1 |
HOU Lijun, LIU Min, XU Shiyuan, et al. Advances in the study on nitrogen biogeochemistry in tidal flat ecosystem[J]. Advances in Earth Science, 2004, 19(5): 774-781.
|
|
侯立军, 刘敏, 许世远, 等. 潮滩生态系统中生源要素氮的生物地球化学过程研究综述[J]. 地球科学进展, 2004, 19(5): 774-781.
|
2 |
ROBERTS H H, DELANUE R D, WHITE J R, et al. Floods and cold front passages: impacts on coastal marshes in a river diversion setting (Wax Lake Delta area, Louisiana)[J]. Journal of Coastal Research, 2015, 31(5): 1 057-1 068.
|
3 |
BONAN G B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests[J]. Science, 2008, 320(5 882): 1 444-1 449.
|
4 |
MCLEOD E, CHMURA G L, BOUILLON S, et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 [J]. Frontiers in Ecology and the Environment, 2011, 9(10): 552-560.
|
5 |
WANG F M, TANG J W, YE S Y, et al. Blue carbon sink function of Chinese coastal wetlands and carbon neutrality strategy[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(3): 241-251.
|
6 |
CHEN Qingqiang, WANG Xueyue, YAO Zhenxing, et al. Characteristics of soil organic matter structure in typical reclamation areas of the Yangtze River Estuary[J]. Advances in Earth Science, 2022, 37(9): 915-924.
|
|
陈庆强, 王雪悦, 姚振兴, 等. 长江口不同年代围垦区土壤有机质结构组成特征[J]. 地球科学进展, 2022, 37(9): 915-924.
|
7 |
BRIDGHAM S D, MEGONIGAL J P, KELLER J K, et al. The carbon balance of North American wetlands[J]. Wetlands, 2006, 26(4): 889-916.
|
8 |
CHEN Z L, LEE S Y. Tidal flats as a significant carbon reservoir in global coastal ecosystems[J]. Frontiers in Marine Science, 2022, 9. DOI:10.3389/frnars.2022.900896 .
|
9 |
CHEN J, WANG D Q, LI Y J, et al. The carbon stock and sequestration rate in tidal flats from coastal China[J]. Global Biogeochemical Cycles, 2020, 34(11). DOI: 10.1029/2020GB006772 .
|
10 |
YANG S Y, YIM W W S, TANG M, et al. Burial of organic carbon and carbonate on inner shelf of the northern South China Sea during the postglacial period[J]. Frontiers of Earth Science in China, 2008, 2(4): 427-433.
|
11 |
YANG S Y, TANG M, YIM W W S, et al. Burial of organic carbon in Holocene sediments of the Zhujiang (Pearl River) and Changjiang (Yangtze River) estuaries[J]. Marine Chemistry, 2011, 123(1/2/3/4): 1-10.
|
12 |
GAO Fanglei, YANG Xiaoqiang, DONG Yixin, et al. Carbon-nitrogen record in sediments of core PD in the Pearl River Delta and the environmental significance[J]. Marine Geology & Quaternary Geology, 2006, 26(2): 33-39.
|
|
高芳蕾, 杨小强, 董艺辛, 等. 珠江三角洲PD孔沉积物的碳氮记录及其环境意义[J]. 海洋地质与第四纪地质, 2006, 26(2): 33-39.
|
13 |
ZHANG Ruihu, XIE Jianlei, LIU Tao, et al. Palaeoenvironmental evolution of subaqueous Yangtze delta inferred from sedimentary records[J]. Marine Geology & Quaternary Geology, 2011, 31(1): 1-10.
|
|
张瑞虎, 谢建磊, 刘韬, 等. 长江口水下三角洲沉积物记录的古环境演化[J]. 海洋地质与第四纪地质, 2011, 31(1): 1-10.
