地球科学进展 ›› 2000, Vol. 15 ›› Issue (6): 673 -678. doi: 10.11867/j.issn.1001-8166.2000.06.0673

综述与评述 上一篇    下一篇

单个流体包裹体成分无损分析进展
孙 青 ,曾贻善   
  1. ①国家地质实验测试中心,北京 100037;②北京大学地质系,北京 100083
  • 收稿日期:1999-11-29 修回日期:2000-03-30 出版日期:2000-12-01
  • 通讯作者: 孙青(1967-),女,安徽人,博士生,主要从事分析化学和地球化学研究。
  • 基金资助:

    国土资源部青年地质学家基金项目“有机包裹体FT—显微拉曼及红外光谱定量研究”(编号:9601)和国家自然科学基金项目“成矿流体中的羧酸盐”(编号:49673193)联合资助。

DEVELOPMENT OF IN-SITU ANALYSIS OF INDIVIDUAL FLUID INCLUSIONS

SUN Qing ,ZENG Yi-shan
  

  1. ①Institute of Rock and Mineral Analysis,Chinese Academy of Geological Sciences,Beijing 100037,China;②Department of Geology,Peking University,Beijing100083,China
  • Received:1999-11-29 Revised:2000-03-30 Online:2000-12-01 Published:2000-12-01

原位无损分析是流体包裹体成分研究的前沿课题,简要总结了单个流体包裹体成分分析方法,评述了原位无损分析方法中微束质子诱发X射线法、同步辐射X射线荧光光谱、显微拉曼光谱、显微红外光谱和红外显微镜分析流体包裹体成分的原理、应用范围、存在问题和研究进展。选择研究流体包裹体成分的方法时,需要考虑分析方法的特点、所测组分及其含量的估计范围、所测流体包裹体的大小、距薄片表面的深度、基体矿物的性质和仪器性能。

In situ analysis of individual fluid inclusions has become a popular program in the study of inclusions, which can be used to trace the evolved process of the fluid. This paper sheds light onto recent progresses in the microanalysis methods which including synchrotron radiation X-ray fluorescence, protoninduced X-ray emission, Raman microspectroscopy, FTIR microspectroscopy and infrared microscope.The practical aspects of these methods, such as limits and applied scopes, was discussed in this paper. The selection of the methods in the study of inclusions is based on considerations such as characteristics of the analysis methods, the information of inclusions, and the information of the matrix and inclusions itself.

中图分类号: 

