地球科学进展 ›› 2022, Vol. 37 ›› Issue (8): 871 -880. doi: 10.11867/j.issn.1001-8166.2022.051

研究简报 上一篇    

合肥盆地中部中—新生界沉积岩碎屑锆石 LA-ICP-MS U-Pb定年及其地质意义
杨隽豪( ), 王勇生( ), 白桥, 马威威   
  1. 合肥工业大学资源与环境工程学院,安徽 合肥 230009
  • 收稿日期:2022-05-16 修回日期:2022-07-13 出版日期:2022-08-10
  • 通讯作者: 王勇生 E-mail:jiaqiangyang1995@163.com;yshw9007@hfut.edu.cn
  • 基金资助:
    国家自然科学基金面上项目“大别造山带北淮阳单元的变形历史与构造属性”(41572186)

LA-ICP-MS Detrital Zircon U-Pb Dating of Mesozoic-Cenozoic Sedimentary Rocks in the Central Hefei Basin and Its Geological Significance

Juanhao YANG( ), Yongsheng WANG( ), Qiao BAI, Weiwei MA   

  1. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
  • Received:2022-05-16 Revised:2022-07-13 Online:2022-08-10 Published:2022-07-28
  • Contact: Yongsheng WANG E-mail:jiaqiangyang1995@163.com;yshw9007@hfut.edu.cn
  • About author:YANG Junhao (1995-), male, Linyi City, Shandong Province, Master student. Research area includes orogenic dynamics. E-mail: jiaqiangyang1995@163.com
  • Supported by:
    the National Natural Science Foundation of China “Deformation history and tectonic attribute of the Beihuaiyang unit in the Dabie orogenic belt”(41572186)

合肥盆地的形成演化与大别造山带具有密切的耦合关系,充填了来自造山带剥蚀的碎屑物质,从而记录了大别造山带隆升和剥蚀历史的关键信息。为了给大别造山带后碰撞阶段隆升演化历史提供信息,选择合肥盆地中部下白垩统朱巷组和古近系定远组开展详细的碎屑锆石LA-ICP-MS U-Pb定年工作。朱巷组碎屑锆石年龄特征相对复杂,主要表现为具有新元古代中期和三叠纪2个主年龄峰以及一系列次级年龄峰;定远组则主要具有新元古代中期主年龄峰,兼有部分古元古代和太古代末年龄峰。结合现有资料综合分析可知,朱巷组物源区主要为大别造山带,其下部地层向上部地层碎屑锆石年龄特征的转变反映了大别造山带后碰撞阶段造山带北部高压—超高压岩石逐渐被剥蚀殆尽的过程;定远组物源区主要为合肥盆地东侧的张八岭隆起,物源物质可能来源于该隆起内分布的震旦系。晚白垩世末—古近纪初,合肥盆地沉积岩的主要物源区由大别造山带转变为张八岭隆起。这为更好地认识合肥盆地及其周边地区的构造演化提供了新的证据。

Rock materials in an orogen are usually large-scale denuded and transferred to their surrounding basins during the post-collisional stage. Therefore, studies on sedimentary rocks in these basins are helpful for better understanding the evolutionary history of the orogen. The Hefei Basin, located north of the Dabie Orogen, was filled with clastic materials from the orogen, recording key information on its uplift and denudation history. In this study, sandstones of the Lower Cretaceous Zhuxiang Formation and siltstones of the Paleogene Dingyuan Formation in the central Hefei Basin were selected for detailed detrital zircon LA-ICP-MS U-Pb dating. The detrital zircon age frequencies in the Zhuxiang Formation show Triassic and middle Neoproterozoic age clusters, whereas the Dingyuan Formation has a predominant middle Neoproterozoic age cluster, with secondary age clusters in the Paleoproterozoic and the Archean. All the samples lacked or contained few Early Cretaceous zircon ages. Combined with the results of previous studies, it can be concluded that the provenance of the Zhuxiang Formation is mainly the Dabie Orogen and that its formation age corresponds to the late stage of the Fenghuangtai Formation in the southern Hefei Basin. Different detrital zircon age frequencies in different samples correspond to the process in which the high-pressure and ultrahigh-pressure rocks were gradually denuded in the Dabie Orogen during the Early Cretaceous. In the Paleogene, the Hefei Basin was surrounded by a series of uplifts, which greatly reduced the diversity of clastic material sources of the Paleogene Dingyuan Formation. Because the detrital zircon age frequencies of the Dingyuan Formation are consistent with those of the Sinian strata in the South China Block, it can be inferred that the source materials of the Dingyuan Formation mainly come from the Sinian of the Zhangbaling Uplift. The provenance of sedimentary rocks in the Hefei Basin changed from the Dabie Orogen to the Zhangbaling Uplift at the end of the Late Cretaceous or the beginning of the Paleogene.

