地球科学进展 ›› 2006, Vol. 21 ›› Issue (6): 648 -655. doi: 10.11867/j.issn.1001-8166.2006.06.0648

全球变化研究 上一篇    下一篇

亚洲主要河流的沉积地球化学示踪研究进展
杨守业   
  1. 同济大学海洋地质国家重点实验室,上海 200092
  • 收稿日期:2005-12-30 修回日期:2006-04-18 出版日期:2006-06-15
  • 通讯作者: 杨守业 E-mail:syyang@online.sh.cn
  • 基金资助:

    国家自然科学基金项目“长江流域沉积物SrNd同位素地球化学制约及对青藏高原源区物质的制约”(编号:40476029);上海市青年科技启明星人才基金“长江沉积物REE组成制约及其对青藏高原隆升的响应研究”(编号:04QMX1430)资助.

Advances in Sedimentary Geochemistry and Tracing Applications of Asian Rivers

Yang Shouye   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2005-12-30 Revised:2006-04-18 Online:2006-06-15 Published:2006-06-15

发源于喜马拉雅—青藏高原的亚洲几条大河的河流地球化学研究揭示了高原隆升、流域风化剥蚀、大气CO2消耗和亚洲季风气候变化之间的耦合关系。研究认为南亚主要河流流域的化学风化对全球大气CO2消耗和海洋化学通量变化贡献较大,河流沉积地球化学研究反映的高原阶段性隆升过程、流域剥蚀速率以及亚洲季风演化信息也明显比东亚主要河流的记录清晰;尤其是最近几年运用河流碎屑单矿物化学和年代学方法来示踪流域构造演化、沉积物从源到汇过程以及河流演化历史等,取得了许多重要的研究成果。比较而言,我国的河流在元素地球化学和水化学组成方面虽然开展了大量基础研究工作,但目前急需进一步提炼科学目标,与国际性的研究计划结合,综合多学科的研究力量,在研究思路和关键方法上需要突破和深入,加强研究的广度和深度。长江更可以作为一个突破口和研究平台,来开展深入的沉积地球化学示踪研究。

    In the past decades one of the research highlights of earth system science and global changes is Tibetan Plateau uplift and the corresponding global climate changes during the Cenozoic. The mega-rivers originated from the Himalayan-Tibetan Plateau transport huge amount of particulate and dissolved matters eroded from the plateau and its surrounding regions into the marginal seas of Asia and, therefore, exert a great control on source to sink process of terrigenous materials. Geochemical tracing studies of these rivers provided important constraints on the uplift history of the Tibetan Plateau, weathering intensity and atmospheric CO2 sink in the drainage basins, and chemical flux change of global ocean. Furthermore, sedimentary geochemical studies in the estuaries, based upon the bulk geochemical proxy idices and mineral chemistry and age spectrum of zircon, monazite and apatite, reconstructed the growth cycles of the upper continental crust exposed to weathering and deciphered the evolution history of these rivers.
    Comparatively, geochemical tracing studies on Chinese rivers were triggered about ten years ago and mostly focused on elemental geochemistry of the Changjiang and Huanghe. Recent research work suggested that the silicate weathering rate and the corresponding CO2 sink in the Huanghe drainage basin are lower than those in the south Asian river basins. Nevertheless, more work are needed in order to better understand the contributions of chemical weathering in Chinese river basins to global climate change. Among Chinese major rivers, the Changjiang which has complex drainage patterns and source rock compositions, deserves more research attentions from multi-discipline and using various research methods. The development history and the sedimentary response of the Changjiang to the Tibetan Plateau uplift and East Asian monsoon evolution should be considered first in the future study.

中图分类号: 

[1] Gao Shu. Comments on the“NSF Margins Program Science Plans 2004”[J]. Marine Geology and Quaternary Geology, 2005, 25(1):119-123.[高抒.美国《洋陆边缘科学计划2004》述评[J].海洋地质与第四纪地质,2005, 25(1):119-123.]

[2] LOICZ IPO. Land-Ocean Interactions in the Coastal Zone Science Plan and Implementation Strategy (IGBP Report 51 / IHDP Report 18) [C]. Stockholm: IGBP Secretariat, 2005.

[3] Salomons W. European Catchments: Catchment Changes and Their Impact on the Coast[C]. Amsterdam:Institute for Environmental Studies, 2004.

[4] Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans[J]. Journal of Geology, 1983, 91: 1-21.

[5] Brookfield M E. The evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: Rivers draining southwards[J]. Geomorphology, 1998, 22: 285-312.

[6] Burbank D W. Causes of recent Himalayan uplift deduced from depositional patterns in the Ganges basin[J]. Nature,1992, 357: 680-683.

