地球科学进展 ›› 2013, Vol. 28 ›› Issue (11): 1217 -1226.

论文 上一篇    下一篇

雨滴微物理特征研究及测量技术进展
LIU Xichuan, 刘西川, 高太长 *, 刘磊, 胡帅   
  1. College of Meteorology and Oceanography , PLA University of Science and Technology, Nanjing Jiangsu 211101,China; 解放军理工大学气象海洋学院,江苏 南京 211101
  • 收稿日期:2013-08-24 出版日期:2013-11-10
  • 通讯作者: 高太长(1958-),男,山西太原人,教授,主要从事大气探测研究. E-mail: 2009gaotc@gmail.com E-mail:2009gaotc@gmail.com
  • 基金资助:
    国家自然科学基金科学仪器基础研究专款项目“降水瞬态微物理特征测量仪”(编号:41327003)资助.

Advances in Microphysical features and Measurement Techniques of Raindrops

GAO Taichang, LIU Lei, HU Shuai   

  1. College of Meteorology and Oceanography , PLA University of Science and Technology, Nanjing Jiangsu 211101,China
  • Received:2013-08-24 Online:2013-11-10 Published:2013-11-10
雨滴的尺度、速度、形状、轴比、摆动和空间取向及其谱分布等微物理性质是揭示降雨物理本质的重要特征量,对于土壤侵蚀机理研究、天气雷达地面标定、人工增雨作业效果评估、无线电通讯和导航系统通道选择等方面均有着重要意义。首先分析了19世纪末以来雨滴微物理特征的测量及研究发展历程,分析了实验室内风洞实验、光学雨滴谱仪外场观测等雨滴微物理特征测量技术的现状以及存在的不足,重点讨论雨滴的形状、速度、摆动和空间取向特征等微物理特征。现有雨滴谱仪并不能完全揭示自然环境条件下雨滴的微物理特征,从而限制了雨滴微物理特征在相关领域的应用。最后从相关领域和应用发展的角度出发,对雨滴微物理特征测量技术的发展做了展望。
The size, fall velocity, shape, axis ratio, oscillation, orientation, and their spatial distributions of raindrops are the key parameters for study of rainfall physics, which also have great significance in these fields such as research on the mechanism of soil erosion, calibration of weather radar, classification of present weather, evaluation of rainfall enhancement, and determination of channel in radio communication and navigation systems. This paper reviews the history of measurement technology and method of raindrops’ microphysical features firstly, discusses the status and shortcomings of laboratory wind tunnel experiment, optical disdrometer, and other measurement techniques and theory for the raindrops’ microphysical features, and then the shape, fall velocity, oscillation, and orientation of raindrops are analyzed. Existing disdrometers cannot measure the all the micro-physical characteristics of raindrops, which limit the application of raindrops microphysical characteristics in related area. At last from the point of view of relative area and application, the prospect of the future development trend of raindrops microphysics measurement techniques is concluded.
[1]Sun Xuejin, Wang Xiaolei, Li Hao, et al. Atmospheric Detection[M]. Beijing:China Meteorological Press, 2009.[孙学金, 王晓蕾, 李浩,等. 大气探测学[M]. 北京: 气象出版社, 2009.]
[2]Michaelides S. Precipitation: Advances in Measurement, Estimation, and Prediction[M]. Berlin, German: Springer, 2008.
[3]Yang Jun, Chen Baojun, Yin Yan. Physics of Clouds and Precipitation[M]. Beijing: China Meteorological Press, 2011.[杨军, 陈宝君, 银燕. 云降水物理学[M]. 北京: 气象出版社, 2011.]
[4]Zhu Yaqiao, Liu Yuanbo. Advances in measurement techniques and statistics features of surface raindrop size distribution[J]. Advances in Earth Science, 2013, 28(6): 685-694.[朱亚乔, 刘元波. 地面雨滴谱观测技术及特征研究进展[J]. 地球科学进展, 2013, 28(6): 685-694.]
[5]Liu Xichuan, Gao Taichang, Qin Jian, et al. Effects analysis of rainfall on microwave transmission characteristics[J]. Acta Physica Sinica, 2010, 59(3): 2 156-2 162. [刘西川, 高太长, 秦健, 等. 降雨对微波传输特性的影响分析[J]. 物理学报, 2010, 59(3): 2 156-2 162.]
