地球科学进展 ›› 2010, Vol. 25 ›› Issue (3): 233 -241. doi: 10.11867/j.issn.1001-8166.2010.03.0233

综述与评述    下一篇

长江三角洲对流域输沙变化的响应:进展与问题
高抒   
  1. 南京大学海岸与海岛开发教育部重点实验室,江苏  南京  210093
  • 收稿日期:2009-07-29 修回日期:2010-01-13 出版日期:2010-03-10
  • 通讯作者: 高抒 E-mail:shugao@nju.edu.cn
  • 基金资助:

    国家自然科学基金重点项目“长江口邻近海区沉积动力过程对流域变化的响应”(编号:40830853)资助.

Changjiang Delta Sedimentation in Response to Catchment Discharge Changes: Progress and Problems

Gao Shu   

  1. Key Laboratory for Coast and Island Development, Ministry of Education, Nanjing University, Nanjing  210093, China 
  • Received:2009-07-29 Revised:2010-01-13 Online:2010-03-10 Published:2010-03-10
  • Supported by:

    国家自然科学基金重点项目“长江口邻近海区沉积动力过程对流域变化的响应”(编号:40830853)资助

 流域变化对河流三角洲的影响已成为全球性的问题。由于流域水库建设的影响,长江输沙率自1980年以来呈现明显下降趋势,引发了研究人员对长江三角洲地貌和沉积响应问题的关注。在地貌上,海图对比和海岸冲淤观测的证据显示,长江输沙率目前已经低于冲淤平衡的临界值,使三角洲进入了蚀退阶段。分析表明,根据水下三角洲部分范围的沉积速率与河流输沙率的关系进行计算,会过低估计临界输沙率。对于水下三角洲整体而言,应根据沉积物滞留指数来更准确地估算临界输沙率,而且需要区分2个“临界输沙率”,一个是保持三角洲体积的临界值,另一个是保持三角洲陆上部分面积的临界值。在沉积响应上,来自长江水下三角洲沉积中心的柱状样显示出沉积速率自下而上减小的趋势,反映了流域输沙率变化的影响。今后,如将柱状样采集区域扩大到沉积中心之外的整个水下三角洲范围,则所获得的数据不仅有助于沉积速率响应特征的全面了解,而且还可应用于沉积物滞留指数特征和控制因素的分析以及河口区碳循环过程变化的研究。此外,在长江三角洲沉积记录的分析方面,为了更好地提取气候、环境演化信息,应充分考虑沉积记录形成后所经历的自身变化(如成岩作用变化、分解和衰变等)和相对于岸线迁移的空间位置变化。

The influence of catchment changes on river deltas is an issue of global importance. As far as the Changjiang River is concerned, the fluvial sediment discharge has been decreasing since the early 1980s in response to catchment human activities, which results in significant sedimentological and geomorphological changes over the deltaic areas. In the present contribution, some research topics are proposed on the basis of a review of the progress made in recent years. In terms of geomorphology, bathymetric changes and coastal accretion/erosion patterns indicate that the sediment discharge is now below the critical quantity for the maintenance of the delta, i.e., the delta has reached an eoroding stage. Analysis carried out in the present study demonstrates that the critical value on the basis of chart comparison and localized deposition rate measurements is actually underestimated. For the entire subaqueous delta, accurate calculations for the critical value will depend upon a sound understanding of the sediment retention of the deltaic system. Moreover, it would be appropriate to consider two critical discharges, one for the maintenance of the delta volume, and the other for the maintenance of the surface area of the delta on land. In sedimentology, sediment cores collected from the depocentre of the subaqueous delta show a trend of decrease in accretion rate over the last 30 years, representing the effect of catchment sediment discharge changes. In the future, analysis of the sediment samples from the entire sub-aqueous delta will be beneficial to an improved understanding of the deltaic response to the cathcment changes. At the same time, such a data set will be useful for the study of the sediment retention index and the material cycling patterns (e.g. carbon cycling) over the estuarine waters. Furthermore, in order to improve the interpretation of the deltaic sedimentary record, e.g., to identify climate and environmental changes using the record, the various parameters derived from analyses of the cores should be standardized by evaluating the temporal changes caused by early diagenesis and decay, and by determining the rate of deltaic shoreline changes which control the relative position of the record within the deltaic sedimentary system.

