地球科学进展 ›› 2024, Vol. 39 ›› Issue (6): 647 -658. doi: 10.11867/j.issn.1001-8166.2024.047

研究简报 上一篇    

莱州湾南岸陆海交互地层间隙水有色溶解有机物的光谱特征研究
祝唐刘 1( ), 刘智丹 1, 邹立 1( ), 钟希煌 2, 奚嘉鸿 2, 江雪艳 2   
  1. 1.中国海洋大学,海洋环境与生态教育部重点实验室,山东 青岛 266100
    2.中国海洋大学,海洋化学理论与工程技术教育部重点实验室,山东 青岛 266100
  • 收稿日期:2024-02-21 修回日期:2024-05-03 出版日期:2024-06-10
  • 通讯作者: 邹立 E-mail:ztl3377@stu.ouc.edu.cn;zouli@ouc.edu.cn
  • 基金资助:
    国家重点研发计划项目(2022YFC2803803);国家自然科学基金项目(41876077)

Spectral Characterization of Chromophoric Dissolved Organic Matter in the Interstitial Water of Land-sea Interaction Strata Along the South Coast of Laizhou Bay

Tangliu ZHU 1( ), Zhidan LIU 1, Li ZOU 1( ), Xihuang ZHONG 2, Jiahong XI 2, Xueyan JIANG 2   

  1. 1.Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
    2.Key Laboratory of Marine Chemistry Theory and Engineering Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
  • Received:2024-02-21 Revised:2024-05-03 Online:2024-06-10 Published:2024-07-15
  • Contact: Li ZOU E-mail:ztl3377@stu.ouc.edu.cn;zouli@ouc.edu.cn
  • About author:ZHU Tangliu, Master student, research area includes marine environmental chemistry. E-mail: ztl3377@stu.ouc.edu.cn
  • Supported by:
    the National Key Research and Development Program of China(2022YFC2803803);The National Natural Science Foundation of China(41876077)

陆海交互区较高的固碳效率和较大的固碳潜力是在自然条件下长期解决气候变化和实现“碳达峰”“碳中和”的重要方案。为揭示莱州湾南岸陆海交互层中溶解有机物的来源和赋存形式,丰富对陆海交互区的碳源和碳汇的认识,于2021年11~12月采集钻孔岩心间隙水,分析其有色溶解有机物的紫外可见吸收光谱和三维荧光光谱。分析结果表明,溶解有机碳与a(320)均呈现出第二次海侵后变化大、浓度高的特征,陆相间隙水溶解有机物组成和性质差别大于海相间隙水。经平行因子分析法鉴别和OpenFlour匹配的5种荧光组分中,除底层外,类腐殖质组分贡献为总荧光强度的77%。荧光指数和自生源指数表明岩心间隙水有色溶解有机物由微生物再生产活动贡献为主,埋藏越久,微生物贡献越为显著,陆相层和海相层没有明显差别。主成分分析结果表明,不同沉积阶段溶解有机物组成存在一定差别,但随着沉积过程的发生,间隙水溶解有机物组成和性质逐渐趋同。长时间尺度下腐殖质高度成熟。

High sequestration efficiency and strong sequestration potential of land-sea interaction regions are important nature-based long-term solutions to climate change and the achievement of “carbon peak” and “carbon neutrality”. To reveal the sources and forms of Dissolved Organic Matter (DOM) in the land-sea interaction stratigraphy along the south coast of Laizhou Bay and enrich the understanding of carbon sources and sinks in the land-sea interaction region, interstitial water from a drill core was collected from November to December 2021 and analyzed for ultraviolet (UV-) visible absorption spectra and three-dimensional fluorescence spectral signatures of Chromophoric Dissolved Organic Matter (CDOM). The analyses showed that dissolved organic carbon and a(320) were both characterized by large and high concentrations after the second transgression. The differences in the DOM composition and properties of terrestrial-phase interstitial water were greater than those of marine-phase interstitial water. Excluding the bottom stratum, of the five fluorescence components identified by parallel factor analysis and matched using OpenFlour, humus-like components contributed 77% of the total fluorescence intensity. The fluorescence and biogenic indices showed that the core interstitial water chromophoric dissolved organic matter was dominated by the contribution of microbial reproduction activities; the longer the burial was, the more significant the microbial contribution, and there was no significant difference between the terrestrial and marine phases. The results of principal component analysis show that the compositions exhibit several differences in different sedimentary stages, but the composition and properties of the interstitial water DOM gradually converge as the sedimentary process occurs. Humus matures over long timescales.

