地球科学进展 ›› 2014, Vol. 29 ›› Issue (3): 412 -419. doi: 10.11867/j.issn.1001-8166.2014.03.0412

上一篇    下一篇

北京西山黑龙关泉域岩溶水系统边界与水文地质性质
赵春红 1, 李强 2, 梁永平 1, *( ), 许亮 3, 王维泰 1, 卢海平 1, 唐春雷 1   
  1. 1.中国地质科学院岩溶地质研究所/国土资源部、广西壮族自治区岩溶动力学重点实验室, 广西 桂林 541004
    2.山西省运城市水资源管理委员会办公室,山西 运城 044000
    3.北京市水文地质工程地质大队,北京 100195
  • 收稿日期:2013-11-11 修回日期:2014-03-04 出版日期:2014-03-20
  • 通讯作者: 梁永平 E-mail:lyp0261@karst.ac.cn
  • 基金资助:
    中国地质调查局地质调查项目“北方岩溶区水文地质环境地质调查示范”(编号:1212011220940);北京市岩溶地下水勘查评价工程(编号:BJYRS-ZT)资助

Karst Water System Boundaries and Hydrogeological Properties of Heilongguan Springshed in Xishan Region, Beijing

Chunhong Zhao 1, Qiang Li 2, Yongping Liang 1( ), Liang Xu 3, Weitai Wang 1, Haiping Lu 1, Chunlei Tang 1   

  1. 1. Institute of Karst Geology, Chinese Academy of Geological Sciences / Karst Dynamiccs Laboratory, Ministry of Land and Resources & Guangxi Zhuang Autonomous Region, Guilin 541004, China
    2. Water Management Committee Office of Yuncheng, Yuncheng 044000, China
    3.Beijing Institute of Hydrogeology and Engineering Geology, Beijing 100195, China
  • Received:2013-11-11 Revised:2014-03-04 Online:2014-03-20 Published:2014-03-10

北方岩溶水系统具有固定补给范围和资源要素,是岩溶地下水进行独立循环的基本单元,控制了岩溶水的运移富集、水化学演化特征、资源构成以及环境地质问题。开展岩溶水系统研究的首要任务是确定系统边界位置及其水文地质性质。以北京西山黑龙关泉域岩溶水系统为研究对象,采用地质学、岩溶动力学、流体动力学、水文地球化学、地球物理勘探等方法,确定黑龙关泉域岩溶水系统是由南部大石河背斜岩溶水子系统和北部百花山向斜南翼岩溶水子系统2个次级系统组成;其含水岩层分别为蓟县系铁岭组、雾迷山组和青白口系景儿峪组、奥陶系、寒武系碳酸盐岩。根据边界的水文地质性质可以划分为地表分水岭边界、地下分水岭边界、隔水边界、岩溶含水层深埋滞流性边界等类型。

With a fixed supplied scope and resource elements, karst groundwater system circulates as an independent unit in northern China, which controls karst water transport and enrichment, hydrochemical evolution, composition of water resources and environmental geological problems. In order to carry out karst groundwater system research, the primary task is determining the location and hydrogeological properties of boundaries. In this paper, we choose Heilongguan karst water system at Xishan region in Beijing as research object and determine the hydrogeological boundaries by geology, karst dynamics, fluid dynamics, hydro-geochemical, geophysical exploration and other methods. Finally, we conclude that Heilongguan karst water system is composed of two subsystems. The one is Dashihe anticline karst water subsystem, situated in the south and composed by the Upper Proterozoic aquifer;The other is Baihuashan syncline karst water subsystem, situated in the north and composed by Cambrian-Ordovician aquifer. According to hydrogeological properties of boundaries, there are surface water watershed boundary, underground watershed boundary, confining boundaries, karst aquifers deep stagnant boundary and other types.

中图分类号: 