[7] Wang P X. Cenozoic deformation and the history of sea-land interactions in Asia[C]Clift P,ed. Geophysical Monograph Series 149 “Continent-Ocean interactions within the East Asian marginal seas”. American Geophysical Union, 2004:1-22.

[8] Clift P D, Lee J Il, Hildebrand P, et al. Nd and Pb isotope variability in the Indus river system: Implications for sediment provenance and crustal heterogeneity in the western Himalaya[J]. Earth and Planetary Science Letters,2002, 200: 91-106.

[9] Clift P D, Shimizu N, Layne G D, et al. Tracing patterns of erosion and drainage in the Paleogene Himalaya through ion probe Pb isotope analysis of detrital K-feldspars in the Indus Molasse, India[J]. Earth and Planetary Science Letters, 2001, 188: 475-491.

[10] France-Lanord C, Derry L. Organnic carbon burial forcing of the carbon cycle from Himalayan erosion[J]. Nature, 1997, 390: 65-67.

[11] Galy A, France-Lanord C. Higher erosion rates in the Himalaya: Geochemical constraints on riverine fluxes[J]. Geology, 2001, 29: 23-26.

[12] Derry L, France-Lanord C. Neogene Himalayan weathering history and river 87Sr/86Sr: Impact on the marine Sr record[J]. Earth and Planetary Science Letters,1996, 142: 59-74.

[13] Krishnaswami S, Trivedi J R, Sarin M M, et al. Strontium isotopes and rubidium in the Ganges Bramaputra river sysytem -weathering in the Himalaya, fluxes to the Bay of Bengal and contribution to the evolution of oceanic Sr87/Sr86[J]. Earth and Planetary Science Letters,1992, 109: 243-253.

[14] Pierson-Wickmann A-C, Reisberg L, France-Lanord C, et al. Os-Sr-Nd results from sediments in the Bay of Bengal: Implication for sediment transport and the marine Os record[J]. Paleoceanography, 2001, 16: 435-444.

[15] Chesley J T, Quade J, Ruiz J. The Os and Sr isotopic record of Himalyan paleorivers: Himalayan tectonics and influence on ocean chemistry[J]. Earth and Planetary Science Letters, 2000, 179: 115-124.

[16] Yang Shouye, Li Congxian, Liu Shuguang. Chemical fluxes of Asian rivers into ocean and their controlling factors[J]. Marine Science Bulletin, 2001, 3(2): 30-37.

[17] Gaillardet J, Dupr B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry f the large rivers[J]. Chemical Geology, 1999, 159: 3-30.

[18] Dupr B, Dessert C, Oliva P, et al. Rivers, chemical weathering and Earth's climate[J]. C. R. Geoscience, 2003, 335: 1 141-1 160.

[19] Millot R, Gaillardet J, Dupr B, et al. Northern latitude chemical weathering rates: Clues from the Mackenzie River Basin, Canada[J]. Geochimca et Cosmochimca Acta, 2003, 67: 1 305-1 329.

[20] Yang S Y, Jung H S, Li C X. Two unique weathering regimes in the Changjiang and Huanghe drainage basins: Geochemical evidence from river sediments[J]. Sedimentary Geology, 2004, 164(1/2): 19-34.

[21] Raymo M E. The Himalayas, organic carbon burial, and climate in the Miocene[J]. Paleoceanography,1994, 9(3): 399-404.

[22] Raymo M E, Ruddiman W F. Tectonic forcing of late Cenozoic climate[J]. Nature, 1992, 359: 117-122.

[23] Hu M H, Stallard R F, Edmond J M. Major ion chemistry of some large Chinese rivers[J]. Nature,1982, 298:539-557.

[24] Zhang J, Huang W W. Drainage basin weathering and major element transportation of two large Chinese rivers (Huanghe and Changjiang)[J]. Journal of Geophysical Research, 1990, 95: 13 277-13 288.

[25] Zhang Jing. Biogeochemical Studies of the Main Estuaries in China: Transport of Chemical Substances and Environment [C]. Beijing: Ocean Press, 1997:1-241.[张经主编.中国主要河口的生物地球化学研究:化学物质的迁移与环境[C]. 北京:海洋出版社,1997:1-241.]

[26] Li Jingying, Zhang Jing. Chemical weathering processes and atmospheric CO2 consumption in the Yellow River drainage basin[J]. Marine Geology and Quaternary Geology, 2003, 23(2): 43-49. [李晶莹,张经. 黄河流域化学风化作用与大气CO2的消耗[J]. 海洋地质与第四纪地质, 2003, 23(2): 43-49.]