中图分类号: 

图1 莱州湾YK21钻孔位置及地层柱状简图
红色五角星为本文中的钻孔,红色空心圆为参考钻孔;地层柱的颜色代表各分层岩心沉积物的颜色;M和T分别表示海相层和陆相层,序号表示由浅到深的层序
Fig. 1 Location of drilling core YK21 and stratigraphic column sketch map in Laizhou Bay
Red pentagram and red hollow circles represent the sampling drilling cores of this study and reference studies, separately; The colors of the stratigraphic column represent the colors of the stratified core sediments; M and T denote marine and terrestrial strata, respectively, and the number denotes the sequence of strata from shallow to deep
表1 有色溶解有机物( CDOM)荧光光谱参数定义及指示意义
Table 1 Definition and indicative significance of Chromophoric Dissolved Organic MatterCDOMfluorescence spectrum parameters
图2 莱州湾YK21钻孔岩心间隙水主要理化参数的垂直变化
(a)pH;(b)盐度;(c)磷酸盐;(d)亚硝酸盐;(e)硝酸盐;(f)氨氮;地层柱的颜色代表各分层岩心沉积物的颜色;M和T分别表示海相层和陆相层,序号表示由浅到深的层序
Fig. 2 Vertical variations of physicochemical parameters in the interstitial water of drilling core YK21 in Laizhou Bay
(a) pH; (b) Salinity; (c) PO 4 3 - -P; (d) NO 2 - -N; (e) NO 3 - -N; (f) NH 4 + -N; The colors of the stratigraphic column represent the colors of the stratified core sediments; M and T denote marine and terrestrial strata, respectively, and the number denotes the sequence of strata from shallow to deep
图3 莱州湾YK21钻孔岩心间隙水溶解有机碳(DOC)、有色溶解有机物(CDOM)丰度和光谱斜率垂直分布
(a)溶解有机碳(DOC);(b)吸光系数;(c)光谱斜率;地层柱的颜色代表各分层岩心沉积物的颜色;M和T分别表示海相层和陆相层,序号表示由浅到深的层序
Fig. 3 Vertical distributions of Dissolved Organic CarbonDOC), Chromophoric Dissolved Organic MatterCDOMabundance and spectrum slope in the interstitial water of drilling core YK21 in Laizhou Bay
(a) DOC; (b) a(320); (c) S 275~295; The colors of the stratigraphic column represent the colors of the stratified core sediments; M and T denote marine and terrestrial strata, respectively, and the number denotes the sequence of strata from shallow to deep
表2 莱州湾 YK21钻孔岩心间隙水荧光组分的类型与来源
Table 2 Types and sources of fluorescence components in the interstitial water of drilling core YK21 in Laizhou Bay
图4 莱州湾YK21钻孔岩心间隙水有色溶解有机物(CDOM)总荧光强度和荧光组分百分比垂直分布
(a)总荧光强度(Fn);(b)荧光百分比;地层柱的颜色代表各分层岩心沉积物的颜色;M和T分别表示海相层和陆相层,序号表示由浅到深的层序
Fig. 4 Vertical distributions of total fluorescence intensity and percentage composition of Chromophoric Dissolved Organic MatterCDOMin the interstitial water of drilling core YK21 in Laizhou Bay
(a) Total Fluorescence Insensity (Fn); (b) Percentage of fluorescence; The colors of the stratigraphic column represent the colors of the stratified core sediments; M and T denote marine and terrestrial strata, respectively, and the number denotes the sequence of strata from shallow to deep
图5 莱州湾YK21钻孔岩心间隙水有色溶解有机物(CDOM)丰度和各荧光组分及其与主要理化参数相关分析
HL和PL分别表示类腐殖质和类蛋白;Fn:总荧光强度;FI:荧光指数;BIX:自生源指数;HIX:腐殖化指数;DOC:溶解有机碳;DIN:溶解无机氮
Fig. 5 Correlation analyses of Chromophoric Dissolved Organic MatterCDOMabundanceeach fluorescence component and major physicochemical parameters in the interstitial water of drill core YK21 in Laizhou Bay
HL and PL represent humus-like and protein-like, respectively; Fn: Total Fluorescence Insensity; FI: Fluorescence Index; BIX:Biological Index; HIX: Humification Index; DOC: Dissolved Organic Carbon; DIN: Dissolved Inorganic Nitrogen