|
14 |
TANG Min, YANG Shouye, LI Baohua, et al. Compositions of organic carbon and nitrogen and carbon isotope of postglacial sediments in the Yangtze River Delta and the paleoenvironment implication[J]. Marine Geology & Quaternary Geology, 2006, 26(5): 1-10.
|
|
唐珉, 杨守业, 李保华, 等. 长江三角洲冰后期沉积物的有机碳氮和有机碳同位素组成与古环境指示[J]. 海洋地质与第四纪地质, 2006, 26(5): 1-10.
|
15 |
DING Xigui, YE Siyuan, ZHAO Guangming, et al. Accumulation of carbon and nutrients in coastal wetland in the Yellow River Delta[J]. Oceanologia et Limnologia Sinica, 2014, 45(1): 94-102.
|
|
丁喜桂, 叶思源, 赵广明, 等. 黄河三角洲滨海湿地演化及其对碳与营养成分的扣留[J]. 海洋与湖沼, 2014, 45(1): 94-102.
|
16 |
ZHAO Guangming, YE Siyuan, DING Xigui, et al. Sedimentary environmental partitioning of Holocene strata and assessment of carbon burial rate of various paleo-environments in the Yellow River Delta[J]. Earth Science, 2014, 39(4): 451-461.
|
|
赵广明, 叶思源, 丁喜桂, 等. 黄河三角洲全新世以来沉积环境的划分及各环境中碳埋藏速率的评价[J]. 地球科学, 2014, 39(4): 451-461.
|
17 |
ZHAO G M, YE S Y, LI G X, et al. Late Quaternary strata and carbon burial records in the Yellow River delta, China[J]. Journal of Ocean University of China, 2015, 14(3): 446-456.
|
18 |
ZHAO G M, YE S Y, HE L, et al. Historical change of carbon burial in Late Quaternary sediments of the ancient Yellow River delta on the west coast of Bohai Bay, China[J]. CATENA, 2020, 193. DOI: 10.1016/j.catena.2020.104619 .
|
19 |
CHMURA G L, ANISFELD S C, CAHOON D R, et al. Global carbon sequestration in tidal, saline wetland soils[J]. Global Biogeochemical Cycles, 2003, 17(4). DOI: 10.1029/2002GB001917 .
|
20 |
ZHANG Y S, XIAO X T, LIU D Y, et al. Spatial and seasonal variations of organic carbon distributions in typical intertidal sediments of China[J]. Organic Geochemistry, 2020, 142. DOI: 10.1016/j.orggeochem.2020.103993 .
|
21 |
GAN S C, SCHMIDT F, HEUER V B, et al. Impacts of redox conditions on Dissolved Organic Matter (DOM) quality in marine sediments off the River Rhône, western Mediterranean Sea[J]. Geochimica et Cosmochimica Acta, 2020, 276: 151-169.
|
22 |
MA Y Y, WANG Z Q, MA T, et al. Spatial distribution characteristics and influencing factors of organic carbon in sediments of Tongshun River riparian zone[J]. Chemosphere, 2020, 252. DOI: 10.1016/j.chemosphere.2020.126322 .
|
23 |
WANG Hongli, XIAO Chunling, LI Chaojun, et al. Spatial variability of organic carbon in the soil of wetlands in Chongming Dongtan and its influential factors[J]. Journal of Agro-Environment Science, 2009, 28(7): 1 522-1 528.
|
|
王红丽, 肖春玲, 李朝君, 等. 崇明东滩湿地土壤有机碳空间分异特征及影响因素[J]. 农业环境科学学报, 2009, 28(7): 1 522-1 528.
|
24 |
KOO B J, KIM S H, HYUN J H. Feeding behavior of the ocypodid crab Macrophthalmus japonicus and its effects on oxygen-penetration depth and organic-matter removal in intertidal sediments[J]. Estuarine, Coastal and Shelf Science, 2019, 228. DOI:10.1016/j.ecss.2019.106366 .
|
25 |
BURDIGE D J, KOMADA T. Sediment pore waters[M]// Biogeochemistry of marine dissolved organic matter. Amsterdam: Elsevier, 2015: 535-577.