[27] Wu L L, Huh Y S, Qin J H, et al. Chemical weathering in the Upper Huanghe (Yellow River) draining the eastern Qinghai-Tibet Plateau[J]. Geochimica et Cosmochimica Acta, 2005, 69: 5 279-5 294.

[28] Qin J H, Huh Y S, Edmond J M, et al. Chemical and physical weathering in the Min Jiang, a headwater tributary of the Yangtze River[J]. Chemical Geology, 2005, 227: 53-69.

[29] Chen Jingsheng, Wang Feiyue, Xia Xinghui. Geochemistry of water quality of the Yangtze River basin[J]. Earth Science Frontier, 2006, 13(1): 74-85. [陈静生, 王飞越, 夏星辉. 长江水质地球化学[J]. 地学前缘, 2006, 13(1): 74-85.]

[30] Molnar P. Late Cenozoic increase accumulation rates of terrestrial sediment: How might climate change have affected erosion rates?[J]. Annual Review of Earth and Planetary Science Letters, 2003, 32: 67-89.

[31] Clift P, Layne, G D, Blusztajn J. Marine sedimentary evidence for monsoon strengthing, Tibetan Uplift and drainage evolution in East Asia[C]Clift P,ed.Geophysical Monograph Series 149 “Continent-Ocean interactions within the East Asian marginal seas”American Geophysical Union, 2004:255-281.

[32] Dettman D L, Kohn M J, Quade J, et al. Seasonal stable isotope evidence for a strong Asian monsoon throughout the past 10.7 Ma[J]. Geology, 2001, 29: 31-34.

[33] Ghosh, Padia J T, Mohindra R. Stable isotopic studies of palaeosol sediment from Upper Siwalik of Himachal Himalaya: Evidence for high monsoonal intensity during late Miocene[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2004, 206: 103-114.

[34] Shouye Yang, Congxian Li, Jingong Cai. Geochemical compositions of core sediments in eastern China: Implication for Late Cenozoic palaeoenvironmental changes[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2006,(in press).

[35] Vance D, Bickle M, Ivy-Ochs S, et al. Erosion and exhumation in the Himalaya from cosmogenic isotope inventories of river sediments[J]. Earth and Planetary Science Letters, 2003, 206: 273-288.

[36] Pegram W J, Krishnaswami S, Ravizza G E, et al. The record of seawater 187Os/186Os variation through the Cenozoic[J]. Earth and Planetary Science Letters, 1992, 113: 569-576.

[37] Peucker-Ehrenbrink B, Ravizza G, Hofmann A W. The marine 187Os/186Os record of the past 80-million years[J]. Earth and Planetary Science Letters,1995, 130: 155-167.

[38] Levasseur S, Birck J-L, Allegre C. The osmium riverine flux and the oceanic mass balance of osmium[J]. Earth and Planetary Science Letters, 1999, 174: 7-23.

[39] Sharma M, Wasserburg G J, Hoffmann A W, et al. Himalayan uplift and osmium isotopes in oceans and rivers[J]. Geochimica et Cosmochimica Acta, 1999, 63: 4 005-4 012.

[40] Singh S K, Reisberg L, France-Lanord C. Re-Os isotope systematics of sediments of the Brahmatuptra River system[J]. Geochimica et Cosmochimica Acta, 2003, 67: 4 101-4 111.

[41] Maruyama S, Rino S, Iizuka T. Growth rate curve of continental crust through time—An estimate from the river mouth zircons[C]In abstract of “IUGS-SECE conference at Peking University”.Beijing,2005.

[42] Bodet F, Scharer U. Evolution of the SE-Asian continent from U-Pb and Hf isotopes in single grains of zircon and baddeleyite from large rivers[J]. Geochimica et Cosmochimica Acta, 2000, 64: 2 067-2 091.

[43] Bodet F, Scharer U. Pb isotope sustematics and time-integrated Th/U of SE-Asian continental crust recorded by single K-feldspar grains in large rivers[J]. Chemical Geology, 2001, 177: 265-285.

[44] Nam T N, Toriumi M, Sano Y, et al. 2.9, 2.36 and 1.96 Ga zircons in orthogneisss south of the Red river shear zone in Viet Nam: Evidence from SHRIMP U-Pb dating and tectonothermal implications[J]. Journal of Asian Earth Sciences, 2003, 21, 743-753.

[45] Clark M K, House M A, Royden L H, et al. Late Cenozoic uplift of southeastern Tibet[J]. Geology, 2005, 33: 525-528.

[46] Cawood P A, Nemchin A A, Freeman M, et al. Linking source and sedimentary basin: Detrital zircon record of sediment flux along a modern river system and implications for provenance studies[J]. Earth and Planetary Science Letters, 2003, 210: 259-268.