中图分类号: 

[1] Overeem I, Syvitski J P M. Dynamics and Vulnerability of Delta Systems[J]. LOICZ Reports and Studies, 2009,35:54.
[2] Nittrouer C A. STRATAFORM: Overview of its design and synthesis of its results[J]. Marine Geology,1999,154: 3-12.
[3] Gao Shu. Comments on the “NSF Margins Program Science Plans 2004”[J].Marine Geology and Quatenary Geology, 2005, 25(1):119-123.[高抒. 美国《洋陆边缘科学计划2004》述评[J]. 海洋地质与第四纪地质, 2005, 25(1):119-123.]
[4] Harvey N. Global Change and Integrated Coastal Management: The Asian-Pacific Region[M]. Dordrecht: Springer,2006:339.
[5] Gao Shu. Catchment-coast interactions of the Asian regions: APN recent research topics[J]. Advances in Earth Science,2006, 21(7): 680-686.[高抒. 亚洲地区的流域-海岸相互作用:APN近期研究动态[J]. 地球科学进展, 2006, 21(7): 680-686.]
[6] Meybeck M. Carbon, nitrogen and phosphorus transport by world rivers[J]. American Journal of Science,1982, 282: 401-450.
[7] Milliman J, Syvistski J P M. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers[J]. Journal of Geology,1992, 100: 525-544.
[8] Milliman J, Farnsworth K L, Albertin C S. Flux and fate of fluvial sediments leaving large islands in the East Indies[J].Journal of Sea Research,1999, 41: 97-107.
[9] Cattaneo A, Correggiari A, Langone L, et al. The late-Holocene Gargano subaqueous delta, Adriatic shelf: Sediment pathways and supply fluctuations[J]. Marine Geology,2003, 193: 61-91.
[10] Syvitski J P M, Peckham S D, Hilberman R D,et al. Predicting the terrestrial flux of sediment to the global ocean: A planetary perspective[J]. Sedimentary Geology,2003, 162: 5-24.
[11] Yang S L, Zhao Q Y, Belkin I M. Temporal variation in the sediment load of the Yangtze River and the influences of human activities[J]. Journal of Hydrology, 2002, 263: 56-71.
[12] Gao S. The Three Gorges Dam: Development and environmental issues[J].Macalester International,2007, 18:146-171.
[13] Gao S,Wang Y P. Changes in material fluxes from the Changjiang River and their implications on the adjoining continental shelf ecosystem[J]. Continental Shelf Research, 2008, 28: 1 490-1 500.[14] Li C X, Chen Q Q, Zhang J Q,et al. Strategraphy and paleoenvironemntal changes in the Yangtze delta during the Late Quaternary[J]. Journal of Asian Earth Sciences, 2000, 18: 453-469.
[15] Li C X, Wang P, Sun H P,et al. Late Quaternary incised-valley fill of the Yangtze delta (China): Its stratigraphic framework and evolution[J]. Sedimentary Geology,2002, 152: 133-158.
[16] Chen Jiyu. Selected Papers: 55 Years of Estuarine and Coastal Research[M].Shanghai:East China Normal University Press,2000:510.[陈吉余. 从事河口海岸研究五十五年论文选[M]. 上海:华东师范大学出版社, 2000:510.]
[17] Hori K, Saito Y, Zhao H Q, et al. Architecture and evolution of the tide-dominated Changjiang (Yangtze) River delta, China[J]. Sedimentary Geology,2002, 146: 249-264.
[18] Hori K, Saito Y, Zhao Q H, et al. Sedimentary facies and Holocene progradation rates of the Changjiang (Yangtze) delta, China[J]. Geomorphology,2001,41: 233-248.
[19] Hori K, Saito Y, Zhao Q H,et al. Sedimentary facies of the tide-dominated paleo-Changjiang (Yangtze) estuary during the last transgression[J]. Marine Geology,2001, 177: 331-351.
[20] Saito Y, Yang Z S, Hori K. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: A review on their characteristics, evolution and sediment discharge during the Holocene[J].Geomorphology, 2001, 41: 219-231.