|
26 |
KOMADA T, BURDIGE D J, CRISPO S M, et al. Dissolved organic carbon dynamics in anaerobic sediments of the Santa Monica Basin[J]. Geochimica et Cosmochimica Acta, 2013, 110: 253-273.
|
27 |
JIAO Nianzhi, ZHANG Chuanlun, LI Chao, et al. Carbon storage mechanism and climate effect of marine micro-biological carbon pump[J]. Science China Earth Sciences, 2013, 43(1): 1-18.
|
|
焦念志, 张传伦, 李超, 等. 海洋微型生物碳泵储碳机制及气候效应[J]. 中国科学: 地球科学, 2013, 43(1): 1-18.
|
28 |
ZHANG Yao, ZHAO Meixun, CUI Qiu, et al. Carbon sink processes, regulatory mechanisms and sink enhancement patterns in offshore ecosystems[J]. Science China Earth Sciences, 2017, 47(4): 438-449.
|
|
张瑶, 赵美训, 崔球, 等. 近海生态系统碳汇过程、调控机制及增汇模式[J]. 中国科学: 地球科学, 2017, 47(4): 438-449.
|
29 |
TANG Jianwu, YE Shufeng, CHEN Xuechu, et al. Coastal blue carbon: concept, study method, and the application to ecological restoration[J]. Science China Earth Sciences, 2018, 48(6): 661-670.
|
|
唐剑武, 叶属峰, 陈雪初, 等. 海岸带蓝碳的科学概念、研究方法以及在生态恢复中的应用[J]. 中国科学: 地球科学, 2018, 48(6): 661-670.
|
30 |
ROCHELLE-NEWALL E J, FISHER T R. Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay[J]. Marine Chemistry, 2002, 77(1): 23-41.
|
31 |
BALTAR F, ALVAREZ-SALGADO X A, ARÍSTEGUI J, et al. What is refractory organic matter in the ocean?[J]. Frontiers in Marine Science, 2021, 8. DOI: 10.3389/fmars.2021.642637 .
|
32 |
HERNES P J, SPENCER R G M, DYDA R Y, et al. The role of hydrologic regimes on dissolved organic carbon composition in an agricultural watershed[J]. Geochimica et Cosmochimica Acta, 2008, 72(21): 5 266-5 277.
|
33 |
SU Q, YU Y, YANG L, et al. Study on the variation in coastal groundwater levels under high-intensity brine extraction conditions[J]. Sustainability, 2023, 15(23). DOI: 10.3390/su152316199 .
|
34 |
HAN Yousong, MENG Guanglan, WANG Shaoqing. Quaternary underground brine in the coastal areas of the Northern China[M]. Beijing: Science Press, 1996.
|
|
韩有松, 孟广兰, 王少青. 中国北方沿海第四纪地下卤水[M]. 北京: 科学出版社, 1996.
|
35 |
YI Liang, JIANG Xingyu, TIAN Lizhu, et al. Geochronological study on plio-pleistocene evolution of Bohai Basin[J]. Quaternary Sciences, 2016, 36(5): 1 075-1 087.
|
|
易亮, 姜兴钰, 田立柱, 等. 渤海盆地演化的年代学研究[J]. 第四纪研究, 2016, 36(5): 1 075-1 087.
|
36 |
ZHAO Songling, YANG Guangfu, CANG Shuxi, et al. On the marine stratigraphy and coastlines of the western coast of the gulf of Bohai[J]. Oceanologia et Limnologia Sinica, 1978, 9(1): 15-25.
|
|
赵松龄, 杨光复, 苍树溪, 等. 关于渤海湾西岸海相地层与海岸线问题[J]. 海洋与湖沼, 1978, 9(1): 15-25.
|
37 |
YAO J, YU H J, XU X Y, et al. Paleoenvironmental changes during the late Quaternary as inferred from foraminifera assemblages in the Laizhou Bay[J]. Acta Oceanologica Sinica, 2014, 33(10): 10-18.