[6]Gao Taichang. Current and prospective development of the precipitation measuring techniques[J]. Meteorological and Hydrological Equipments, 2012, 23(6): 1-7.[高太长. 降水测量技术现状与展望[J]. 气象水文装备, 2012, 23(6): 1-7.]
[7]Zheng Guoguang, Chen Yue, Chen Tianyu, et al. The observational study of summer orographic clouds structures of Qilian Mountains[J]. Advances in Earth Science, 2011, 26(10): 1 057-1 070.[郑国光, 陈跃, 陈添宇, 等. 祁连山夏季地形云综合探测试验[J]. 地球科学进展, 2011, 26(10): 1 057-1 070.]
[8]Jones D M A. The shape of raindrops[J]. Journal of Meteorology, 1959, 16(4): 504-510.
[9]Magono C. On the shape of water drops falling in stagnant air[J]. Journal of Meteorology, 1954, 11(1): 77-79.
[10]Jameson A R, Beard K V. Raindrop axis ratios[J]. Journal of Applied Meteorology, 1982, 21(2): 257-259.
[11]Chandrasekar V, Cooper W A, Bringi V N. Axis ratios and oscillations of raindrops[J]. Journal of the Atmospheric Sciences, 1988, 45(8): 1 323-1 333.
[12]Pruppacher H R, Pitter R L. A semi-empirical determination of shape of cloud and raindrops[J]. Journal of Atmospheric Sciences, 1971, 28(1): 86-94.
[13]Wu Dui. An analysis of raindrop size distribution at the ground versus radar reflectivity during a heavy rain-guss in Ningxia[J]. Plateau Meteorology, 1987, 6(4): 367-370. [吴兑. 宁夏一次暴雨的地面雨滴谱和雷达反射因子的对比分析[J]. 高原气象, 1987, 6(4): 367-370.]
[14]Liu Hongyan. Laboratory Test of an Instrument for Measuring the Rain DSD and Analysis of DISDROMETER DSD Measurement Data[D]. Beijing: University of Chinese Academy of Sciences, 2006.[刘红燕. 雨滴谱仪器的设计与雨滴谱资料的分析[D]. 北京: 中国科学院大学,2006.]
[15]Bashforth F, Adams J C. An Attempt to Test the Theories of Capillary Action by Comparing the Theoretical and Measured Forms of Drops of Fluid[M]. London: Cambridge University Press,1883.
[16]Lenard P. Ueber regen[J]. Meteorologische Zeitschrift, 1904, 21(2): 248-262.
[17]Spilhaus A F. Raindrop size, shape, and falling speed[J]. Journal of Meteorology, 1948, 5(1): 108-110.
[18]Imai I. On the velocity of falling drops[J]. Geophysical Magazine,1950, 21(2): 244-249.
[19]Blanchard D C. The behavior of water drops at terminal velocity in air[J]. Transaction, American Geophysical Union, 1950, 31(6): 836-842.
[20]Savic P. Circulation and Distortion of Liquid Drops Falling Through a Viscous Medium[M]. Ottawa: Nationa Research Cauncil of Canada, 1953: 50.
[21]McDonald J E. The shape and aerodynamics of large raindrops[J]. Journal of Meteorology, 1954, 11(4): 478-494.
[22]Beard K V, Chuang C. A new model for the equilibrium shape of raindrops[J]. Journal of the Atmospheric Sciences,1987, 44(11): 1 509-1 524.
[23]Richards C N, Dawson G A. The hydrodynamic instability of water drops falling at terminal velocity in vertical electric fields[J]. Journal of Geophysical Research, 1971, 76: 3 445-3 455.
[24]Rasmussen R, Walcek C, Pruppacher H R, et al. A wind tunnel investigation of the effect of an external, vertical electric field on the shape of electrically uncharged rain drops[J]. Journal of the Atmospheric Sciences, 1985, 42(15): 1 647-1 652.
[25]Green A W. An approximation for the shapes of large raindrops[J]. Journal of Applied Meteorology, 1975, 14(12): 1 578-1 583.