[21] Sternberg R W, Larsen L H, Miao Y T. Tidally driven sediment transport on the East China Sea continental shelf[J]. Continental Shelf Research,1985,4:105-120.
[22] Su J L, Wang K S. Changjiang River plume and suspended sediment transport in Hangzhou Bay[J]. Continental Shelf Research,1989, 9: 93-111.
[23] Chen J Y, Li D J, Chen B L,et al. The processes of dynamic sedimentation in the Changjiang Estuary[J]. Journal of Sea Research,1999, 41: 129-140.
[24] Stanley D J, Chen Z Y. Yangtze delta, eastern China: 1. Geometry and subsidence of Holocene depocenter[J]. Marine Geology,1993, 112: 1-11.
[25] Chen Z Y, Stanley D J. Yangtze delta, eastern China: 2. Late Quaternary subsidence and deformation[J].Marine Geology,1993,112: 13-21.
[26] Yang S L, Ding P X, Chen S L. Changes in progradation rate of the tidal flat at the mouth of the Changjiang (Yangtze) River, China[J]. Geomorphology,2001,38: 167-180.
[27] Yang S L, Belkin I M, Belkina A I,et al. Delta response to decline in sediment supply from the Yangtze River: Evidence of the recent four decades and expectations for the next half-century[J]. Estuarine, Coastal and Shelf Science, 2003, 57: 689-699.
[28] Gao S. Modeling the limit of the Changjiang River delta growth[J]. Geomorphology,2007, 85: 225-236.
[29] DeMaster D J, McKee B A, Nittrouer C A,et al. Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea[J]. Continental Shelf Research,1985, 4(1): 143-158.
[30] Milliman J D, Sheng H T, Yang Z S,et al. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf[J]. Continental Shelf Research,1985, 4(1): 37-45.
[31] Jin Xianglong. Submarine Geology of the East China Sea[M].Beijing:China Ocean Press,1992:524.[金翔龙, 主编.东海海洋地质[M]. 北京:海洋出版社,1992:524.]
[32] Yang Shilun, Zhu Jun, Zhao Qingying. A preliminary study on the influence of Changjiang River sediment supply on subaqueous delta[J]. Acta Oceanologica Sinica,2003, 25(5): 83-91.[杨世伦, 朱骏, 赵庆英. 长江供沙量减少对水下三角洲发育影响的初步研究——近期证据分析和未来趋势估计[J]. 海洋学报, 2003, 25(5): 83-91.]
[33] Wu Hualin, Shen Huanting, Hu Hui, et al. GIS supporting study on calculation of the ampunt of siltation and erosion in mouth bars of the Changjiang Estuary[J]. Acta Oceanologica Sinica,2002, 24(2): 84-93.[吴华林,沈焕庭,胡辉,等.GIS支持下的长江口拦门沙泥沙冲淤定量计算[J]. 海洋学报, 2002, 24(2): 84-93.]
[34] Zhao Qingying, Zhu Jun.The statistical analysis of response of the river mouth passage to water and sediment Discharges from the Changiang River[J]. Scientia Geographica Sinica,2003, 23(1):112-117.[赵庆英,朱骏. 河口河槽季节性冲淤变化及其对河流来水来沙香型的统计分析——以长江口南槽为例[J]. 地理科学, 2003, 23(1):112-117.]
[35] Yang Shilun, Zhu Jun, Li Peng. Response of tidal bank on the Changjiang River mouth foreland to drastic decline in riverine sediment supply and sea level rise[J]. Advances in Marine Science, 2005, 23(2): 152-158.[杨世伦, 朱骏, 李鹏. 长江口前沿潮滩对来沙锐减和海面上升的响应[J]. 海洋科学进展, 2005, 23(2): 152-158.]
[36] Li Peng, Yang Shilun, Dai Shibao, et al. Accretion/erosion of the subaqueous delta at the Yangtze Estuary in recent 10 years[J]. Acta Geographica Sinica,2007, 62(7): 707-716.[李鹏, 杨世伦, 戴仕宝, 等. 近10年来长江口水下三角洲的冲淤变化——简论三峡工程蓄水的影响[J]. 地理学报, 2007, 62(7): 707-716.]
[37] Lin Chengkun. Supply and transport of cohesive sediment over the Changjiang estuary and adjoining waters[J]. Acta Geographica Sinica,1992, 47(2): 108-118.[林承坤. 长江口及其邻近海域粘性泥沙的数量与输移\[J\]. 地理学报, 1992, 47(2): 108118.\][ZK)]
\[38\]〓[ZK(]Cai Aizhi. Diffusion of sediments of the Changjiang River discharging into the sea\[J\].Acta Oceanologica Sinica,1982, 4(1): 7888.\[蔡爱智. 长江入海泥沙的扩散\[J\]. 海洋学报,1982, 4(1): 78-88.\]