中图分类号: 

图1 合肥盆地构造框架及沉积岩分布简图
Fig. 1 Simplified map for tectonic architecture of the Hefei Basin and distribution of sedimentary rocks
图2 合肥盆地中部沉积岩野外及显微照片
(a)朱巷组下部灰白色砂岩夹粉砂岩;(b)朱巷组上部紫红色泥质粉砂岩;(c)古近系定远组泥质粉砂岩;(d)朱巷组灰白色砂岩显微照片;(e)朱巷组紫红色粉砂岩显微照片;(f)定远组泥质粉砂岩显微照片
Fig. 2 Field photographs and photomicrographs of sedimentary rocks in the central Hefei Basin
(a) Gray white sandstone and siltstone in the lower part of the Zhuxiang Formation; (b) Purple red pelitic siltstone in the upper part of the Zhuxiang Formation; (c) Pelitic siltstone of the Paleogene Dingyuan Formation; (d) Micrograph of gray white sandstone of the Zhuxiang Formation; (e) Micrograph of purple red siltstone of the Zhuxiang Formation; (f) Micrograph of argillaceous siltstone of the Dingyuan Formation
图3 合肥盆地中部沉积岩部分锆石阴极发光图像
Fig. 3 Cathodoluminescence images of a selection of the dated zircons from the sedimentary rocks in the central Hefei Basin
图4 合肥盆地中部下白垩统朱巷组年龄频谱图及Th/U
Fig. 4 Histograms and Th/U ratios of detrital zircons from the Lower Cretaceous Zhuxiang Formation in the central Hefei Basin
图5 合肥盆地中部古近系定远组年龄频谱图及Th/U
Fig. 5 Histograms and Th/U ratios of detrital zircons from the Paleogene Dingyuan Formation in the central Hefei Basin
1 MATTAUER M, MATTE P, MALAVIEILLE J,et al. Tectonics of the Qinling belt:build-up and evolution of eastern Asia[J]. Nature,1985,317:496-500.
2 YIN A, NIE S Y. An indentation model for the North and South China collision and the development of the Tan-Lu and Honam Fault Systems, eastern Asia[J]. Tectonics, 1993, 12(4): 801-813.
3 ZHANG G W, MENG Q G, YU Z P,et al. Orogenesis and dynamics of the Qinling orogen[J]. Science in China Series D: Earth Sciences,1996,39(3):225-234.
4 XU Shutong, JIANG Laili, LIU Yican, et al. Tectonic framework and evolution of the Dabie Mountains in Anhui, Eastern China[J]. Acta Geological Sinica, 1992, 66(1): 1-14, 97.
徐树桐, 江来利, 刘贻灿, 等. 大别山区(安徽部分)的构造格局和演化过程[J]. 地质学报, 1992, 66(1): 1-14, 97.
5 OKAY A I. Petrology of a diamond and coesite-bearing metamorphic terrain: Dabie Shan, China[J]. European Journal of Mineralogy, 1993, 5(4): 659-676.
6 LI S G, JAGOUTZ E, CHEN Y Z, et al. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China[J]. Geochimica et Cosmochimica Acta, 2000, 64(6): 1 077-1 093.
7 ZHENG Y F, ZHOU J B, WU Y B, et al. Low-grade metamorphic rocks in the Dabie-Sulu orogenic belt: a passive-margin accretionary wedge deformed during continent subduction[J]. International Geology Review, 2005, 47(8): 851-871.
8 LIU F L, GERDES A, LIOU J G, et al. SHRIMP U-Pb zircon dating from Sulu-Dabie dolomitic marble, eastern China: constraints on prograde, ultrahigh-pressure and retrograde metamorphic ages[J]. Journal of Metamorphic Geology, 2006, 24(7): 569-589.
9 WAWRZENITZ N, ROMER R L, OBERHÄNSLI R, et al. Dating of subduction and differential exhumation of UHP rocks from the Central Dabie Complex (E-China): constraints from microfabrics, Rb-Sr and U-Pb isotope systems[J]. Lithos, 2006, 89(1/2): 174-201.