[26]Jameson A R. Microphysical interpretation of multiparameter radar measurements in rain. Part I: Interpretation of polarization measurements and estimation of raindrop shape[J]. Journal of the Atmospheric Sciences, 1983, 40(7): 1 792-1 802.
[27]Mitra S K, Brinkmann J, Pruppacher H R. A wind tunnel study on the drop-to-particle conversion[J]. Journal of Aerosol Sciences, 1992, 23(3): 245-256.
[28]Mitra S K, Vohl O, Ahr M, et al. A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. IV: Experiment and theory for snowflakes[J]. Journal of the Atmospheric Sciences, 1990, 47(5): 584-591.
[29]Bhalwankar R V, Kamra A K. A wind tunnel investigation of the deformation of water drops in the vertical and horizontal electric fields[J]. Journal of Geophysics Research, 2007, 112(D10),doi:10.1029/2006JD007863.
[30]Szakall M, Diehl K, Mitra S K, et al. A wind tunnel study on the shape, oscillation, and internal circulation of large raindrops with sizes between 2.5 and 7.5 mm[J]. Journal of Atmospheric Sciences, 2009, 66(3): 755-765.
[31]Jones B K, Saylor J R. Axis ratios of water drops levitated in a vertical wind tunnel[J]. Journal of Atmospheric and Oceanic Technology,2009, 26(11): 2 413-2 419.
[32]Yu Dongsheng, Xu Qingshan, Xu Chidong, et al. Progress of measurement of raindrop size distribution[J]. Jounal of Atmospheric and Environmental Optics, 2011, 6(6): 403-408.[余东升, 徐青山, 徐赤东, 等. 雨滴谱测量技术研究进展[J]. 大气与环境光学学报, 2011, 6(6): 403-408.]
[33]Joss J, Waldvogel A. A raindrop spectrograph with automatic analysis[J]. Pure and Apple Geophysics, 1967, 68: 240-246.
[34]Löffler-Mang M, Joss J. An optical disdrometer for measuring size and velocity of hydrometers[J]. Journal of Atmospheric and Oceanic Technology, 2000, 17(2): 130-139.
[35]Kruger A, Krajewski W F. Two-dimensional video disdrometer: A description[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(5): 602-617.
[36]Nystuen J A. Listening to raindrops from underwater: An acoustic disdrometer[J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(10): 1 640-1 657.
[37]Gao Taichang, Liu Xichuan, Liu Lei, et al. Current and prospective development of the precipitation measuring scientific instruments[J]. Chinese Journal of Scientific Instrument, 2012, 33(8): 255-260.[高太长, 刘西川, 刘磊, 等. 降水测量科学仪器现状及展望[J]. 仪器仪表学报, 2012, 33(8): 255-260.]
[38]Battaglia A, Rustemeier E, Tokay A, et al. PARSIVEL snow observations: A critical assessment[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(2): 333-344.
[39]Schuur T J, Ryzhkov A V, Zrnic D S, et al. Drop size distributions measured by a 2D video disdrometer: Comparison with dual-polarization radar data[J]. Journal of Applied Meteorology,2001, 40(6): 1 019-1 034.
[40]Brandes E A, Ikeda K, Zhang G. A statistical and physical description of hydrometeor distributions in colorado snowstorms using a video disdrometer[J]. Journal of Applied Meteorology and Climatology, 2007, 46(5): 634-650.
[41]Huang G J, Bringi V N, Thurai M. Orientation angle distributions of drops after an 80-m fall using a 2D video disdrometer[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(9): 1 717-1 723.
[42]Schonhuber M, Lammer G, Randeu W L. One decade of imaging precipitation measurement by 2D-video-distrometer[J]. Advances in Geosciences, 2007, 10: 85-90.
[43]Thurai M, Bringi V N. Drop axis ratios from a 2D video disdrometer[J]. Journal of Atmospheric and Oceanic Technology, 2005, 22(7): 966-978.
[44]Su Xiaoyong, Wu Yi, Shan Chenhua. Research of the raindrop terminal velocity under different atmospheric conditions[J]. Meteorological and Hydrological Equipments, 2012, 23(2): 50-53.[苏小勇, 吴宜, 单陈华. 不同大气条件下雨滴降落末速度研究[J]. 气象水文装备, 2012, 23(2): 50-53.]
