地球科学进展 ›› 2006, Vol. 21 ›› Issue (5): 504 -512. doi: 10.11867/j.issn.1001-8166.2006.05.0504

研究论文 上一篇    下一篇

岩溶土壤的生态地球化学特征及其指示意义——以贵州贞丰—关岭岩溶石山地区为例
任京辰 1,张平究 1,潘根兴 1,宋林华 2   
  1. 1.南京农业大学农业资源与生态环境研究所, 江苏 南京 210095; 2.中国科学院地理科学与资源研究所, 北京 100101
  • 收稿日期:2005-12-26 修回日期:2006-02-03 出版日期:2006-05-15
  • 通讯作者: 潘根兴(1958-),男,浙江浦江人,教授,主要从事土壤与环境研究. E-mail:pangenxing@yahoo.com.cn
  • 基金资助:

    国家自然科学基金西部生态环境重大研究计划项目“西南岩溶生态系统演化与土壤生物区系响应”(编号:90202017);教育部博士点专项研究基金(编号:20020307003)项目.

Indices of Eco-Geochemical Characteristics in A Degradation- Reclamation Sequence of Soils in Mountainous Karst Area:A Case Study in Guanling-Zhenfeng Region, Guizhou, China

Ren Jingchen 1,Zhang Pingjiu 1,Pan Genxing 1,Song Linhua 2   

  1. 1.Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095,China; 2.Institute of Natural Resources and Geographical Sciences, Chinese Academy of Sciences, Beijing 100101,China
  • Received:2005-12-26 Revised:2006-02-03 Online:2006-05-15 Published:2006-05-15

岩溶石山地区土壤退化与恢复的成因和机理一直是近年来土壤学和生态学研究的热点。以贵州西南部贞丰—关岭岩溶石山区为对象,选择了区内退化地、农用地、恢复地等生态样块以及与未退化地为对照,采集了其中的表层和亚表层土壤,分别进行了土壤的养分库量、微生物活性与功能和土壤酶活性等化学分析。研究表明土壤养分库是土壤中微生物活性基础,微生物量碳随土壤养分库容的退化或恢复而相应变化,退化岩溶地植被恢复3~6年后,主要养分总库容得到明显恢复(恢复程度55%~65%),因而带动了微生物量碳的恢复(平均恢复程度60%以上),但养分的活性(有效磷)、微生物的功能(呼吸熵及土壤脲酶和磷酸酶活性)并没有得到相应程度的恢复(平均恢复程度仅在25%~40%)。这些结果提示,限制性养分活性和微生物功能的恢复是植被恢复下生态系统健康水平的重要指示。因此,在分析岩溶土壤和生态系统退化过程的本质以及评价生态恢复的效应时,不仅应将微生物量碳和总养分库指标作为岩溶土壤退化恢复的指标,更应将微生物区系的质量和功能指标纳入关键评价内容。 

The process of soil degradation in mountainous karst regions has been the research focus of soil science and ecology in China for the last decade. Taking an example of karst soils from Guanling-Zhengfeng area, southwestern Guizhou, China, changes of soil total and available pool of major nutrients, microbial biomass carbon and soil respiration, activities of major soil enzymes in a degradation-reclamation sequence were studied. The soils of surface 0~5 cm and subsurface 5~25 cm were collected from selected eco-tesseras of degraded abandon lands, corn cultivated lands, vegetation recovery lands and well-protected vegetation lands respectively. Total pool of soil major nutrients showed sensitive changes with vegetation cover, accompanying a similar change of soil microbial biomass carbon. Vegetation recovery resulted in a remarkable change of soil total nutrient pool and increased soil microbial biomass carbon. However, vegetation recovery for 3~6 years long did not drive a significant change in available pool of the nutrients as well as the microbial respiration quotient and soil enzyme activities. The results implicated that the recovery of available nutrient pool and microbial functioning could be a reliable indicator for ecosystems health of the karst soils under different degrees of land degradation and vegetation recovery. It is suggested that not only total nutrient pool and microbial biomass carbon but also the microbial functioning indicators as microbial respiration quotient, activities of key soil enzymes should be taken into account while evaluating the intensity of land degradation and/or the effect of vegetation recover on soil quality and ecosystem functioning for the karst lands in Southwest China.

中图分类号: 

[1] Li Yangbin, Wang Shijie, Rong Li. Reflections of sustainable development on ecological crisis and anti-poverty in Karst mountain areas of Southwest China[J]. Scientia Geographica Sinica,2004,24(2):157-162.[李阳兵,王世杰,容丽. 西南岩溶山区生态危机与反贫困的可持续发展文化反思[J].地理科学,2004,24(2):157-162.]

[2] Cao Jianhua, Yuan Daoxian, Zhang Cheng. Karst ecosystem constrained by geological conditions in Southwest China [J]. Earth and Environment, 2004,32(1):1-8.[曹建华,袁道先,章程.受地质条件制约的中国西南岩溶生态系统[J].地球与环境, 2004, 32(1):1-8.]