10 RATSCHBACHER L, HACKER B R, WEBB L E, et al. Exhumation of the ultrahigh-pressure continental crust in east central China: Cretaceous and Cenozoic unroofing and the Tan-Lu fault[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B6): 13 303-13 338.
11 LIN W, JI W B, FAURE M, et al. Early Cretaceous extensional reworking of the Triassic HP-UHP metamorphic orogen in eastern China[J]. Tectonophysics, 2015, 662: 256-270.
12 ZHU G, WANG Y S, WANG W, et al. An accreted micro-continent in the north of the Dabie Orogen, East China: evidence from detrital zircon dating[J]. Tectonophysics, 2017, 698: 47-64.
13 WANG Y S, BAI Q, TIAN Z Q,et al. Mesozoic unroofing history of the Dabie Orogen,eastern China: evidence from detrital zircon geochronology of sediments in the Hefei Basin[J]. The Journal of Geology,2021,129(2):183-206.
14 LIU Shaofeng, ZHANG Guowei. Mesozoic basin development and its indication of collisional orogeny in the Dabie orogen[J]. Chinese Science Bulletin,2013,58(1):1-26.
刘少峰,张国伟. 大别造山带周缘盆地发育及其对碰撞造山过程的指示[J]. 科学通报,2013,58(1):1-26.
15 LI R W, WAN Y S, CHENG Z Y, et al. Provenance of Jurassic sediments in the Hefei Basin, east-central China and the contribution of high-pressure and ultrahigh-pressure metamorphic rocks from the Dabie Shan[J]. Earth and Planetary Science Letters, 2005, 231(3/4): 279-294.
16 MENG Q R, LI S Y, LI R W. Mesozoic evolution of the Hefei Basin in eastern China: sedimentary response to deformations in the adjacent Dabieshan and along the Tanlu fault[J]. Bulletin of the Geological Society of America, 2007, 119(7/8): 897-916.
17 WAN Y S, LI R W, WILDE S A, et al. UHP metamorphism and exhumation of the dabie orogen, China: evidence from SHRIMP dating of zircon and monazite from a UHP granitic gneiss cobble from the Hefei Basin[J]. Geochimica et Cosmochimica Acta, 2005, 69(17): 4 333-4 348.
18 LI Shuangying, WEI Xing, XIE Wei, et al. From source to sink: coupling relation between the Dabie Shan Orogen provenance and Mesozoic sediments of the south-margin of Hefei Basin, based on the evidence of detrital zircon ages[J]. Journal of Palaeogeography, 2019, 21(1): 82-106.
李双应, 魏星, 谢伟, 等. 从源到汇: 大别造山带物源区与合肥盆地南缘中生代沉积耦合关系: 来自碎屑锆石U-Pb年龄证据[J]. 古地理学报, 2019, 21(1): 82-106.
19 ZHAI M G, CONG B L, ZHAO Z Y, et al. Petrological-tectonic units in the coesite-bearing metamorphic terrain of the Dabie Mountains, central China and their geotectonic implications[J]. Journal of Southeast Asian Earth Sciences, 1995, 11(1): 1-13.
20 TIAN Ziqiang, WANG Yongsheng, HU Zhaoqi, et al. LA-ICP MS zircon U-Pb dating of metasedimentary rocks in Dabie orogenic belt and its tectonic implications[J]. Advances in Earth Science, 2018, 33(9): 945-957.
田自强, 王勇生, 胡召齐, 等. 大别造山带内部变沉积岩锆石LA-ICP MS U-Pb定年及其大地构造意义[J]. 地球科学进展, 2018, 33(9): 945-957.
21 HACKER B R, RATSCHBACHER L, WEBB L, et al. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China[J]. Earth and Planetary Science Letters, 1998, 161(1/2/3/4): 215-230.