|
38 |
GAO Maosheng, GUO Fei, HOU Guohua, et al. The evolution of sedimentary environment since late Pleistocene in Laizhou Bay, Bohai Sea[J]. Geology in China, 2018, 45(1): 59-68.
|
|
高茂生, 郭飞, 侯国华, 等. 渤海南部莱州湾晚更新世以来沉积演化特征[J]. 中国地质, 2018, 45(1): 59-68.
|
39 |
YI Liang. Framework of quaternary stratigraphy in Laizhou Bay, Bohai Sea, and its paleoenvironmental significance[J]. Acta Sedimentologica Sinica, 2023, 41(6): 1 739-1 754.
|
|
易亮. 莱州湾第四系初步框架及环境意义[J]. 沉积学报, 2023, 41(6): 1 739-1 754.
|
40 |
WANG W X, ZHAO X L, LI S J, et al. Palynoflora and climatic dynamics of the Laizhou Bay of Bohai Sea, North China Plain, since the late Middle Pleistocene[J]. Journal of Palaeogeography, 2023, 12(2): 278-295.
|
41 |
GRASSHOFF, K, KREMLING K, EHRHARDT M. Methods of seawater analysis[M]. New York: John Wiley & Son, 1999: 159-228.
|
42 |
KIRK J T O. Light and photosynthesis in aquatic ecosystems[M]. Cambridge: Cambridge University Press, 1994.
|
43 |
HELMS J R, STUBBINS A, RITCHIE J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter[J]. Limnology and Oceanography, 2008, 53(3): 955-969.
|
44 |
ZEPP R G, SHELDON W M, MORAN M A. Dissolved organic fluorophores in southeastern US coastal waters: correction method for eliminating Rayleigh and Raman scattering peaks in excitation-emission matrices[J]. Marine Chemistry, 2004, 89(1/2/3/4): 15-36.
|
45 |
LAWAETZ A J, STEDMON C A. Fluorescence intensity calibration using the Raman scatter peak of water[J]. Applied Spectroscopy, 2009, 63(8): 936-940.
|
46 |
STEDMON C A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial[J]. Limnology and Oceanography: Methods, 2008, 6(11): 572-579.
|
47 |
OLIVIERI A C. Computing sensitivity and selectivity in parallel factor analysis and related multiway techniques: the need for further developments in net analyte signal theory[J]. Analytical Chemistry, 2005, 77(15): 4 936-4 946.
|
48 |
CHRISTENSEN J H, HANSEN A B, MORTENSEN J, et al. Characterization and matching of oil samples using fluorescence spectroscopy and parallel factor analysis[J]. Analytical Chemistry, 2005, 77(7): 2 210-2 217.
|
49 |
MURPHY K R, STEDMON C A, WENIG P, et al. OpenFluor-an online spectral library of auto-fluorescence by organic compounds in the environment[J]. Analytical Methods, 2014, 6(3): 658-661.
|
50 |
STEDMON C A, MARKAGER S. Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis[J]. Limnology and Oceanography, 2005, 50(5): 1 415-1 426.
|
51 |
KOWALCZUK P, DURAKO M J, YOUNG H, et al. Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: interannual variability[J]. Marine Chemistry, 2009, 113(3/4): 182-196.
|
52 |
MCKNIGHT D M, BOYER E W, WESTERHOFF P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography, 2001, 46(1): 38-48.
|
53 |
HUGUET A, VACHER L, RELEXANS S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry, 2009, 40(6): 706-719.
|
54 |
PARA J, COBLE P G, CHARRIÈRE B, et al. Fluorescence and absorption properties of Chromophoric Dissolved Organic Matter (CDOM) in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhône River[J]. Biogeosciences, 2010, 7(12): 4 083-4 103.
|
55 |
OHNO T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter[J]. Environmental Science & Technology, 2002, 36(4): 742-746.