图6 莱州湾YK21钻孔岩心间隙水有色溶解有机物(CDOM)荧光指数、自生源指数和腐殖化指数的垂直分布
(a)荧光指数(FI);(b)自生源指数(BIX);(c)腐殖化指数(HIX);地层柱的颜色代表各分层岩心沉积物的颜色;M和T分别表示海相层和陆相层,序号表示由浅到深的层序
Fig. 6 Vertical distributions of fluorescence indexbiology index and humification index of Chromophoric Dissolved Organic MatterCDOMin interstitial water of drilling core YK21 in Laizhou Bay
(a) Fluorescence Index (FI), (b) Biological Index (BIX); (c) Humification Index (HIX);The colors of the stratigraphic column represent the colors of the stratified core sediments; M and T denote marine and terrestrial strata, respectively, and the number denotes the sequence of strata from shallow to deep
图7 莱州湾YK21钻孔岩心间隙水溶解有机碳(DOC)和有色溶解有机物(CDOM)及其相关参数主成分分析
FI:荧光指数;BIX:自生源指数;HIX:腐殖化指数
Fig. 7 Principal component analysis of Dissolved Organic CarbonDOC), Chromophoric Dissolved Organic MatterCDOMand related parameters in the interstitial water of drilling core YK21 in Laizhou Bay
FI: Fluorescence Index; BIX: Biological Index; HIX: Humification Index
图8 莱州湾YK21钻孔岩心间隙水溶解有机物和主要理化参数的统计分析
(a)溶解有机碳(DOC)和吸光系数;(b)荧光强度与溶解有机碳(DOC);(c)光谱斜率与吸光系数;(d)溶解有机物(DOM)和主要理化参数冗余分析;HL和PL分别表示类腐殖质和类蛋白
Fig. 8 Statistic analyses between dissolved organic matter and primary physicochemical factors in the interstitial water of drilling core YK21 in Laizhou Bay
(a) Dissolved Organic Carbon (DOC) and a(320); (b) Fluorescence intensity and DOC; (c) S 275~295 and a(320); (d) Redundancy analysis of Dissolved Organic Matter (DOM) parameters and primary physicochemical factors; HL and PL represent humus-like and protein-like, respectively
1 HOU Lijun, LIU Min, XU Shiyuan, et al. Advances in the study on nitrogen biogeochemistry in tidal flat ecosystem[J]. Advances in Earth Science, 2004, 19(5): 774-781.
侯立军, 刘敏, 许世远, 等. 潮滩生态系统中生源要素氮的生物地球化学过程研究综述[J]. 地球科学进展, 2004, 19(5): 774-781.
2 ROBERTS H H, DELANUE R D, WHITE J R, et al. Floods and cold front passages: impacts on coastal marshes in a river diversion setting (Wax Lake Delta area, Louisiana)[J]. Journal of Coastal Research, 2015, 31(5): 1 057-1 068.
3 BONAN G B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests[J]. Science, 2008, 320(5 882): 1 444-1 449.
4 MCLEOD E, CHMURA G L, BOUILLON S, et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 [J]. Frontiers in Ecology and the Environment, 2011, 9(10): 552-560.
5 WANG F M, TANG J W, YE S Y, et al. Blue carbon sink function of Chinese coastal wetlands and carbon neutrality strategy[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(3): 241-251.
6 CHEN Qingqiang, WANG Xueyue, YAO Zhenxing, et al. Characteristics of soil organic matter structure in typical reclamation areas of the Yangtze River Estuary[J]. Advances in Earth Science, 2022, 37(9): 915-924.
陈庆强, 王雪悦, 姚振兴, 等. 长江口不同年代围垦区土壤有机质结构组成特征[J]. 地球科学进展, 2022, 37(9): 915-924.
7 BRIDGHAM S D, MEGONIGAL J P, KELLER J K, et al. The carbon balance of North American wetlands[J]. Wetlands, 2006, 26(4): 889-916.
8 CHEN Z L, LEE S Y. Tidal flats as a significant carbon reservoir in global coastal ecosystems[J]. Frontiers in Marine Science, 2022, 9. DOI:10.3389/frnars.2022.900896 .