[45]Laws J O. Measurement of the fall velocity of water-drops and raindrops[J]. Transactions, American Geophysical Union, 1941, 22(3): 709-721.
[46]Davies C N. Definitive equations for the fluid resistance of spheres[J]. Proceedings of the Physical Society, 1945, 6(2): 259-270.
[47]Gunn R, Kinzer G D. The terminal velocity of fall for water droplets in stagnant air[J]. Journal of Meteorology, 1949, 6(4): 243-248.
[48]Beard K V, Pruppacher H R. A determination of the terminal velocity and drag of small water drops by means of a wind tunnel[J]. Journal of the Atmospheric Sciences, 1969, 26(10): 1 066-1 072.
[49]Barthazy E, Goke S, Schefold R, et al. An optical array instrument for shape and fall velocity measurements of hydrometeors[J]. Journal of Atmospheric and Oceanic Technology, 2004, 21(9): 1 400-1 416.
[50]Liu Dawei, Yan Ailing. Raindrop movement analysis[J]. Science Technology and Engineering, 2006, 6(9): 1 266-1 269.[刘大为, 阎爱玲. 雨滴运动分析[J].科学技术与工程, 2006, 6(9): 1 266-1 269.]
[51]Liu Junjie, Zhou Xiuzhi. Common discussion of the terminal velocity of the falling raindrops[J]. Physics and Engineering, 2010, 20(5): 17-19. [刘俊杰, 周秀芝. 雨滴下落收尾速度的一般讨论[J].物理与工程, 2010, 20(5): 17-19.]
[52]Liang Wei, Cheng Fu, Zhao Tingning, et al. Study of the method of photograph application of the rainfall terminal speed in the artificial simulating rainfall equipment[J]. Research of Soil and Water Conservation, 2006, 13(2): 14-16.[梁伟, 程复, 赵廷宁, 等. 摄影法在人工降雨装置水滴终点速度中的应用研究[J]. 水土保持研究, 2006, 13(2): 14-16.]
[53]Chuang C, Beard K V. A numerical model for the equilibrium shape of electrified raindrops[J]. Journal of the Atmospheric Sciences,1990, 47(11): 1 374-1 389.
[54]Ross O N. Optical Remote Sensing of Rainfall Micro-Structures[D].Berlin: University of Auckland Physics Department Group Stuart Bradley,2000.
[55]Ross O N, Bradley S G. Model for optical forward scattering by nonspherical raindrops[J]. Applied Optics, 2002, 41(24): 5 130-5 141.
[56]Thurai M, Huang G J, Bringi V N, et al. Drop shapes, model comparisons, and calculations of polarimetric radar parameters in rain[J]. Journal of Atmospheric and Oceanic Technology, 2007, 24(6): 1 019-1 032.
[57]Beard K V, Bringi V N, Thurai M. A new understanding of raindrop shape[J]. Atmospheric Research, 2010, 97: 396-415.
[58]Pruppacher H R, Beard K V. A wind tunnel investigation of the internal circulation and shape of water drops falling at termina lvelocity in air[J]. Quarterly Journal of Royal Meteorological Society, 1970, 96: 247-256.
[59]Beard K V, Kubesh R J. Laboratory measurements of small raindrop distortion. Part II: Oscillation frequencies and modes[J]. Journal of the Atmospheric Sciences, 1991, 48(20): 2 245-2 264.
[60]Goddard J W F, Eastment J D, Tan J. Self-consistent measurements of differential phase and differential reflectivity in rain[C]∥Proceeding 1994 Internet of Geoscience and Remote Sensing Symposium. Sadena CA: IEEE,1994.
[61]Andsager K, Beard K V, Laird N F. Laboratory measurements of axis ratios for large raindrops[J]. Journal of the Atmospheric Sciences, 1999, 56(15): 2 673-2 683.
[62]Thurai M, Szakall M, Bringi V N, et al. Drop shapes and axis ratio distributions: Comparison between 2D video disdrometer and wind-tunnel measurements[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(7): 1 427-1 432.
[63]Keenan T D, Carey L D, Zrnic D S, et al. Sensitivity of 5-cm wavelength polarimetric radar variables to raindrop axial ratio and drop size distribution[J]. Journal of Applied Meteorology, 2001, 40(3): 526-545.