22 HE Y S, LI S G, HOEFS J, et al. Post-collisional granitoids from the Dabie orogen: new evidence for partial melting of a thickened continental crust[J]. Geochimica et Cosmochimica Acta, 2011, 75(13): 3 815-3 838.
23 ZHAO Z F, ZHENG Y F, WEI C S, et al. Origin of postcollisional magmatic rocks in the Dabie orogen: implications for crust-mantle interaction and crustal architecture[J]. Lithos, 2011, 126(1/2): 99-114.
24 WANG S J, LI S G, CHEN L J, et al. Geochronology and geochemistry of leucosomes in the North Dabie Terrane, East China: implication for post-UHPM crustal melting during exhumation[J]. Contributions to Mineralogy and Petrology, 2013, 165(5): 1 009-1 029.
25 AYERS J C, DUNKLE S, GAO S, et al. Constraints on timing of peak and retrograde metamorphism in the Dabie Shan Ultrahigh-Pressure Metamorphic Belt, east-central China, using U-Th-Pb dating of zircon and monazite[J]. Chemical Geology, 2002, 186(3/4): 315-331.
26 WEI Chunjing, SHAN Zhengang. Metamorphism of the Susong complex from the southern Dabie Mountains, Anhui Province[J]. Acta Petrologica Sinica, 1997, 13(3): 356-368.
魏春景, 单振刚. 安徽省大别山南部宿松杂岩变质作用研究[J]. 岩石学报, 1997, 13(3): 356-368.
27 JIANG Laili, WU Weiping, LIU Yican, et al. U-Pb zircon and Ar-Ar hornblende ages of the Susong complex of the southern Dabie orogen and their geological implication[J]. Acta Petrologica Sinica, 2003, 19(3): 497-505.
江来利, 吴维平, 刘贻灿, 等. 大别山南部宿松杂岩的U-Pb锆石和Ar-Ar角闪石年龄及其地质意义[J]. 岩石学报, 2003, 19(3): 497-505.
28 YAN H Y, WANG F Y, GU H O, et al. Geochemical and Sr-Nd-Pb-Hf isotopic characteristics of muchen pluton in southeast China, constrain the petrogenesis of alkaline A-type Magma [J]. Minerals, 2020, 10: 80.
29 ZHANG Ling, WANG Ping, CHEN Xiyun, et al. Review in detrital zircon U-Pb geochronology: data acquisition, analysis and comparison[J]. Advances in Earth Science, 2020, 35(4): 414-430.
张凌, 王平, 陈玺赟, 等. 碎屑锆石U-Pb年代学数据获取、分析与比较[J]. 地球科学进展, 2020, 35(4): 414-430.
30 LIU Y S, HU Z C, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
31 LUDWIG K R. User’s manual for isoplot 3.14: a geochronological toolkit for microsoft excel[Z]. California:Berkeley Geochronology Center,2004.
32 BELOUSOVA E, GRIFFIN W, O'REILLY S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622.
33 ZHAO G C, SUN M, WILDE S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 2005, 136(2): 177-202.
34 ZHAI M G, SANTOSH M. The early Precambrian odyssey of the North China Craton: a synoptic overview[J]. Gondwana Research, 2011, 20(1): 6-25.
35 YIN C Q, LIN S F, DAVIS D W, et al. 2.1-1.85 Ga tectonic events in the Yangtze Block, South China: petrological and geochronological evidence from the Kongling Complex and implications for the reconstruction of supercontinent Columbia [J]. Lithos, 2013, 182/183: 200-210.
36 ZHANG S B, ZHENG Y F. Formation and evolution of Precambrian continental lithosphere in South China[J]. Gondwana Research, 2013, 23(4): 1 241-1 260.