|
56 |
XIE L L, GUAN W C, ZOU L, et al. Composition, variation and contribution of chromophoric dissolved organic matter in Laizhou Bay Estuaries, North China[J]. Marine Environmental Research, 2023, 190. DOI:10.1016/j.marenvres.2023.106102 .
|
57 |
XIE Linping, WANG Baodong, XIN Ming, et al. Distribution and spectral characteristics of colored dissolved organic matter in the coastal area of Bohai Sea[J]. Advances in Marine Science, 2016, 34(1): 58-69.
|
|
谢琳萍, 王保栋, 辛明, 等. 渤海近岸水体有色溶解有机物的光吸收特征及其分布[J]. 海洋科学进展, 2016, 34(1): 58-69.
|
58 |
GAO Maosheng, ZHENG Yimin, LIU Sen, et al. Palaeogeographic condition for origin of underground brine in southern coast of Laizhou Bay, Bohai Sea[J]. Geological Review, 2015, 61(2): 393-400.
|
|
高茂生, 郑懿珉, 刘森, 等. 莱州湾地下卤水形成的古地理条件分析[J]. 地质论评, 2015, 61(2): 393-400.
|
59 |
COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51(4): 325-346.
|
60 |
YAMASHITA Y, TANOUE E. Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids[J]. Marine Chemistry, 2003, 82(3/4): 255-271.
|
61 |
COBLE P G, SCHULTZ C A, MOPPER K. Fluorescence contouring analysis of DOC intercalibration experiment samples: a comparison of techniques[J]. Marine Chemistry, 1993, 41(1/2/3): 173-178.
|
62 |
COBLE P G, GREEN S A, BLOUGH N V, et al. Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy[J]. Nature, 1990, 348: 432-435.
|
63 |
COBLE P G, del CASTILLO C E, AVRIL B. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1998, 45(10/11): 2 195-2 223.
|
64 |
XU Yang, LI Penghui, ZHANG Chuanlun, et al. Spectral characteristics of dissolved organic matter in sediment pore water from Pearl River Estuary[J]. Science China Earth Sciences, 2021, 51(1): 63-72.
|
|
徐阳, 李朋辉, 张传伦, 等. 珠江口沉积物溶解性有机质来源及光谱特征的空间变化[J]. 中国科学: 地球科学, 2021, 51(1): 63-72.
|
65 |
DETERMANN S, LOBBES J M, REUTER R, et al. Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria[J]. Marine Chemistry, 1998, 62(1/2): 137-156.
|
66 |
GALLA H J, WARNCKE M, SCHEIT K H. Incorporation of the antimicrobial protein seminalplasmin into lipid bilayer membranes[J]. European Biophysics Journal, 1985, 12(4): 211-216.
|
67 |
DETERMANN S, REUTER R, WAGNER P, et al. Fluorescent matter in the eastern Atlantic Ocean. Part 1: method of measurement and near-surface distribution[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1994, 41(4): 659-675.
|
68 |
HONG Chenfei, CUI Zhengguo, BAI Ying, et al. Spatial and temporal distribution of fluorescent dissolved organic matter in Laizhou Bay[J]. Marine Sciences, 2022, 46(6): 15-31.
|
|
洪晨飞, 崔正国, 白莹, 等. 莱州湾荧光溶解有机物的时空分布[J]. 海洋科学, 2022, 46(6): 15-31.
|
69 |
SHAINBERG I, LETEY J. Response of soils to sodic and saline conditions[J]. Hilgardia, 1984, 52(2): 1-57.
|
70 |
ARDÓN M, HELTON A M, BERNHARDT E S. Drought and saltwater incursion synergistically reduce dissolved organic carbon export from coastal freshwater wetlands[J]. Biogeochemistry, 2016, 127(2): 411-426.
|
71 |
AMON R M W, BENNER R. Rapid cycling of high-molecular-weight dissolved organic matter in the ocean[J]. Nature, 1994, 369: 549-552.
|