[1]Haynes F M, Sterner S M, Bodnar R J. Synthetic fluid inclusions in natural quartz. IV. Chemical analysis of fluid inclusions by SEM/EDA: Evaluation of method [J].Geochim Cosmochim Acta, 1988, 52: 969~977.
[2]Shepherd T J, Chenery S R. Laser ablation ICP-MS elemental analysis of individual fluid inclusions: an evaluation study[J].Geochim Cosmochim Acta, 1995, 59:3 997~4 007.
[3]Ramsey M H, Coles B J, Wilkinson J J. Single fluid inclusion analysis by laser ablation inductively couple plasma atomic emission spectrometry: quantification and validation [J]. J Anal Atom Spec,1992, 7: 587~593.
[4]Günther D, Frischknecht R, Heinrich C A,et al. Capabilities of an ArF 193 nm excimer laser for LAM-ICP-MS micro analysis of geological material[J]. J Anal Atom Spec, 1997,12: 939~944.
[5]Boiron M C, Dubessy J, Andre N,et al. Analysis of mono-atomic ions in individual fluid inclusions by laser-produced plasma emissiom spectroscopy [ J ]. Geochim Cosmochim Acta,1991, 55: 917~923.
[6]Diamond L W, Marshall D D, Jackman J A,et al. Elemental analysis of individual fluid inclusions in minerals by secondary ion mass spectrometry: Application to cation ratios of fluid inclusions in an Archaean mesothermal gold-quartz vein[J].Geochim Cosmochim Acta,1990, 54: 545~552.
[7]Horn E E, Traxel K. Investigations of individual fluid inclusions with the Heidelberg proton micreoprobe—a nondestructive analytical method[J]. Chem Geol,1987, 61:29~35.
[8]Ryan C G, Cousens D R, Griffin W L,et al. Quantitative PIXE microanalysis of fluid inclusions based on a layered yield model[J]. Nucl Instr Meth,1991,B54:292~297.
[9]Heinrich C A, Ryan C G, Mernagh T P,et al. Segregation of oremetals between magmatic brine and vapor: a fluid inclusion study using PIXE microanalysis[J]. Econ Geol, 1992, 87:1 566~1 583.
[10]Anderson A J, Clark A J, Ma X-P,et al. Proton-induced X-ray and gamma-ray emmission analysis of unopened fluid inclusion[J]. Econ Geol,1989, 924~939.
[11]Ryan C G, Heinrich C A, Mernagh T P. PIXE Microanalysis of fluid inclusions and its application to study ore metal segration between magmatic Brine and vapor[J]. Nucl Instr Meth. 1993, B77:463~468.
[12]Ryan C G, Heinrich C A, Achterbergh C. Microanalysis of ore-forming fluids using the scanning proton micro-probe[J]. Nucl Instr Meth,1995, B104:182~186.
[13]周世俊,王羽中.微束核反应及其对流体包裹体的应用[J].光谱学与光谱分析,1999,19(3):278~281.
[14]Rankin A H, Ramsey M H, Coles B,et al. The composition of hypersaline, iron-rich granitic fluids based on laser-ICP and synchrotron-XRF microprobe aanlysis of individual fluid inclusions in topoza in Mole granite, Estern Australia[J].Geochim Cosmochim Acta,1992, 56: 67~79.
[15]Frantz J D, Mao H K, Zhang Y-G,et al. Analysis of fluid inclusions by X-ray fluorescence using synchrotron radiation[J]. Chem Geol,1988, 69: 235~244.
[16]Günther D, Audetat A, Frischknecht R,et al. Quantitative analysis of major, minor, and trace elements in fluid inclusions using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)[J]. J Anal Atom Spec,1998, 13:263~270.
[17]Vanko D A, Sutton S R, Rivers M L,et al. Major-element ratios in synthetic fluid inclusions by synchrotron X-ray fluorescence microprobe [J]. Chem Geol,1993, 109: 125~134.
[18]Mavrogenes J A, Bodnar R j, Anderson A J,et al.Assessment of the uncertainties and limitations of quantitative elemental analysis of individual fluid inclusions using synchroton X-ray fluorescence (SXRF)[J]. Geochim Cosmochim Acta,1995, 59: 3 987~3 995.
[19]Philippot P, Menez B, Chevallier P,et al. Absorption correction procedures for quantitative analysis of fluid inclusiobs using synchrotron radiation X-ray fluorescence[J]. Chem Geol,1998, 144: 121~136.
[20]Dubessy J, Geisler D, Kosztolanyi C,et al. The determination of sulphate in fluid inclusions useing the M O L E Raman microprobe, Application to a Keuper halite and geochemical consequences [J]. Geochim Cosmochim Acta,1983, 47:1~10.
[21]Seitz J C, Pasteris D, Wopenka B. Characterization of CO2-CH4-H2O fluid inclusions by microthermometry and laser Raman microprobe spectroscopy: inferences for clathrate and fluid equilibria [J]. Geochim Cosmochim Acta, 1987, 51:1 651~1 664.
[22]Dubessy J, Audeoud D, Wilkins R,et al. The use of Raman microprobe MOLE in the determination of the electrolytes dissolved in the aqueous phase of fluid inclusions[J] . Chem Geol,1982, 37: 137~150.
[23]Bény C, Guilhaumou N, Touray J C. Native-sulphur-bearing fluid inclusions in the CO2-H2S-H2O-S system-microthermometry and Raman microprobe (MOLE) analysis-thermochemical interpretations[J]. Chem Geol, 1982, 37:113~127.