37 LI Z X, LI X H, KINNY P D, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia [J]. Precambrian Research, 2003, 122(1/2/3/4): 85-109.
38 ZHENG Yongfei. Neoproterozoic magmatic activity and global change[J]. Chinese Science Bulletin,2003,48(16):1 705-1 720.
郑永飞. 新元古代岩浆活动与全球变化[J]. 科学通报,2003,48(16):1 705-1 720.
39 LIU H N, LI X W, MO X X, et al. Early Mesozoic crustal evolution in the NW segment of West Qinling, China: evidence from diverse intermediate-felsic igneous rocks[J]. Lithos, 2021, 396/397: 106187.
40 ZHAO T, ZHU G, LIN S Z, et al. Indentation-induced tearing of a subducting continent: evidence from the Tan-Lu fault zone, East China[J]. Earth-Science Reviews, 2016, 152: 14-36.
41 WANG Wei, ZHU Guang, ZHANG Shuai,et al. Detrital zircon evidence for depositional time and provenance of Mesozoic sediments in the Hefei Basin[J]. Geological Review,2017,63(4):955-977.
王薇,朱光,张帅,等. 合肥盆地中生代地层时代与源区的碎屑锆石证据[J]. 地质论评,2017,63(4):955-977.
42 SLÁMA J, PEDERSEN R. Zircon provenance of SW Caledonian Phyllites reveals a distant Timanian sediment source[J]. Journal of the Geological Society, 2015, 172: 465-478.
43 SYLVESTER P J, SOUDERS A K, LIU R. Significance of U-Pb detrital zircon geochronology for mudstone provenance[J]. Geology, 2022, 50(6): 670-675.
44 ZHAO Zifu, ZHENG Yongfei. Remelting of subducted continental lithosphere:petrogenesis of Mesozoic magmatic rocks in the Dabie-Sulu orogenic belt[J]. Science China Series D: Earth Sciences,2009,39(7):888-909.
赵子福,郑永飞. 俯冲大陆岩石圈重熔:大别—苏鲁造山带中生代岩浆岩成因[J]. 中国科学D辑:地球科学,2009,39(7):888-909.
45 WANG Yongsheng, WANG Haifeng, SHENG Yong,et al. Early Cretaceous uplift history of the Dabie orogenic belt:evidence from pluton emplacement depths[J]. Science China: Earth Sciences,2014,44(2):200-212.
王勇生,王海峰,盛勇,等. 大别造山带早白垩世抬升演化研究——来自岩体侵位深度的证据[J]. 中国科学:地球科学,2014,44(2):200-212.
46 WANG Yongsheng, TIAN Ziqiang, HU Zhaoqi, et al. Provenance analysis of the Yuantongshan Formation in the Hefei Basin and its geological signature: evidences from detrital zircon dating[J]. Earth Science Frontiers, 2019, 26(2): 179-193.
王勇生, 田自强, 胡召齐, 等. 合肥盆地圆筒山组物源分析及其地质意义: 来自碎屑锆石的证据[J]. 地学前缘, 2019, 26(2): 179-193.
47 WANG Yongsheng, BAI Qiao, TIAN Ziqiang, et al. Detrital zircon U-Pb dating in the southern Hefei Basin: evidence for exhumation of HP-UHP rocks of the Dabie Orogen[J]. Scientia Sinica (Terrae), 2020, 50(7): 921-935.
王勇生, 白桥, 田自强, 等. 合肥盆地南缘碎屑锆石定年及其对大别造山带超高压岩石折返的指示[J]. 中国科学: 地球科学, 2020, 50(7): 921-935.
48 DU Qiuding, WANG Zhengjiang, WANG Jian, et al. LA-ICP-MS U-Pb ages of detrital zircons from the neoproterozoic Chang’an formation in central Hunan and its geological implicatons[J]. Geological Review, 2013, 59(2): 334-344.
杜秋定, 汪正江, 王剑, 等. 湘中长安组碎屑锆石LA-ICP-MS U-Pb年龄及其地质意义[J]. 地质论评, 2013, 59(2): 334-344.
[1] 张硕, 简星, 张巍. 碎屑磷灰石对沉积物源判别的指示 *[J]. 地球科学进展, 2018, 33(11): 1142-1153.
[2] 简星, 关平, 张巍. 碎屑金红石:沉积物源的一种指针[J]. 地球科学进展, 2012, 27(8): 828-846.
[3] 范代读,王扬扬,吴伊婧. 长江沉积物源示踪研究进展[J]. 地球科学进展, 2012, 27(5): 515-528.
阅读次数
全文


摘要