[3] Wang Shijie. The most serious ecogeologically environmental problem in southwest China—Karst rocky desertification[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2003,22(2):120-126.[王世杰. 岩溶石漠化——中国西南最严重的生态地质环境问题[J]. 矿物岩石地球化学通报, 2003, 22(2):120-126.]

[4] Academic Divisions of CAS. Some suggestions of carrying forward the comprehensive harnessing desertification in southwest Karst region [J]. Advances in Earth Science, 2003, 18(4):489-492.[中国科学院学部.关于推进西南岩溶地区石漠化综合治理的若干建议[J]. 地球科学进展, 2003, 18(4):489-492.]

[5] Lin Changhu, Zhu Anguo. A study on soil erosion and prevention in karst mountainous region of Guizhou[J]. Research of Soil and Water Conservation,1999,6(2):109-113.[林昌虎,朱安国.贵州岩溶山区土壤侵蚀与防治[J].水土保持研究,1999,6(2):109-113.]

[6] Su Weici, Yang Hankui. Preliminary division of eco-environmental fragility types in Guizhou karst region,China[J]. Research of Environmental Sciences, 1994,7(6):35-41.[苏维词,杨汉奎.贵州岩溶区生态环境脆弱性类型的初步划分[J].环境科学研究,1994, 7(6):35-41.]

[7] Yang Shengtian, Zhu Qijiang. Review of the researches on soil degradation in environment[J]. Carsological Sinica, 1996, 18(2):169-175.[杨胜天,朱启疆.论岩溶环境中土壤退化的研究[J]. 中国岩溶,1996,18(2):169-175.]

[8] Wang Shijie,Li Yangbing,Li Ruiling. Karst rocky desertification: formation background, evolution and comprehensive taming[J]. Quaternary Sciences,2003,23(6):657-666. [王世杰,李阳兵,李瑞玲.岩溶石漠化的形成背景、演化与治理[J].第四纪研究,2003,23 (6): 657-666.]

[9] Hu Baoqing, Liao Chimei, Yan Zhiqiang. Diving mechanism diagnosis of karst rocky desertification in Du' an yao autonomous county of Guangxi based on RS and GIS[J]. Journal of Mountain Science,2004,22(5):583-590.[胡宝清, 廖赤眉, 严志强. 基于RSGIS的岩溶石漠化驱动机制分析——以广西都安瑶族自治县为例[J]. 山地学报, 2004,22(5):583-590.]

[10] Piao Hechun, Hong Yetang, Yuan Zhiyun. Soil microbial biomass acts as source and sink of energy material C flout in mountainous soils of Guizhou Chinese[J]. Chinese Journal of Ecology, 2001,20(1):33-37.[朴河春,洪业汤,袁芷云.贵州山区土壤中微生物生物量是能源物质碳流动的源与汇[J].生态学杂志,2001,20(1):33-37.]

[11] Wang Delu, Zhu Shouqian, Huang Baolong. Preliminary study on types and quantitative assessment of karst rocky desertification in Guizhou province, China[J]. Acta Ecologica Sinica, 2005,25(5):1 057-1 063.[王德炉,朱守谦,黄宝龙.贵州岩溶石漠化类型及程度评价[J]. 生态学报,2005, 25(5):1 057-1 063.]

[12] Long Jian, Deng Qiqiong, Jiang Xinrong, et al. Effects of different de farming and reafforestation patterns on charges of soil fertility quality in karst region of southwestern China[J]. Chinese Journal of Applied Ecology, 2005, 16(7):1 279-1 284.[龙健,邓启琼,江新荣,.西南岩溶地区退耕还林()模式对土壤肥力质量演变的影响[J].应用生态学报, 2005,16(7):1 279-1 284.]

[13] Pan Genxing, Cao Jianhua. Karstification in epikarst zone:The earth surface ecosystem processes taking soil as a medium—Case of the Yaji karst experiment site, Guilin[J]. Carsologica Sinica,1999,18(4):287-296.[潘根兴,曹建华.表层带岩溶作用:以土壤为媒介的地球表层生态系统过程——以桂林峰丛洼地岩溶系统为例[J].中国岩溶,1999, 18(4):287-296.]

[14] Lu Rukun. Soil and Agricultural Chemistry Snalysis[M]. Beijing: China Agriculture Press,1998. [鲁如坤主编.土壤农化分析[M]. 北京: 中国农业出版社,1998.]

[15] Guan Songyin. Soil Enzyme and Analysis Methods[M]. Beijing: Agriculture Press,1986.[关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.]

[16] Sharpley A. Availability of phosphorus[M]Somner M E. Handbook of Soil Science, Section D: Soil Fertility and Plant Nutrition CRC Press, Boca Raton, Florida, USA,2000:D18-D37.

[17] He Zhenli. Soil microbiomass and the signification of nutrient cycle and environmental evaluation[J]. Soil, 1997,2:61-69.[何振立. 土壤微生物量及其在养分循环和环境评价中的意义[J].土壤,1997,2:61-69.]