图1 黑龙关泉域岩溶水系统地质略图
Fig.1 Geological sketch map of Heilongguan springshed
表1 研究区寒武—奥陶系岩溶地下水位实测汇总表
Table 1 Measured water level of Cambrian-Ordovician aquifer of study area
图2 黑龙关泉域岩溶水系统等水位线图
Fig.2 Water level contour map of Heilongguan springshed
图3 黑龙关岩溶水系统北边界上清水泉—圣莲山地质剖面图
Fig.3 The geological profile of Shangqingshuiquan-Shenglianshan of Heilongguan springshed
图4 大安山—红煤厂断层面的溶蚀现象
Fig.4 The corrosion phenomena of Da’anshan-Hongmeichang fault
图5 黑龙关岩溶水系统西南边界大港—北窖地质剖面图
Fig.5 The geological profile of Dagang-Beijiao of Heilongguan springshed
图6 大石河背斜岩溶水文地质剖面图
Fig.6 The hydrogeological profiles of Dashi anticline of Heilongguan springshed
图7 霞云岭北断层可控源音频大地电磁法视电阻率解译剖面图
Fig.7 The apparent resistivity profiles of northern Xiayunling fault controlled source audio magnetotelluric method interprets
图8 工作区不同含水岩组岩溶水样水化学三线图
Fig. 8 The hydrochemical trigraph of karst water samples
[1] Zhou Zongjun. The investigation of groundwater systems division in Shaanxi Province[J]. Geology of Shaanxi, 1985, (1): 100-107.
[2] Liang Yongping, Wang Weitai. The division and characteristics of karst water systems in Northern China[J]. Acta Geoscientica Sinica, 2010, 31(6):860-868.
[梁永平,王维泰.中国北方岩溶水系统划分与系统特征[J].地球学报,2010, 31(6):860-868.]
[3] Chen Mengxiong,Ma Fengshan. China Groundwater Resources and Environment[M]. Beijing: Seismological Press, 2002.
[陈梦熊,马凤山. 中国地下水资源与环境[M].北京:地震出版社, 2002.]
[4] Liu Qiren, Zhang Fengqi, Qin Yisu, et al. The formation, distribution, rational development and utilization of karst groundwater resource in Northern China[J]. Hydrogeology and Engineering Geology, 1992, 19(4):41-44.
[刘启仁, 张凤岐, 秦毅苏, 等.中国北方岩溶水资源的形成、分布与合理开发利用[J].水文地质工程地质,1992, 19(4):41-44.]
[5] Han Xingrui,Lu Rongan,Li Qingsong. Karst Groundwater System—Resarch on Big Springs in Shanxi[M]. Beijing: Geological Publishing House, 1993.
[韩行瑞,鲁荣安,李庆松. 岩溶水系统——山西岩溶大泉研究[M].北京: 地质出版社,1993.]
[6] Han Xingrui,Liang Yongping,Shi Jian. Research on Typical Karst Groundwater System at Loess Region in Northwest China[M]. Guilin: Guangxi Normal University Press, 2002.
[韩行瑞,梁永平,时坚. 中国西北黄土地区典型岩溶水系统研究[M]. 桂林: 广西师范大学出版社, 2002.]
[7] Li Wenpeng, Hao Aibing. The formation and evolution model of groundwater and its significance in inland arid basin, Northwest China[J]. Hydrogeology and Engineering Geology,1999, 26(4): 28-32.
[李文鹏,郝爱兵.中国西北内陆干旱盆地地下水形成演化模式及其意义[J].水文地质工程地质,1999, 26(4):28-32.]
[8] Wu Xuanmin, Shi Shengsheng, Li Zhiheng, et al. Systemic research of groundwater in Ejina Basin in the lower Heihe River(up)[J].Hydrogeology & Engineering Geology, 2002,29(1):16-20.
[武选民, 史生胜, 黎志恒,等. 西北黑河下游额济纳盆地地下水系统研究(上)[J].水文地质工程地质, 2002, 29(1):16-20.]
[9] Wu Xuanmin, Shi Shengsheng, Li Zhiheng, et al. Systemic research of groundwater in Ejina Basin in the lower Heihe River(down)[J].Hydrogeology & Engineering Geology, 2002,29(2):30-33.
[武选民, 史生胜, 黎志恒, 等.西北黑河下游额济纳盆地地下水系统研究(下)[J].水文地质工程地质,2002, 29(2):30-33.]
[10] Wang Zhanhe, Zhan Tiande, Yu Desheng, et al. Division of groundwater systerm of Tarim Basin[J]. Xinjiang Geology, 2004, 22(3):262-264.
[王占和, 谌天德, 于德胜, 等. 塔里木盆地地下水系统划分[J].新疆地质,2004, 22(3):262-264.]
