638.
31 Anfeng OU, KE Xianmin, LIANG Chengcheng, et al. Spatial and temporal characteristics of freezing and thawing index in the Qilian Mountains from 1961 to 2014[J]. Journal of Glaciology and Geocryology202345(1): 153-164.
欧安锋, 柯贤敏, 梁成成, 等. 祁连山区1961—2014年冻融指数时空变化特征[J]. 冰川冻土202345(1): 153-164.
32 SUO Langtajie, DU Jun, TSEWANG Thondup, et al. Spatial and temporal characteristics of freezing and thawing index in Changtang nature reserve under the background of climate warming[J]. Plateau and Mountain Meteorology Research202141(4): 48-55.
索朗塔杰, 杜军, 次旺顿珠, 等. 气候变暖背景下羌塘自然保护区年冻融指数的变化特征[J]. 高原山地气象研究202141(4): 48-55.
33 WU T H, QIN Y H, WU X D, et al. Spatiotemporal changes of freezing/thawing indices and their response to recent climate change on the Qinghai-Tibet Plateau from 1980 to 2013[J]. Theoretical and Applied Climatology2018132(3): 1 187-1 199.
34 CAO Bin, ZHANG Tingjun, PENG Xiaoqing, et al. Spatial variability of freezing-thawing index over the Heihe River Basin[J]. Advances in Earth Science201530(3): 357-366.
曹斌, 张廷军, 彭小清, 等. 黑河流域年冻融指数及其时空变化特征分析[J]. 地球科学进展201530(3): 357-366.
35 ZOU D F, ZHAO L, SHENG Y, et al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere201711(6): 2 527-2 542.
36 NI J, WU T H, ZHU X F, et al. Risk assessment of potential thaw settlement hazard in the permafrost regions of Qinghai-Tibet Plateau[J]. Science of the Total Environment2021, 776. DOI:10.1016/j.scitotenv.2021.145855 .
37 LI Hongmei, YAN Liangdong, WEN Tingting, et al. Characteristics of climate change and its impact assessment in the Three-River Regions[J]. Plateau Meteorology202241(2): 306-316.
李红梅, 颜亮东, 温婷婷, 等. 三江源地区气候变化特征及其影响评估[J]. 高原气象202241(2): 306-316.
38 ZHU X F, WU T H, CHEN J, et al. Summer heat wave in 2022 led to rapid warming of permafrost in the central Qinghai-Tibet Plateau[J]. NPJ Climate and Atmospheric Science2024, 7. DOI:10.1038/s41612-024-00765-4 .
[1] 袁星, 周诗玙, 马凤, 王钰淼, 郝奕, 梁妙玲, 陈李楠. 气候和下垫面变化下骤旱形成演变机制研究进展[J]. 地球科学进展, 2024, 39(9): 877-888.
[2] 魏泽勋, 徐腾飞, 方越, 王晶, 秦秉斌, 胡石建, 李颖, 聂珣炜, 张志祥, 李志, 曹智勇, 马强. 热带太平洋—印度洋洋际交换及其气候效应的观测研究[J]. 地球科学进展, 2024, 39(8): 788-800.
[3] 刘锦波, 张勇, 刘时银, 王欣, 蒋宗立. 青藏高原及周边石冰川识别、冰储量及动力学过程研究进展[J]. 地球科学进展, 2024, 39(4): 391-404.
[4] 兰措. 气候变化背景下陆面模式研究进展及不足[J]. 地球科学进展, 2024, 39(1): 46-55.
[5] 丁一汇, 柳艳菊, 徐影, 吴萍, 薛童, 汪靖, 石英, 张颖娴, 宋亚芳, 王朋岭. 全球气候变化的区域响应:中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望[J]. 地球科学进展, 2023, 38(6): 551-562.
[6] 许茜, 效存德, 冯雅茹, 杜志恒, 王磊, 魏志强. 微生物介导的热融湖碳循环关键过程研究进展[J]. 地球科学进展, 2023, 38(5): 470-482.
[7] 李耀辉, 于敬磊, 谷娟, 桑文军, 靳晓琳, 黄玉. 民航飞行CO2 排放及其对气候变化影响研究综述[J]. 地球科学进展, 2023, 38(1): 9-16.
[8] 陈小刚, 李凌, 杜金洲. 红树林和盐沼湿地间隙水交换过程及其碳汇潜力[J]. 地球科学进展, 2022, 37(9): 881-898.
[9] 陈亚宁, 李玉朋, 李稚, 刘永昌, 黄文静, 刘西刚, 冯梅青. 全球气候变化对干旱区影响分析[J]. 地球科学进展, 2022, 37(2): 111-119.
[10] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展, 2022, 37(2): 187-201.
[11] 韩林生, 王祎. 全球海洋观测系统展望及对我国的启示[J]. 地球科学进展, 2022, 37(11): 1157-1164.
[12] 李稚, 李玉朋, 李鸿威, 刘永昌, 王川. 中亚地区干旱变化及其影响分析[J]. 地球科学进展, 2022, 37(1): 37-50.
[13] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[14] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[15] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
阅读次数
全文


摘要