[18] Piao Hechun, Zhu Jianming, Yu Dengli, et al. Carbon isotope composition in soil microbial biomass and organic carbon isotope effect[J]. Quaternary Sciences,2003,23(5): 546-556. [朴河春,朱建明,余登利,. 贵州山区土壤微生物生物量的碳同位素组成与有机碳同位素效应[J]. 第四纪研究, 2003,23(5): 546-556.]

[19] Nannipieri P, Landi L. Soil Enzymes[M]Sumner M E. Handbook of Soil Science, CRC Press, Boca Raton, Florida, USA, 2000:C129-C138.

[20] Long Jian, Jiang Xinrong, Deng Qiqiong, et al. Soil microbial activities in maolan karst forest,Guizhou province[J]. Acta Pedologica Sinica, 2005, 42(3): 419-427.[龙健,江新荣,邓启琼,.贵州岩溶地区土壤石漠化的本质特征研究[J].土壤学报, 2005, 42(3): 419-427.]

[21] Zhou Yunchao, Pan Genxing. Adaptation and adjustment of Maolan forest ecosystem to karst environment[J]. Carsologica Sinica,2001,20(1):47-52.[周运超,潘根兴.茂兰森林生态系统对岩溶环境的适应与调节[J].中国岩溶,2001,20(1):47-52.]

[22] Long Jian, Li Juan, Jiang Xinrong, et al. Charaxteristics of soil rocky disertification in the karst region of Guizhou province[J]. Acta Pedologica Sinica,2004,41(4):597-602. [龙健,李娟,江新荣,. 贵州茂兰岩溶森林土壤微生物活性的研究[J].土壤学报,2004, 41(4):597-602.]

[23] Wu Weidong, Zhang Taolin, Sun Bo, et al. Degradation and control of soil organic matter and nutrient pool under artificial Chinese fir forest[J]. Acta Pedologica Sinica,2000,37(1):41-48.[吴蔚东,张桃林,孙波,.人工杉木林地有机物和养分库的退化与调控[J].土壤学报, 2000, 37(1):41-48.]

[24] Lai Lu, Hao Mingde, Peng Lingfang. Development of researches on soil phosphorus[J]. Research of Soil and Water Conservation,2003,10 (1):65-67.[来璐,郝明德,彭令芳. 土壤磷素研究进展[J].水土保持研究,2003,10(1):65-67.]

[25] Kennedy A C, Papaendick R I. Microbial characteristics of soil quality[J]. Journal of Soiland Water Conservation, 1995, 50:243-248.

[26] Persson T. Effects of acidifications and liming on carbon and nitrogen mineralization and soil organisms in mor humus[J]. Water, Air, & Soil Pollution,1989,45: 77-96.

[27] Oliveira O C, Oliveira I P, Alves B J R, et al. Chemical and biological indicators of decline/degradation of Brachiaria pastures in the Brazilian Cerrado[J]. Agriculture, Ecosystem & Environment, 2004, 103:289-300.

[28] Zhang Pingjiu, Li Lianqing, Pan Genxing, et al. Influence of long-term fertilizer management on topsoil microbial biomass and genetic diversity of a paddy soil from the Tai Lake region, China[J]. Acta Ecologica Sinica,2004, 24(12): 2 818-2 824.[张平究,李恋卿,潘根兴,.长期不同施肥下太湖地区黄泥土表土微生物碳氮量及基因多样性变化[J]. 生态学报,2004,24(12):2 818-2 824.]

[29] Anderson T H, Domsch K H. Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories[J]. Soil Biology & Biochemistry,1990,22: 251-255.

[30] Bardgett R D, Shine A. Linkages between plant litter diversity, soil microbial biomass and ecosystem function in a temperate grassland[J]. Soil Biology & Biochemistry,1999,31: 317-321.

[31] Zheng Jufeng, Zhang Xuhui, Pan Genxing, et al. Diurnal variation of soil basal respiration and CO2 emission from a typical paddy soil after rice harvest under long-term different fertilization[J]. Plant Nutrition and Fertilizer Science,2006,12 (3):in press. [郑聚锋, 张旭辉, 潘根兴,. 水稻土基底呼吸与CO2排放强度的日动态及长期不同施肥下的变化[J]. 植物营养与肥料学报, 2006, 12(3): 待刊.]

[1] 孙波,潘贤章,王德建,韩晓增,张玉铭,郝明德,陈欣. 我国不同区域农田养分平衡对土壤肥力时空演变的影响[J]. 地球科学进展, 2008, 23(11): 1201-1208.
[2] 陈尚,李瑞香,马艳,王宗灵,朱明远,丁德文. 我国海洋生态调查指南编制说明[J]. 地球科学进展, 2007, 22(1): 74-81.
[3] 陈杰,檀满枝,陈晶中,龚子同. 严重威胁可持续发展的土壤退化问题[J]. 地球科学进展, 2002, 17(5): 720-728.
阅读次数
全文


摘要