地球科学进展 ›› 2024, Vol. 39 ›› Issue (4): 429 -439. doi: 10.11867/j.issn.1001-8166.2024.026

新学科?新技术?新发现 上一篇    

准噶尔盆地莫索湾地区侏罗系超压预测技术研究
吴涛 1( ), 徐泽阳 2 , 3( ), 闫文琦 1, 费李莹 1, 刘荷冲 1, 赵靖舟 2 , 3, 李军 2 , 3, 杜治伟 2 , 3   
  1. 1.中国石油新疆油田公司勘探开发研究院,新疆 克拉玛依 834000
    2.西安石油大学 陕西省油气成藏 地质学重点实验室,陕西 西安 710065
    3.西安石油大学 地球科学与工程学院,陕西 西安 710065
  • 收稿日期:2023-07-11 修回日期:2024-02-25 出版日期:2024-04-10
  • 通讯作者: 徐泽阳 E-mail:wutao33@petrochina.com.cn;xuzeyang@xsyu.edu.cn
  • 基金资助:
    中国石油天然气集团有限公司前瞻性基础性重大科技项目(2021DJ0405)

Research on Prediction Technologies for Overpressure in the Jurassic Strata of the Mosuowan Area, Junggar Basin

Tao WU 1( ), Zeyang XU 2 , 3( ), Wenqi YAN 1, Liying FEI 1, Hechong LIU 1, Jingzhou ZHAO 2 , 3, Jun LI 2 , 3, Zhiwei DU 2 , 3   

  1. 1.Exploration and Development Research Institute of PetroChina Xinjiang Oilfield Company, Karamay Xinjiang 834000, China
    2.Shaanxi Key Laboratory of Petroleum Accumulation Geology, Xi’an Shiyou University, Xi’an 710065, China
    3.College of Earth Sciences & Engineering, Xi’an Shiyou University, Xi’an 710065, China
  • Received:2023-07-11 Revised:2024-02-25 Online:2024-04-10 Published:2024-04-26
  • Contact: Zeyang XU E-mail:wutao33@petrochina.com.cn;xuzeyang@xsyu.edu.cn
  • About author:WU Tao, Professor of engineering, research areas include the reservoir sedimentology and the petrolume geology. E-mail: wutao33@petrochina.com.cn
  • Supported by:
    the Prospective and Fundamental Project of Petro China(2021DJ0405)

准噶尔盆地莫索湾地区侏罗系普遍发育超压,实现高精度压力预测不仅有助于提升该地区成藏认识,还能够确保钻井安全。目前常见的超压预测方法普遍直接或间接受到超压成因的影响,其适用范围各不相同。在地质分析的基础上,结合超压段测井响应特征,认为莫索湾地区侏罗系超压成因以深部压力传导为主、黏土矿物转化为辅,欠压实成因对超压的贡献极其有限。进一步根据相关模型的原理,筛选出3种适用于研究区的压力预测模型,分别为Fillippone模型、趋势回归模型和Bowers模型。结合实际应用效果对比,认为在早期无参考井时,适宜使用Fillippone模型进行随钻压力监测;在有少数参考井时,适宜使用Bowers模型;在勘探程度较高研究超压分布特征时,适宜使用趋势回归模型和Bowers模型。

Overpressure is widespread in the Jurassic strata of the Mosuowan area in the Junggar Basin. Achieving precise pressure prediction with high accuracy is crucial for enhancing reservoir formation understanding and ensuring optimal drilling safety. However, existing pressure prediction methods are generally influenced, either directly or indirectly, by the causes of overpressure, leading to variations in their applicability. This study, based on the geological and logging response characteristics of the overpressured section, postulates that overpressure in the Jurassic strata of the Mosuowan area primarily originates from deep pressure transmission, with supplementary contributions from clay mineral transformation, while undercompaction plays a negligible role. Three pressure prediction models were selected: Fillippone, trend regression, and Bowers models. These models were compared for practical applications.

In conclusion, the Fillippone model is suitable for early-stage pressure monitoring while drilling without reference wells; the Bowers model is recommended when there are limited reference wells available. In the late exploration stage, both trend regression and Bowers models can be utilized to investigate overpressure distribution.