[47] Li Y H, Teraoka H, Young T S, et al. The elemental composition of suspended particles from the Yellow and Yangtze Rivers[J]. Geochimica et Cosmochimica Acta, 1984, 48: 1 561-1 564.

[48] Yang Shouye, Li Congxian. Elemental composition in the sediments of the Yangtze and the Yellow Rivers and their tracing implication[J]. Progress in Nature Science, 2000, 10: 612-618.

[49] Yang S Y, Jung H S, Choi M S, et al. The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments[J]. Earth and Planetary Science Letters, 2002, 201: 407-419.

[50] Zhang C S, Selinus O. Spatial analyses for copper, lead and zinc contents in sediments of the Yangtze river basin[J]. The Science of the Total Environment, 1997, 204: 251-262.

[51] Zhang J. Heavy metal compositions of suspended sediments in the Changjiang (Yangtze River) estuary: Significance of riverine transport to the ocean[J]. Continental Shelf Research, 1999, 19: 1 521-1 543.

[52] Chen Jingsheng, Hong Song, Wang Lixin, et al. Geochemical parameters of river particles in eastern China[J]. Acta Geographica Sinica, 2000, 55(4):417-427. [陈静生,洪松,王立新, . 中国东部河流颗粒物的地球化学性质[J]. 地理学报,2000, 55(4):417-427.]

[53] Qu Cuihui, Zheng Jianxun, Yang Shaojin, et al. Studies of chemical compositions and influencing factors of suspended matters at controlling stations in the lower reaches of the Changjiang, the Huanghe and the Zhujiang Rivers[J]. Chinese Science Bulletin,1984,17:1 063-1 066.[屈翠辉,郑建勋,杨绍晋, . 黄河、长江、珠江下游控制站悬浮物的化学成分及其制约因素的研究[J]. 科学通报,1984,17:1 063-1 066.]

[54] Yang S Y, Li C X, Lee C B, et al. REE geochemistry of suspended sediments from the rivers around the Yellow Sea and provenance indicators[J].  Chinese Science Bulletin, 2003, 48(11):1 135-1 139.

[55] Goldstein S L, O’Nions R K, Hamilton P J. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems[J]. Earth and Planetary Science Letters,1984, 70: 221-236.

[56] Meng Xianwei, Du Dewem, Chen Zhihua, et al. Controlling factors of spatial variations of 87Sr/86Sr in the fine-grained floodplain sediments of the Changjiang and Huanghe rivers[J]. Geochimica, 2000,29(6):562-569. [孟宪伟,杜德文,陈志华,. 长江、黄河流域泛滥平原细粒沉积物87Sr/86Sr空间变异的制约因素及其物源示踪意义[J]. 地球化学, 2000,29(6):562-569.]

[57] Yang Shouye, Li Congxian, Zhu Jinchu, et al. Provenance indicator of chemical fingerprint of magnetite in the Yangtze and Yellow river sediments[J]. Geochimica,2000,29(5):480-484. [杨守业, 李从先, 朱金初, . 长江与黄河沉积物中磁铁矿成分标型意义[J].地球化学,2000,29(5):480-484.]

[58] Fan Daidu, Li Congxian, Kazumi Y, et al. Monazite age spectra in the late Cenozoic strata of the Changjiang Delta and its implication on the Changjiang run-through time[J]. Science in China (Series D),2005, 48(10):1 718-1 727.[范代读,李从先,Yokoyama K, . 长江三角洲晚新生代地层独居石年龄谱与长江贯通时间研究[J]. 中国科学:D, 2005,34(11):1 015-1 022.]

[59] Barbour G B. The physiographic period of the Yangtze Valley[J]. Geologucal Society of China Bulletin, 1935, 14: 1-15.

[60] Willis B. Research in China (Vol. 1) [M]. Washington: Press of Gibson Brothers, 1907:278-339.

[61] Lee J S, Chao Y T. Geology of the gorge district of the Yangtze (from Ichang to Tzekuei) with special reference to the development of the gorge[J]. Geologucal Society of China Bulletin,1924,3(3/4):382-389.

[62] Lee C Y. The development of the upper Yangtze valley[J]. Geologucal Society of China Bulletin,1933, 3: 107-117.

[63] Ren Meie, Bao Haosheng, Han Tongchun, et al. Geomorphic study of the Jinsha River in the northwest Yunnan Province and river capture[J]. Acta Geographica Sinica,1959, 25(3):135-155. [任美锷, 包浩生, 韩同春, . 云南西北部金沙江河谷地貌与河流袭夺问题[J]. 地理学报, 1959, 25(3):135-155.]