[24]Wei Jia-xiu, Hu Xiao-die. Study of compositions of single-inclusion and analysed by laser Raman microprobe and evolution of ore-forming fluid in Zijinshan copper gold deposit, China[A]. In: Brown P E, Hagemann S G,eds.Program and Abstracts; Biennial Pan-American Conference on research of fluid Inclusions[C]. 1996.62~63.
[25]Erik J H, Darren S, Fred L,et al. Measurement of fluid film thickness on curved surfaces by Raman spectroscopy [J].Appl Spec,1995, 49 (9): 325~332.
[26]Murphy P J, Roberts S. Laser Raman spectroscopy of differential partitioning in mixed-gas clathrates in H2O-CO2-N2-CH4fluid inclusions: implications for microthermometry[J]. Geochim Cosmochim Acta, 1995,59: 4 809~4 824.
[27]Marshall D, Pfeifer HR, Shapr Z. A re-evaluation of Raman as tool for determination of12C and13C in geological fluid inclusions [J]. Analysis,1994, 22 (10): 38.
[28]Rosasco J G, Roedder E, Simmons J H. Laser-excited Raman spectroscopy for Nondestructive partial analysis of individual phases in fluid inclusions in minerals [ J ].Science,1975, 190: 557~560.
[29]Dhamelincourt P, Bény C, Dubessy J,et al. Analyse d' inclusions fluidesàla microsonde MOLEàeffet Raman [J].Bull Soc Fr Mineral,1979, 102:600~610.
[30]Pasteris J D, Wopenka B and Seitz J Z. Practical aspects ofquanntitative laser Raman microprobe spectroscopy for the study of fluid inclusions [J]. Geochim Cosmochim Acta,1988, 52: 979~988.
[31]Wopenka B, Pasteris J D, Freeman J J. Analysis ofindividual fluid inclusions by Fourier transform infrared and Raman microspectroscopy[J]. Geochim Cosmochim Acta,1990, 54: 519~533.
[32]Fabre D, Oksengorn B. Pressure and density dependence of the CH4and N2Raman lines in an equimolar CH4/N2gas mixture[J]. Appl Spec,1992, 46: 468~471.
[33]徐培苍,李如璧,王永强,等.地学中的拉曼光谱[M],西安:陕西科学技术出版社,1996. 88~103.
[34]Chou I-M, Pasteris J D, Seitz J C. High-density volatiles in the system C-O-H-N for the calibration of a laser Raman microprobe [J]. Geochim Cosmochim Acta,1990, 54: 535~543.
[35]Seitz J C, Pasteris J D, Chou I-M. Raman spectroscopic characterization of gas mixtures, I: Quantitative composition and pressure determination of CH4, N2, and their mixtures[J]. Am J Sci, 1993, 293: 297~321.
[36]Stasiuk L D, Snowdon L R. Fluorescence micro-spectrometry of synthetic and natural hydrocarbon fluid inclusions: crude oil chemistry, density and application to petroleum migration[J]. Appl Geochim,1997, 12: 229~241.
[37]Pironon J, Barres O. Semi-Quantitative FT-IR microanalysis limits: Evidence from synthetic hydrocarbon fluid inclusion in sylvite[J]. Geochim Cosmochim Acta,1990, 54 (3): 509~518.
[38]Moser M R, Rankin A H, Milledge H J. Hydrocarbon-bearing fluid inclusions in fluorite associated with the Windy Knoll bitumen deposit, UK[J]. Geochim Cosmochim Acta,1992, 56: 155~168.
[39]Pironon J, Pagel M, Lévèque,et al. Organic inclusions in salt, Part I: Solid and liquid organic matter, carbon dioxide and nitrogen species in fluid inclusions from Bresse basin (France) [J]. Org Geochem,1995, 23 (5): 391~402.
[40]Pironon J, Pagel M, Walgenwitz F,et al. Organic inclusions in salt, Part 2: oil, gas and ammonium in inclusions from Gabon margin[J]. Org Geochem,1995, 23 (8): 739~750.
[41]李荣西,金奎励,廖永胜.有机包裹体的显微傅立叶红外光谱和荧光光谱测定及其意义[J].地球化学,1999,27(3):244~249.
[42]陈孔全,徐言畅,张文淮,等.松辽盆地南部有机包裹体特征及石油地质意义[J].石油与天然气地质,1995, 16(2):138~142.
[43]Moser M R, Rankin A H, Milledge H J. Hydrocarbon-bearing fluid inclusions in fluorite associated with the Windy Knoll bitumen deposit, U K [J]. Geochim Cosmochim Acta, 1992, 56 : 155~168.
[44]孙青,翁诗甫,张煦.傅立叶变换红外光谱分析矿物有机包裹体的限制—基体吸收问题初探[J].地球科学——中国地质大学学报,1998,23(3):248~252.
[45]Pironon J, Sawatzki J, Dubess J. NIR FT-Raman Micros-pectroscopy of fluid inclusions: Comparisons with VIS Raman and FTIR Microspectroscopies [ J ]. Geochim Cosmochim Acta,1991, 55:3 885~3 888.
[46]Ku M-S, Chung H. Comparison of Near-Infrared and Raman Spectroscopy for the Determination of Chemical and Physical Properties of Naphtha[J]. Appl Spec,1999, 53(5): 557~564.
[47]Campbell A R, Hackbrath C J, Plumlee G S,et al. Internal features of ore minerals seen with the infrared microscope[J]. Econ Geol,1984, 79: 1 387~1 392.
[48]Campbell A R, Robinson-Cook S. Infrared fluid inclusion microthermometry on coexisting wolframite and quartz[J].Econ Geol,1987, 82: 1 640~1 645.
[49]Lüders V. Contribution of infrared microscopy to fluid inclusion studies in some opaque minerals (wolframite,stibnite, bournonite): Metallogenic implications[J]. Econ Geol,1996, 91: 1 462~1 468.