9 CHEN J, WANG D Q, LI Y J, et al. The carbon stock and sequestration rate in tidal flats from coastal China[J]. Global Biogeochemical Cycles, 2020, 34(11). DOI: 10.1029/2020GB006772 .
10 YANG S Y, YIM W W S, TANG M, et al. Burial of organic carbon and carbonate on inner shelf of the northern South China Sea during the postglacial period[J]. Frontiers of Earth Science in China, 2008, 2(4): 427-433.
11 YANG S Y, TANG M, YIM W W S, et al. Burial of organic carbon in Holocene sediments of the Zhujiang (Pearl River) and Changjiang (Yangtze River) estuaries[J]. Marine Chemistry, 2011, 123(1/2/3/4): 1-10.
12 GAO Fanglei, YANG Xiaoqiang, DONG Yixin, et al. Carbon-nitrogen record in sediments of core PD in the Pearl River Delta and the environmental significance[J]. Marine Geology & Quaternary Geology, 2006, 26(2): 33-39.
高芳蕾, 杨小强, 董艺辛, 等. 珠江三角洲PD孔沉积物的碳氮记录及其环境意义[J]. 海洋地质与第四纪地质, 2006, 26(2): 33-39.
13 ZHANG Ruihu, XIE Jianlei, LIU Tao, et al. Palaeoenvironmental evolution of subaqueous Yangtze delta inferred from sedimentary records[J]. Marine Geology & Quaternary Geology, 2011, 31(1): 1-10.
张瑞虎, 谢建磊, 刘韬, 等. 长江口水下三角洲沉积物记录的古环境演化[J]. 海洋地质与第四纪地质, 2011, 31(1): 1-10.
14 TANG Min, YANG Shouye, LI Baohua, et al. Compositions of organic carbon and nitrogen and carbon isotope of postglacial sediments in the Yangtze River Delta and the paleoenvironment implication[J]. Marine Geology & Quaternary Geology, 2006, 26(5): 1-10.
唐珉, 杨守业, 李保华, 等. 长江三角洲冰后期沉积物的有机碳氮和有机碳同位素组成与古环境指示[J]. 海洋地质与第四纪地质, 2006, 26(5): 1-10.
15 DING Xigui, YE Siyuan, ZHAO Guangming, et al. Accumulation of carbon and nutrients in coastal wetland in the Yellow River Delta[J]. Oceanologia et Limnologia Sinica, 2014, 45(1): 94-102.
丁喜桂, 叶思源, 赵广明, 等. 黄河三角洲滨海湿地演化及其对碳与营养成分的扣留[J]. 海洋与湖沼, 2014, 45(1): 94-102.
16 ZHAO Guangming, YE Siyuan, DING Xigui, et al. Sedimentary environmental partitioning of Holocene strata and assessment of carbon burial rate of various paleo-environments in the Yellow River Delta[J]. Earth Science, 2014, 39(4): 451-461.
赵广明, 叶思源, 丁喜桂, 等. 黄河三角洲全新世以来沉积环境的划分及各环境中碳埋藏速率的评价[J]. 地球科学, 2014, 39(4): 451-461.
17 ZHAO G M, YE S Y, LI G X, et al. Late Quaternary strata and carbon burial records in the Yellow River delta, China[J]. Journal of Ocean University of China, 2015, 14(3): 446-456.
18 ZHAO G M, YE S Y, HE L, et al. Historical change of carbon burial in Late Quaternary sediments of the ancient Yellow River delta on the west coast of Bohai Bay, China[J]. CATENA, 2020, 193. DOI: 10.1016/j.catena.2020.104619 .
19 CHMURA G L, ANISFELD S C, CAHOON D R, et al. Global carbon sequestration in tidal, saline wetland soils[J]. Global Biogeochemical Cycles, 2003, 17(4). DOI: 10.1029/2002GB001917 .
20 ZHANG Y S, XIAO X T, LIU D Y, et al. Spatial and seasonal variations of organic carbon distributions in typical intertidal sediments of China[J]. Organic Geochemistry, 2020, 142. DOI: 10.1016/j.orggeochem.2020.103993 .
21 GAN S C, SCHMIDT F, HEUER V B, et al. Impacts of redox conditions on Dissolved Organic Matter (DOM) quality in marine sediments off the River Rhône, western Mediterranean Sea[J]. Geochimica et Cosmochimica Acta, 2020, 276: 151-169.