[64] Li Chengsan. The development history of the Yangtze River[J]. People & the Yangtze River,1956, 12: 3-6. [李承三. 长江发育史[J]. 人民长江, 1956, 12:3-6.]

[65] Yang Dayuan. The primary study of the dating and causes of the Changjiang River flowing eastwards into the sea[J]. Journal of Nanjing University (Natural Science Edition),1985, 21(1): 155-165. [杨达源. 长江中下游干流东去入海的时代与原因的初步探讨[J].南京大学学报:自然科学版,1985, 21(1):155-165.]

[66] Yang Dayuan, Li Xusheng.Study on the eastward flow of the Jinsha River[J]. Journal of Nanjing University (Natural Science Edition), 2001, 37(3): 317-322. [杨达源, 李徐生. 金沙江东流的研究[J]. 南京大学学报:自然科学版,2001, 37(3):317-322.]

[67] Li J J, Xie S Y, Kuang M S. Geomorphic evolution of the Yangtze Gorges and the time of their formation[J]. Geomorphology, 2001, 41: 125-135.

[68] Zhao Cheng, Wang Shimei. New recognition of river captures in the Three Gorges and its upper reaches[J]. Journal of Wuhan University of Hydraulic and Electric Engineering, 2000, 22(3):196-199. [赵诚, 王世梅. 长江三峡及其上游河流袭夺新认识[J]. 武汉水利电力大学学报, 2000, 22(3): 196-199.]

[69] Zhang Yechun. Formation of the Yangtze Gorges and its significance[J]. Journal of Northwest Normal University (Natural Science), 1995, 31(2):52-56. [张叶春. 长江三峡贯通的时代及意义[J]. 西北师范大学学报:自然科学版,1995, 31(2):52-56.]

[70] Li Chang'an, Zhang Yufen. Geoscientific factors analyses on the through cutting of main drainages and the formation of flood damage in China[J]. Exploration of Nature,1997,16(59):61-65. [李长安,张玉芬. 中国主要水系贯通和洪灾形成的地学因素分析[J]. 大自然探索, 1997, 16(59):61-65.]

[1] 吴晓川,欧阳黎明,郭晓中,黄焱羚,黄振华,李伟. 海域沉积物蠕动地貌的研究现状与展望[J]. 地球科学进展, 2021, 36(7): 763-772.
[2] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[3] 范成新, 刘敏, 王圣瑞, 方红卫, 夏星辉, 曹文志, 丁士明, 侯立军, 王沛芳, 陈敬安, 游静, 王菊英, 盛彦清, 朱伟. 20年来我国沉积物环境与污染控制研究进展与展望[J]. 地球科学进展, 2021, 36(4): 346-374.
[4] 苏绕绕, 赵珍. 16世纪末以来北运河水系演变及驱动因素[J]. 地球科学进展, 2021, 36(4): 390-398.
[5] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[6] 董治宝,吕萍,李超,胡光印. 火星风条痕特征及其形成机制[J]. 地球科学进展, 2020, 35(9): 902-911.
[7] 郭卫东,王超,李炎,瞿理印,郎目晨,邓永彬,梁清隆. 水环境中溶解有机质的光谱表征:从流域到深海[J]. 地球科学进展, 2020, 35(9): 933-947.
[8] 单森,齐远志,罗春乐,付文静,薛跃君,王旭晨. 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020, 35(9): 948-961.
[9] 赵仁杰,鄢全树,张海桃,关义立,葛振敏,袁龙,闫施帅. 全球俯冲沉积物组分及其地质意义[J]. 地球科学进展, 2020, 35(8): 789-803.
[10] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[11] 刘芬良, 高红山, 李宗盟, 潘保田, 苏怀. 金沙江龙街段晚更新世以来的阶地发育与河谷地貌演化[J]. 地球科学进展, 2020, 35(4): 431-440.
[12] 傅焓埔, 刘群, 胡修棉. 水下沉积物重力流与海底扇相模式研究进展[J]. 地球科学进展, 2020, 35(2): 124-136.
[13] 赵振洋, 李双建, 王根厚. 中下扬子北缘中二叠统孤峰组层状硅质岩沉积环境、成因及硅质来源探讨[J]. 地球科学进展, 2020, 35(2): 137-153.
[14] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[15] 刘柏妤, 张虎才, 常凤琴, 张扬, 张晓楠, 冯仡哲, 李华勇. 茈碧湖现代沉积特征及其环境指示意义[J]. 地球科学进展, 2020, 35(2): 198-208.
阅读次数
全文


摘要