中图分类号: 

图1 准噶尔盆地莫索湾地区综合概况图
(a) 准噶尔盆地构造纲要及研究区位置图;(b)莫索湾地区井位及构造等高图
Fig. 1 Overview of Mossowan areaJunggar Basin
(a) Structural outline of the Junggar Basin and location map of the study area; (b) Well location map and structural contour map of Mosuowan area
图2 莫深1井地层压力剖面及测井响应特征
Fig. 2 Formation pressure profile and log response characteristics of Well MS1
图3 莫索湾地区侏罗系超压段有效应力卸载特征图
(a)超压成因判识模板(据参考文献[ 13 ]改绘);(b)莫索湾地区侏罗系超压段特征
Fig. 3 Effective stress unloading characteristics of Jurassic overpressure segment in the Mosuowan area
(a) Overpressure origin identification template (redrawn according to reference [ 13 ]); (b) Characteristics of Jurassic overpressure segment in the Mosuowan area
图4 莫索湾地区侏罗系砂岩镜下特征
(a)莫北2井,4 257.65 m,J 1b 3,砂岩泥质岩屑及千枚岩岩屑受压变形;(b)莫23井,4 625.85 m;J 1b 3,细砂岩中泥质杂基和岩屑等塑性颗粒受压变形;(c)莫北5井,4 371.52 m,J 1b 1,砂岩粒间孔发育大量丝片状伊利石;(d)莫23井,4 623.11 m,J 1b 3,砂岩粒间孔发育丝片状伊利石
Fig. 4 Microscopic features of Jurassic sandstone in the Mossowan area
(a) Well MB2, 4 257.65 m, J 1b 3, the deformation of argillaceous debris and kilomite debris in sandstone under pressure; (b) Well M23, 4 625.85 m; J 1b 3, the deformation of matrix and debris in fine sandstone under pressure; (c) Well MB5, 4 371.52 m, J 1b 1, a large amount of filiform illite developed in the intergranular pores of the sandstone; (d) Well M23, 4 623.11 m, J 1b 3, the filiform illite developed in the intergranular pores of the sandstone
图5 盆参2vmxp 随深度变化图
Fig. 5 Variation of vmxp with depth in Well PC2
表1 准噶尔盆地莫索湾地区盆参 2井压力预测模型参数
Table 1 Pressure prediction model parameters of Well PC2 in Mosuowan areaJunggar Basin
图6 莫索湾地区典型井压力预测结果对比
Fig. 6 Comparison of pressure prediction results of typical wells in Mosuowan area
表2 莫索湾地区不同模型压力预测精度对比表
Table 2 Comparison of pressure prediction accuracy of different models in Mosuowan area
表3 莫索湾地区常见超压预测模型综合评价表
Table 3 Comprehensive evaluation of common overpressure prediction models in Mosuowan area
图7 莫索湾地区J1b1 顶地层压力平面预测图
Fig. 7 Pressure prediction at the top of J1b1 in the Mosuowan area
14 WUERNISAHAN Maimaitimin, LI Jun, ZHAO Jingzhou, et al. The study of Jurassic overpressure genesis in the Mosuowan Uplift of the Junggar Basin[J/OL]. Natural Gas Geoscience, 2024. [2024-01-26]. .
吾尔妮萨罕·麦麦提敏,李军,赵靖舟,等.准噶尔盆地莫索湾凸起侏罗系超压成因研究[J/OL].天然气地球科学, 2024. [2024-01-26]. .
15 DUTTA N C. Effect of chemical diagenesis on pore pressure in argillaceous sediment[J]. The Leading Edge, 2016, 35(6): 523-527.
16 XU Zeyang, ZHAO Jingzhou, LI Jun. The impact of organic matter content on overpressure analysis and its correction method in the first member of Cretaceous Qingshankou Formation, Placanticline area, Songliao Basin[J]. Oil & Gas Geology, 2019, 40(4): 938-946.
徐泽阳, 赵靖舟, 李军. 松辽盆地长垣地区白垩系青山口组一段有机质含量对超压分析的影响及校正方法[J]. 石油与天然气地质, 2019, 40(4): 938-946.