[64]Brandes E A, Zhang G, Vivekanandan J. Experiments in rainfall estimation with a polarimetric radar in a subtropical environment[J]. Journal of Applied Meteorology, 2002, 41(6): 674-684.
[65]Best A C. Empirical formulate for the terminal velocity of water drops falling through the atmosphere[J]. Quarterly Journal of the Royal Meteorologyical Society, 1950, 76: 302-311.
[66]Foote G B, Toit P S D. Terminal velocity of raindrops aloft[J]. Journal of Applied Meteorology, 1969, 8(2): 249-253.
[67]Atlas D, Srivastava R C, Sekhon R S. Doppler radar characteristics of precipitation at vertical incidence[J]. Reviews of Geophysics, 1973, 11(1): 1-35.
[68]Uplinger W G. A new formula for raindrop terminal velocity[C]∥20th Radar Meteorology Conference. Boston: American Meteorological Scoiety, 1977: 389-391.
[69]Gossard E E, Strauch R G, Welsh D C, et al. Cloud layers, particle identification, and rain-rate profiles from ZRVf measurements by clear-air doppler radars[J]. Journal of the Atmospheric and Oceanic Technology, 1992, 9(2): 108-119.
[70]Beard K V. Reorientation of hydrometeors in aircraft accelerated flow[J]. Journal of Applied Meteorology, 1983, 22(1): 1 961-1 963.
[71]Testik F Y, Barros A P, Bliven L F. Field observations of multimode raindrop oscillations by high-speed imaging[J].Journal of the Atmospheric Sciences, 2006, 10(63): 2 663-2 668.
[72]Andsager K, Beard K V, Laird N S. A laboratory study of oscillations and axis ratios for large raindrops[J]. Journal of the Atmospheric Sciences, 1999, 55(2): 208-226.
[73]Szakall M, Mitra S K, Diehl K, et al. Shapes and oscillations of falling raindrops—A review[J]. Atmospheric Research, 2010, 97(4): 416-425.
[74]Kubesh R J, Beard K V. Laboratory measurements of spontaneous oscillations for moderate-size raindrops[J]. Journal of the Atmospheric Sciences, 1993, 50(8): 1 089-1 098.
[75]Testik F Y, Barros A P. Toward elucidating the microstructure of warm rainfall: A survey[J]. Reviews of Geophysics, 2007, 45, doi:10.1029/2005RG000182.
[76]Hendry A, Antar Y M M, McCormick G C. On the relationship between the degree of preferred orientation in precipitation and dual-polarization radar echo characteristics[J]. Radio Sciences, 1987, 22: 37-50.
[77]McCormick G C, Hendry A, Barge B L. The anisotropy of precipitation media[J]. Nature, 1972, 238: 214-216.
[78]Beard K V, Jameson A R. Raindrop canting[J]. Journal of the Atmospheric Sciences,1983, 40(3): 448-454.
[79]Ryzhkov A V, Zrnic D S, Hubbert J C, et al. Polarimetric radar observations and interpretation of co-cross-polar correlation coefficients[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(3): 340-354.
[80]Huang G, Hubbert J C, Bringi V N. Precipitation canting angle distribution estimation from covariance matrix analysis of CSU-CHILL radar data[C]∥30 th International Conference on Radar Meteorology. Munich, Germany: American Meteorological Society,2001.
[81]Huang G, Bringi V N, Hubbert J C. An algorithm for estimating the variance of the canting angle distribution using polarimetric covariance matrix data. Preprints[C]∥31st International Conference on Radar Meteorology. Seattle: American Meteorological Society,2003.
[1] 李青, 雷连发, 王振会, 魏鸣, 李东帅. 雷电流热效应的遥感观测研究进展[J]. 地球科学进展, 2017, 32(5): 481-487.
[2] 马天鸣, 谢周清, 李院生. 极地冰芯电学性质及导电测量技术研究进展[J]. 地球科学进展, 2016, 31(2): 161-170.
[3] 朱亚乔,刘元波. 地面雨滴谱观测技术及特征研究进展[J]. 地球科学进展, 2013, 28(6): 685-694.
阅读次数
全文


摘要