22 MA Y Y, WANG Z Q, MA T, et al. Spatial distribution characteristics and influencing factors of organic carbon in sediments of Tongshun River riparian zone[J]. Chemosphere, 2020, 252. DOI: 10.1016/j.chemosphere.2020.126322 .
23 WANG Hongli, XIAO Chunling, LI Chaojun, et al. Spatial variability of organic carbon in the soil of wetlands in Chongming Dongtan and its influential factors[J]. Journal of Agro-Environment Science, 2009, 28(7): 1 522-1 528.
王红丽, 肖春玲, 李朝君, 等. 崇明东滩湿地土壤有机碳空间分异特征及影响因素[J]. 农业环境科学学报, 2009, 28(7): 1 522-1 528.
24 KOO B J, KIM S H, HYUN J H. Feeding behavior of the ocypodid crab Macrophthalmus japonicus and its effects on oxygen-penetration depth and organic-matter removal in intertidal sediments[J]. Estuarine, Coastal and Shelf Science, 2019, 228. DOI:10.1016/j.ecss.2019.106366 .
25 BURDIGE D J, KOMADA T. Sediment pore waters[M]// Biogeochemistry of marine dissolved organic matter. Amsterdam: Elsevier, 2015: 535-577.
26 KOMADA T, BURDIGE D J, CRISPO S M, et al. Dissolved organic carbon dynamics in anaerobic sediments of the Santa Monica Basin[J]. Geochimica et Cosmochimica Acta, 2013, 110: 253-273.
27 JIAO Nianzhi, ZHANG Chuanlun, LI Chao, et al. Carbon storage mechanism and climate effect of marine micro-biological carbon pump[J]. Science China Earth Sciences, 2013, 43(1): 1-18.
焦念志, 张传伦, 李超, 等. 海洋微型生物碳泵储碳机制及气候效应[J]. 中国科学: 地球科学, 2013, 43(1): 1-18.
28 ZHANG Yao, ZHAO Meixun, CUI Qiu, et al. Carbon sink processes, regulatory mechanisms and sink enhancement patterns in offshore ecosystems[J]. Science China Earth Sciences, 2017, 47(4): 438-449.
张瑶, 赵美训, 崔球, 等. 近海生态系统碳汇过程、调控机制及增汇模式[J]. 中国科学: 地球科学, 2017, 47(4): 438-449.
29 TANG Jianwu, YE Shufeng, CHEN Xuechu, et al. Coastal blue carbon: concept, study method, and the application to ecological restoration[J]. Science China Earth Sciences, 2018, 48(6): 661-670.
唐剑武, 叶属峰, 陈雪初, 等. 海岸带蓝碳的科学概念、研究方法以及在生态恢复中的应用[J]. 中国科学: 地球科学, 2018, 48(6): 661-670.
30 ROCHELLE-NEWALL E J, FISHER T R. Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay[J]. Marine Chemistry, 2002, 77(1): 23-41.
31 BALTAR F, ALVAREZ-SALGADO X A, ARÍSTEGUI J, et al. What is refractory organic matter in the ocean?[J]. Frontiers in Marine Science, 2021, 8. DOI: 10.3389/fmars.2021.642637 .
32 HERNES P J, SPENCER R G M, DYDA R Y, et al. The role of hydrologic regimes on dissolved organic carbon composition in an agricultural watershed[J]. Geochimica et Cosmochimica Acta, 2008, 72(21): 5 266-5 277.
33 SU Q, YU Y, YANG L, et al. Study on the variation in coastal groundwater levels under high-intensity brine extraction conditions[J]. Sustainability, 2023, 15(23). DOI: 10.3390/su152316199 .
34 HAN Yousong, MENG Guanglan, WANG Shaoqing. Quaternary underground brine in the coastal areas of the Northern China[M]. Beijing: Science Press, 1996.
韩有松, 孟广兰, 王少青. 中国北方沿海第四纪地下卤水[M]. 北京: 科学出版社, 1996.
35 YI Liang, JIANG Xingyu, TIAN Lizhu, et al. Geochronological study on plio-pleistocene evolution of Bohai Basin[J]. Quaternary Sciences, 2016, 36(5): 1 075-1 087.