 

[1] 张为,周丽,唐红峰,李和平,王力. 水热体系中 Na2SO4/K2SO4 溶解度的热力学计算[J]. 地球科学进展, 2019, 34(4): 414-423.
[2] 王九一, 刘成林. 石盐流体包裹体中古嗜盐菌的研究进展[J]. 地球科学进展, 2016, 31(12): 1220-1227.
[3] 宋敏, 杨群慧, 王华, 季福武, 王虎, 潘安阳, 周怀阳. 完整极性脂质化合物对海洋微生物活动的指示及应用局限性[J]. 地球科学进展, 2015, 30(10): 1162-1171.
[4] 曹青,赵靖舟,赵小会,张涛,王宝清. 鄂尔多斯盆地宜川—黄陵地区马家沟组流体包裹体特征及其意义[J]. 地球科学进展, 2013, 28(7): 819-828.
[5] 孙贺,肖益林. 流体包裹体研究:进展、地质应用及展望[J]. 地球科学进展, 2009, 24(10): 1105-1121.
[6] 刘兴起;倪培. 表生环境条件形成的石盐流体包裹体研究进展[J]. 地球科学进展, 2005, 20(8): 856-862.
[7] 郑海飞;段体玉;孙樯;乔二伟. 一种潜在的地质压力计:流体包裹体子矿物的激光拉曼光谱测压法[J]. 地球科学进展, 2005, 20(7): 804-808.
[8] 李兆丽;胡瑞忠;彭建堂;毕献武;李晓敏. 稀有气体同位素示踪成矿古流体研究进展[J]. 地球科学进展, 2005, 20(1): 57-063.
[9] 赵靖舟. 油气成藏年代学研究进展及发展趋势[J]. 地球科学进展, 2002, 17(3): 378-383.
[10] 秦朝建,裘愉卓. 岩浆(型)碳酸岩研究进展[J]. 地球科学进展, 2001, 16(4): 501-507.
[11] 常兆山. 流体包裹体各相体积测定的现状和探索[J]. 地球科学进展, 1995, 10(6): 555-561.
阅读次数
全文


摘要