17 FILLIPPONE W R. Estimation of formation parameters and the prediction of overpressures from seismic data[C]// SEG technical program expanded abstracts 1982. Society of Exploration Geophysicists, 1982: 502-503.
1 SAYERS C M, JOHNSON G M, DENYER G. Predrill pore-pressure prediction using seismic data[J]. Geophysics, 2002, 67(4): 1 286-1 292.
2 FILLIPPONE W R. On the prediction of abnormally pressured sedimentary rocks from seismic data[C]// Offshore technology conference. Houston, Texas: OTC, 1979.
3 HAN D H, NUR A, MORGAN D. Effects of porosity and clay content on wave velocities in sandstones[J]. Geophysics, 1986, 51(11): 2 093-2 107.
4 EBERHART-PHILLIPS D, HAN D H, ZOBACK M D. Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone[J]. Geophysics, 1989, 54(1): 82-89.
5 FAN Honghai, ZHANG Chuanjin. New methods for calculation of pore pressure in complex geologic environment[J]. Petroleum Drilling Techniques, 2005, 33(5): 40-43.
樊洪海, 张传进. 复杂地层地层孔隙压力求取新技术[J]. 石油钻探技术, 2005, 33(5): 40-43.
6 LIU Zhen, ZHANG Wanxuan, ZHANG Houfu, et al. An analysis of abnormal formation pressures of Paleogene in the north sag of Liaoxi depression[J]. Acta Petrolei Sinica, 1993, 14(1): 14-24.
刘震, 张万选, 张厚福, 等. 辽西凹陷北洼下第三系异常地层压力分析[J]. 石油学报, 1993, 14(1): 14-24.
7 MAGARA K. Compaction and fluid migration[M]. Holland: Elsevier, 1978.
8 EATON B A. The effect of overburden stress on geopressure prediction from well logs[J]. Journal of Petroleum Technology, 1972, 24(8): 929-934.
9 BOWERS G L. Pore pressure estimation from velocity data: accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling & Completion, 1995, 10(2): 89-95.
10 WU Haisheng, ZHENG Menglin, HE Wenjun, et al. Formation pressure anomalies and controlling factors in central Juggar Basin[J]. Oil & Gas Geology, 2017, 38(6): 1 135-1 146.
吴海生, 郑孟林, 何文军, 等. 准噶尔盆地腹部地层压力异常特征与控制因素[J]. 石油与天然气地质, 2017, 38(6): 1 135-1 146.
11 WU Tao, WANG Bin, FEI Liying, et al. Origin and distribution law of condensate gas reservoirs in Junggar Basin[J]. Acta Petrolei Sinica, 2021, 42(12): 1 640-1 653.
吴涛, 王彬, 费李莹, 等. 准噶尔盆地凝析气藏成因与分布规律[J]. 石油学报, 2021, 42(12): 1 640-1 653.
12 TANG Yong, SONG Yong, HE Wenjun, et al. Characteristics of composite hydrocarbon accumulation in a superimposed basin, Junggar Basin[J]. Oil & Gas Geology, 2022, 43(1): 132-148.
唐勇, 宋永, 何文军, 等. 准噶尔叠合盆地复式油气成藏规律[J]. 石油与天然气地质, 2022, 43(1): 132-148.
13 ZHAO Jingzhou, LI Jun, XU Zeyang. Advances in the origin of overpressures in sedimentary basins[J]. Acta Petrolei Sinica, 2017, 38(9): 973-998.
赵靖舟, 李军, 徐泽阳. 沉积盆地超压成因研究进展[J]. 石油学报, 2017, 38(9): 973-998.
[1] 康逊, 胡瑞璞, 胡文瑄, 谭静强. 准噶尔盆地下三叠统百口泉组烃类热氧化的氧化性物质研究[J]. 地球科学进展, 2021, 36(10): 1004-1014.
[2] 孙运宝, 赵铁虎, 秦柯. 南海北部白云凹陷沉积压实作用对浅水流超压演化影响数值模拟[J]. 地球科学进展, 2014, 29(9): 1055-1064.
阅读次数
全文


摘要