[39] Wang Kangshan, Su Yufen, Cai Weizhang, et al. Hydrological characteristics of the shelf waters associated with the Changjiang plume[C]//Seconcond Institute of Oceanography, ed. Research of the East China Sea. Beijing:China Ocean Press, 1984:9-19.[王康墡,苏玉芬,蔡伟章,等. 长江径流及其冲淡区的水文特征[C]//国家海洋局第二海洋研究所主编.东海研究文集.北京:海洋出版社,1984:9-19.][40] Shi Y L, Yang W, Ren M E. Hydrological characteristics of the Changjiang and its relation to sediment transport to the sea[J]. Continental Shelf Research,1985,4(1): 5-15.
[41] Beardsley R C, Limeburner R, Yu H, et al.Discharge of the Changjiang (Yangtze River) into the East China Sea[J].Continental Shelf Research,1985, 4(1): 57-76.
[42] Larsen H L, Cannon G A, Choi B H. East China Sea tide currents[J]. Continental Shelf Research,1985, 4(1): 77-103.
[43] Milliman J D, Hsueh Y, Hu D, et al.Tidal phase control of sediment discharge from the Yangtze River[J].Estuarine, Coastal and Shelf Science,1984, 19: 119-128.
[44] Sternberg R W, Larsen L H, Miao Y T. Tidally driven sediment transport on the East China Sea continental shelf[J].Continental Shelf Research,1985, 4(1): 105-120.
[45] Su J, Wang K S. Changjiang river plume and suspended sediment transport in Hangzhou Bay[J].Continental Shelf Research,1989, 9: 93-111.
[46] Li Baohua, Li Congxian, Shen Huanting.A preliminary study on sedment flux in the Changjiang Delta during the postglacial period[J].Science in China (Series D),2003, 46(7): 743-752.[李保华, 李从先, 沈焕庭.冰后期长江三角洲沉积通量的初步研究[J]. 中国科学:D辑, 2002, 32(9): 776-782.]
[47] Gao S,Wang Y P, Gao J H. Sediment retention at the Changjiang sub-aqueous delta, in response to catchment changes[J]. Estuarine, Coastal and Shelf Science,2010, submitted.
[48] Gao S. Sediment and carbon accumulation on continental shelves[C]//Liu K K, Atkinson L, Quiñones R,eds.Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis. Berlin:Springer-Verlag,  2010:589-598, 745-747.
[49] Ogrinc N, Fontolan G, Faganeli J, et al.Carbon and nitrogen isotope compositions of organic matter in coastal marine sediments (the Gulf of Trieste, N Adriatic Sea): Indicators of sources and preservation[J].Marine Chemistry,2005, 95: 163-181.
[50] Bianchi T S, Mitra S, McKee B A. Sources of terrestrially derived organic carbon in lower Mississippi River and Lousiana shelf sediments: Implications for differential sedimentation and transport at the coastal margin[J]. Marine Chemistry,2002, 77: 211-223.
[51] Nagao S, Usui T, Yamamoto M, et al.Combined use of Δ14C and δ13C values to trace transportation and deposition processes of terrestrial particulate organic matter in coastal marine environments[J].Chemical Geology,2005,218: 63-72.
[52] O′Brien M C, Macdonald R W, Melling H,et al.Particle fluxes and geochemistry on the Canadian Beaufort Shelf: Implications for sediment transport and deposition[J].Continental Shelf Research,2006, 26: 41-81.
[53] Zhang J, Wu Y, Jennerjahn T C,et al.Distribution of organic matter in the Changjiang (Yangtze River) Estuary and their stable carbon and nitrogen isotopic ratios: Implications for source discrimination and sedimentary dynamics[J].Marine Chemistry,2007, 106: 111-126.
[54] Gao S. Modeling the preservation potential of tidal flat sedimentary records, Jiangsu coast, eastern China[J].Continental Shelf Research,2009, 29(16):1 927-1 936.