[11] Pan Shulan. Using stable isotopic to study karst water resources in taiyuan area[J]. Carsologica Sinica, 1989,8(2):66-70.
[潘曙兰.稳定同位素在太原地区岩溶水资源研究中的应用[J].中国岩溶,1989, 8(2):66-70.]
[12] Ma Zhiyuan, Niu Guangliang, Dang Xueya, et al. Supply environm ent from Ordovician karst groundwater in eastern Weibei of Ordos Basin, Shaanxi Province[J]. Advances in Earth Science, 2004, (Suppl.): 161-165.
[马致远, 牛光亮, 党学亚, 等.鄂尔多斯盆地渭北东部奥陶系岩溶地下水的补给环境[J].地球科学进展,2004, (增刊):161-165.]
[13] Yang Jilong, Han Dongmei, Su Xiaosi, et al. Environmental tracers as indicators of seawater intrusion processes in the coastal karst area[J]. Advances in Earth Science, 2012, 27(12):1 344-1 352.
[杨吉龙, 韩冬梅, 苏小四, 等.环境同位素特征对滨海岩溶地区海水入侵过程的指示意义[J].地球科学进展,2012, 27(12):1 344-1 352.]
[14] Hong Yiguo. Marine nitrogen cycle recorded by nitrogen and oxygen isotope fractionation of nitrate[J]. Advances in Earth Science, 2013,28(7):751-764.
[洪义国.硝酸盐氮氧稳定同位素分馏过程记录的海洋氮循环研究进展[J].地球科学进展,2013, 28(7):751-764.]
[15] Li Xiangquan, Hou Xinwei, Zhang Hongda, et al. Study on the geochemistry-isotope characteristics of the groundwater systems in Taiyuan Basin[J]. Journal of Arid Land Resources and Environment, 2006,20(5):109-114.
[李向全, 侯新伟, 张宏达, 等. 太原盆地地下水系统水化学—同位素特征研究[J].干旱区资源与环境,2006, 20(5):109-114.]
[16] Deng Yinger, Jia Shuyuan, Huang Runqiu, et al. Groundwater systerm of karst fracture-cave media[J]. Advances in Earth Science,2008, 23(5):489-494.
[邓英尔, 贾疏源, 黄润秋, 等. 岩溶缝洞系统地下水系研究[J]. 地球科学进展,2008, 23(5):489-494.]
[17] Beijing Buraeu of Geology. Beijing Regional Geology[M]. Beijing: Geological Publishing House, 1991.
[北京市地质矿产局. 北京市区域地质志[M]. 北京: 地质出版社, 1991.]
[18] Beijing Buraeu of Geology. Beijing Lithostratigraphic[M]. Beijing: China University of Geosciences Press, 1996.
[北京市地质矿产局. 北京市岩石地层[M]. 北京:中国地质大学出版社, 1996.]
[1] 涂梦昭,刘志锋,何春阳,任强,卢文路. 基于 GRACE卫星数据的中国地下水储量监测进展[J]. 地球科学进展, 2020, 35(6): 643-656.
[2] 黄婉彬,鄢春华,张晓楠,邱国玉. 城市化对地下水水量、水质与水热变化的影响及其对策分析[J]. 地球科学进展, 2020, 35(5): 497-512.
[3] 李昂,王化锋,宁立波,胡闯,朱晛亭. 边坡裂隙岩体内凝结水形成区域的分布特征[J]. 地球科学进展, 2020, 35(2): 189-197.
[4] 覃荣高,邱仁敏,黎明,曹广祝,王金生,仵彦卿. 包气带—含水层地下水污染风险评估研究进展[J]. 地球科学进展, 2020, 35(2): 111-123.
[5] 曹天正, 韩冬梅, 宋献方, 刘伟, 杜荻. 滨海地区地表水—地下水相互作用研究进展的文献计量分析[J]. 地球科学进展, 2020, 35(2): 154-166.
[6] 杨建,刘基,黄浩,梁向阳. 鄂尔多斯盆地北部深埋区“地貌—沉积”控水关键要素研究[J]. 地球科学进展, 2019, 34(5): 523-530.
[7] 王思佳,刘鹄,赵文智,李中恺. 干旱、半干旱区地下水可持续性研究评述[J]. 地球科学进展, 2019, 34(2): 210-223.
[8] 潘敖然, 单慧媚, 彭三曦, 赵超然, 黄健, 闫志为. 基于热力学模拟河套平原高砷地下水中硫代砷形态分布特征 *[J]. 地球科学进展, 2018, 33(11): 1169-1180.
[9] 刘鹄, 赵文智, 李中恺. 地下水依赖型生态系统生态水文研究进展[J]. 地球科学进展, 2018, 33(7): 741-750.
[10] 王文科, 宫程程, 张在勇, 陈立. 旱区地下水文与生态效应研究现状与展望[J]. 地球科学进展, 2018, 33(7): 702-718.
[11] 刘轶男, 孙凤霞, 崔月菊, 盘晓东, 马铭志, 张昕, 杜建国. 吉林省松原地区地震监测台站水化学特征[J]. 地球科学进展, 2017, 32(8): 810-817.
[12] 赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-918.
[13] 黄奇波, 覃小群, 刘朋雨, 张连凯, 苏春田. 非岩溶水和硫酸参与溶蚀对湘南地区地下河流域岩溶碳汇通量的影响[J]. 地球科学进展, 2017, 32(3): 307-318.
[14] 孙晓敏, 吴剑锋. 黏性岩土的化学渗透效应及其研究进展[J]. 地球科学进展, 2017, 32(1): 56-65.
[15] 蒲俊兵, 蒋忠诚, 袁道先, 章程. 岩石风化碳汇研究进展:基于IPCC 第五次气候变化评估报告的分析[J]. 地球科学进展, 2015, 30(10): 1081-1090.
阅读次数
全文


摘要