易亮, 姜兴钰, 田立柱, 等. 渤海盆地演化的年代学研究[J]. 第四纪研究, 2016, 36(5): 1 075-1 087.
36 ZHAO Songling, YANG Guangfu, CANG Shuxi, et al. On the marine stratigraphy and coastlines of the western coast of the gulf of Bohai[J]. Oceanologia et Limnologia Sinica, 1978, 9(1): 15-25.
赵松龄, 杨光复, 苍树溪, 等. 关于渤海湾西岸海相地层与海岸线问题[J]. 海洋与湖沼, 1978, 9(1): 15-25.
37 YAO J, YU H J, XU X Y, et al. Paleoenvironmental changes during the late Quaternary as inferred from foraminifera assemblages in the Laizhou Bay[J]. Acta Oceanologica Sinica, 2014, 33(10): 10-18.
38 GAO Maosheng, GUO Fei, HOU Guohua, et al. The evolution of sedimentary environment since late Pleistocene in Laizhou Bay, Bohai Sea[J]. Geology in China, 2018, 45(1): 59-68.
高茂生, 郭飞, 侯国华, 等. 渤海南部莱州湾晚更新世以来沉积演化特征[J]. 中国地质, 2018, 45(1): 59-68.
39 YI Liang. Framework of quaternary stratigraphy in Laizhou Bay, Bohai Sea, and its paleoenvironmental significance[J]. Acta Sedimentologica Sinica, 2023, 41(6): 1 739-1 754.
易亮. 莱州湾第四系初步框架及环境意义[J]. 沉积学报, 2023, 41(6): 1 739-1 754.
40 WANG W X, ZHAO X L, LI S J, et al. Palynoflora and climatic dynamics of the Laizhou Bay of Bohai Sea, North China Plain, since the late Middle Pleistocene[J]. Journal of Palaeogeography, 2023, 12(2): 278-295.
41 GRASSHOFF, K, KREMLING K, EHRHARDT M. Methods of seawater analysis[M]. New York: John Wiley & Son, 1999: 159-228.
42 KIRK J T O. Light and photosynthesis in aquatic ecosystems[M]. Cambridge: Cambridge University Press, 1994.
43 HELMS J R, STUBBINS A, RITCHIE J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter[J]. Limnology and Oceanography, 2008, 53(3): 955-969.
44 ZEPP R G, SHELDON W M, MORAN M A. Dissolved organic fluorophores in southeastern US coastal waters: correction method for eliminating Rayleigh and Raman scattering peaks in excitation-emission matrices[J]. Marine Chemistry, 2004, 89(1/2/3/4): 15-36.
45 LAWAETZ A J, STEDMON C A. Fluorescence intensity calibration using the Raman scatter peak of water[J]. Applied Spectroscopy, 2009, 63(8): 936-940.
46 STEDMON C A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial[J]. Limnology and Oceanography: Methods, 2008, 6(11): 572-579.
47 OLIVIERI A C. Computing sensitivity and selectivity in parallel factor analysis and related multiway techniques: the need for further developments in net analyte signal theory[J]. Analytical Chemistry, 2005, 77(15): 4 936-4 946.
48 CHRISTENSEN J H, HANSEN A B, MORTENSEN J, et al. Characterization and matching of oil samples using fluorescence spectroscopy and parallel factor analysis[J]. Analytical Chemistry, 2005, 77(7): 2 210-2 217.
49 MURPHY K R, STEDMON C A, WENIG P, et al. OpenFluor-an online spectral library of auto-fluorescence by organic compounds in the environment[J]. Analytical Methods, 2014, 6(3): 658-661.
50 STEDMON C A, MARKAGER S. Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis[J]. Limnology and Oceanography, 2005, 50(5): 1 415-1 426.
51 KOWALCZUK P, DURAKO M J, YOUNG H, et al. Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: interannual variability[J]. Marine Chemistry, 2009, 113(3/4): 182-196.
52 MCKNIGHT D M, BOYER E W, WESTERHOFF P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography, 2001, 46(1): 38-48.
53 HUGUET A, VACHER L, RELEXANS S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry, 2009, 40(6): 706-719.
54 PARA J, COBLE P G, CHARRIÈRE B, et al. Fluorescence and absorption properties of Chromophoric Dissolved Organic Matter (CDOM) in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhône River[J]. Biogeosciences, 2010, 7(12): 4 083-4 103.