[1] 林春明, 张霞, 徐振宇, 邓程文, 殷勇, 承秋泉. 长江三角洲晚第四纪地层沉积特征与生物气成藏条件分析[J]. 地球科学进展, 2015, 30(5): 589-601.
[2] 刘伟男,王汝建,陈建芳,程振波,陈志华,孙烨忱. 西北冰洋阿尔法脊晚第四纪的陆源沉积物记录及其古环境意义[J]. 地球科学进展, 2012, 27(2): 209-216.
[3] 高抒. 亚洲地区的流域—海岸相互作用:APN近期研究动态[J]. 地球科学进展, 2006, 21(7): 680-686.
[4] 曹光杰;王建. 长江三角洲全新世环境演变与人地关系研究综述[J]. 地球科学进展, 2005, 20(7): 757-764.
[5] 任美锷. 气候变化对全新世以来中国东部政治、经济和社会发展影响的初步研究[J]. 地球科学进展, 2004, 19(5): 695-698.
[6] 任美锷. 地理科学研究的理论和实践———以长江三角洲为例[J]. 地球科学进展, 2004, 19(2): 169-172.
[7] 申洪源,朱诚,张强. 长江三角洲地区环境演变与环境考古学研究进展[J]. 地球科学进展, 2003, 18(4): 569-575.
[8] 凌怡莹,徐建华. 基于分形理论和Kohonen网络的城镇体系的非线性研究——以长江三角洲地区为例[J]. 地球科学进展, 2003, 18(4): 521-526.
[9] 赵红艳,王升忠,白燕,冷雪天. 近10年来我国泥炭地学的研究进展[J]. 地球科学进展, 2002, 17(6): 848-854.
[10] 顾朝林,张敏. 长江三角洲都市连绵区性状特征与形成机制研究[J]. 地球科学进展, 2001, 16(3): 332-338.
[11] 范德江,杨作升,郭志刚. 中国陆架 210Pb测年应用现状与思考[J]. 地球科学进展, 2000, 15(3): 297-302.
[12] 靳桂云. 土壤微形态分析及其在考古学中的应用[J]. 地球科学进展, 1999, 14(2): 197-200.
[13] 中国科学院学部长江三角洲经济与社会可持续发展咨询组. 长江三角洲经济与社会可持续发展若干问题咨询综合报告[J]. 地球科学进展, 1999, 14(1): 4-10.
阅读次数
全文


摘要