55 OHNO T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter[J]. Environmental Science & Technology, 2002, 36(4): 742-746.
56 XIE L L, GUAN W C, ZOU L, et al. Composition, variation and contribution of chromophoric dissolved organic matter in Laizhou Bay Estuaries, North China[J]. Marine Environmental Research, 2023, 190. DOI:10.1016/j.marenvres.2023.106102 .
57 XIE Linping, WANG Baodong, XIN Ming, et al. Distribution and spectral characteristics of colored dissolved organic matter in the coastal area of Bohai Sea[J]. Advances in Marine Science, 2016, 34(1): 58-69.
谢琳萍, 王保栋, 辛明, 等. 渤海近岸水体有色溶解有机物的光吸收特征及其分布[J]. 海洋科学进展, 2016, 34(1): 58-69.
58 GAO Maosheng, ZHENG Yimin, LIU Sen, et al. Palaeogeographic condition for origin of underground brine in southern coast of Laizhou Bay, Bohai Sea[J]. Geological Review, 2015, 61(2): 393-400.
高茂生, 郑懿珉, 刘森, 等. 莱州湾地下卤水形成的古地理条件分析[J]. 地质论评, 2015, 61(2): 393-400.
59 COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51(4): 325-346.
60 YAMASHITA Y, TANOUE E. Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids[J]. Marine Chemistry, 2003, 82(3/4): 255-271.
61 COBLE P G, SCHULTZ C A, MOPPER K. Fluorescence contouring analysis of DOC intercalibration experiment samples: a comparison of techniques[J]. Marine Chemistry, 1993, 41(1/2/3): 173-178.
62 COBLE P G, GREEN S A, BLOUGH N V, et al. Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy[J]. Nature, 1990, 348: 432-435.
63 COBLE P G, del CASTILLO C E, AVRIL B. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1998, 45(10/11): 2 195-2 223.
64 XU Yang, LI Penghui, ZHANG Chuanlun, et al. Spectral characteristics of dissolved organic matter in sediment pore water from Pearl River Estuary[J]. Science China Earth Sciences, 2021, 51(1): 63-72.
徐阳, 李朋辉, 张传伦, 等. 珠江口沉积物溶解性有机质来源及光谱特征的空间变化[J]. 中国科学: 地球科学, 2021, 51(1): 63-72.
65 DETERMANN S, LOBBES J M, REUTER R, et al. Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria[J]. Marine Chemistry, 1998, 62(1/2): 137-156.
66 GALLA H J, WARNCKE M, SCHEIT K H. Incorporation of the antimicrobial protein seminalplasmin into lipid bilayer membranes[J]. European Biophysics Journal, 1985, 12(4): 211-216.
67 DETERMANN S, REUTER R, WAGNER P, et al. Fluorescent matter in the eastern Atlantic Ocean. Part 1: method of measurement and near-surface distribution[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1994, 41(4): 659-675.
68 HONG Chenfei, CUI Zhengguo, BAI Ying, et al. Spatial and temporal distribution of fluorescent dissolved organic matter in Laizhou Bay[J]. Marine Sciences, 2022, 46(6): 15-31.
洪晨飞, 崔正国, 白莹, 等. 莱州湾荧光溶解有机物的时空分布[J]. 海洋科学, 2022, 46(6): 15-31.
69 SHAINBERG I, LETEY J. Response of soils to sodic and saline conditions[J]. Hilgardia, 1984, 52(2): 1-57.
70 ARDÓN M, HELTON A M, BERNHARDT E S. Drought and saltwater incursion synergistically reduce dissolved organic carbon export from coastal freshwater wetlands[J]. Biogeochemistry, 2016, 127(2): 411-426.
71 AMON R M W, BENNER R. Rapid cycling of high-molecular-weight dissolved organic matter in the ocean[J]. Nature, 1994, 369: 549-552.
[1] 陈小刚, 李凌, 杜金洲. 红树林和盐沼湿地间隙水交换过程及其碳汇潜力[J]. 地球科学进展, 2022, 37(9): 881-898.
[2] 郭卫东,王超,李炎,瞿理印,郎目晨,邓永彬,梁清隆. 水环境中溶解有机质的光谱表征:从流域到深海[J]. 地球科学进展, 2020, 35(9): 933-947.
阅读次数
全文


摘要