地球科学进展 ›› 2006, Vol. 21 ›› Issue (6): 641 -647. doi: 10.11867/j.issn.1001-8166.2006.06.0641

生态学研究 上一篇    下一篇

转基因植物释放的潜在生态学效应
李有斌 1,2,安黎哲 1,张雷 3,陈拓 4   
  1. 1.兰州大学生命科学学院,甘肃 兰州 730000;2.甘肃省农牧厅,甘肃 兰州 730030;3.榆中县农业技术推广中心,甘肃 榆中 730100;4.中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000
  • 收稿日期:2005-10-26 修回日期:2006-03-20 出版日期:2006-06-15
  • 通讯作者: 黎哲(1963-),男,甘肃秦安人,教授,博士生导师,主要从事植物学、生态学方面的研究. E-mail:lizhean@lzu.edu.cn
  • 基金资助:

    国家自然科学基金重大研究项目“甘肃河西地区荒漠植物种群繁殖对策的研究”(编号:90302010)资助.

The Ecological Risks of Genetically Engineered Plants

Li Youbin 1,2,An Lizhe 1,Zhang  Lei 3,Chen Tuo 4   

  1. 1.Key Laboratory of Arid and Grassland Ecology of the Ministry of Education,Lanzhou University,Lanzhou 730000,China; 2.Gansu Provincial Department of Agriculture and Animal Husbandry, Lanzhou  730030,China;3.Yuzhong Country Center of Agricultural Science and Technology Prornotion,Yuzhong Gansu 730100,China;4.Cold and Arid Regions Environmental and Engineering Research Institute,CAS,Lanzhou  730000, China
  • Received:2005-10-26 Revised:2006-03-20 Online:2006-06-15 Published:2006-06-15

转基因植物的大量释放有可能对自然环境中原有生物产生潜在的生态风险。国内外都开展了转基因植物生态学效应的实验研究。综合研究成果,转基因植物的大规模释放,可能使转入的外源基因流向其近缘物种,产生更加难以控制的杂草;也可能直接或间接的威胁许多非靶标有益生物的生存与繁衍;也可能促使目标害虫的抗性进化;也可能导致生物多样性的丧失和对生态系统的破坏。在抗病毒转基因植物中,可能发生病毒重组而产生新的病毒。因此,应尽快构建转基因植物的生态风险评估体系,对转基因植物释放的潜在生态学影响进行长期的监测监控研究。

    Genetically engineered plants (GEPs) have been planted on large scale so far in many countries, which attracts increasing attention to the ecological risks brought about by the release of GEPs.
    It may potentially create changes of long-team environmental effects when GEPs are introduced into ecosystems. Through genetic engineering, GEPs may potentially create changes that enhance an organism's ability to become aggressive weeds or invasive in natural habitats. They are possible to spread wildly in ecosystems and to cause unintended degradation of natural ecosystem. By pollen transfer or other ways, the introgression of transgene into natural related species might occur. Gene flows among GEPs and their wild relatives are also a potential invasive risk. As lots of transgene disperse into wild gene pool, they may produce harmful effects on the genetic diversities of their wild relatives.
    Transgene proteins with pesticidal properties, such as Bacillus thringensis (Bt) toxin, may have both direct and indirect effects on populations of nontarget organisms. To some degree, transgene protein might transfer from host plants to non-target pest or from non-target pests to natural enemies.
    Insect-resistant transgenic plants play a great role in integrated pest management. However, pests could develop resistance to insect-resistant transgenic plants, and then decrease the effects and application value of insect-resistant transgenic plants against pests.
    In this paper, the ecological risks of GEPs and recent works in this area are reviewed, including risk of invasiveness, direct and indirect non-target effects on beneficial organism, and resistance of insect pests to transgenic plants and new viral disease. Some strategies of the ecological risks assessment are also proposed.

中图分类号: 

[1] Zhang Baohong,Guo Tenglong. Frequency and distance of pollen dispersal from transgenic cotton[J]. Chinese Journal of Applied Environmental Biology, 2000,6(1):39-42.[张宝红,郭腾龙. 转基因棉花基因花粉散布频率及距离的研究[J]. 应用与环境生物报, 2000,6(1): 39-42.]

[2] Zhang Changqing, Lü Qunyan, Wang Zhixing, et al. Frequency of 2,4-D resistant gene flow of transgenic cotton[J]. Scientia Agricultura Sinica, 1997, 30(1): 92-93.[张长青,吕群燕,王志兴,. 2,4-D转基因棉花基因漂流频率的研究[J]. 中国农业科学,1997, 30(1): 92-93.]

[3] Shen Fafu, Yu Yuanjie, Zhang Xuekun, et al. Bt gene flow of transgenic cotton[J]. Acta Genetica Sinica, 2001,28(6):562-567.[沈法富,于元杰,张学坤,.转基因棉花的Bt基因流[J]. 遗传学报, 2001, 28(6): 562-567.]

[4] Xu Haigen, Wang Jianmin, Qiang Sheng, et al. Study of key issues under the convention on biological diversity: Alien species invasion· biosafety· genetic resources[C]//Liu Biao. The Impact of Transgenic Organisms Release on Environment. Beijing: Science Press, 2004:232-264. [徐海根,王健民,强胜,.《生物多样性公约》热点研究:外来物种入侵·生物安全·遗传资源[C]//刘标. 转基因生物对环境和人体健康可能产生的影响. 北京:科学出版社, 2004:232-264.]

[5] Liu Qian, Zhu Xinquan. Biosafety[M]. Beijing: Science Press, 2001. [刘谦,朱鑫泉.生物安全[M].北京:科学出版社,2001.]

[6] Song Xiaoling,Qiang Sheng,Liu Linli,et al. Assessment on gene flow through detection of sexual compatibility between transgenic rice with bar gene and Echinochloa crusgalli var.mitis[J]. Scientia Agricultura Sinica, 2002, 35(10):1 228-1 231. [宋小玲,强胜,刘琳莉,. 通过转bar基因水稻与稗草杂交的亲和性研究评价基因漂移[J]. 中国农业科学, 2002,35(10):1 228-1 231.]

[7] Song Xiaoling,Qiang Sheng,Sun Mingzhu. Gene flow between herbicideresistant transgenic rice and Echinochloa crusgalli var.mitis under mentor pollen inducement[J]. Chinese Journal of Rice Sctience,2003,17(3):191-195. [宋小玲, 强胜, 孙明珠. 在蒙导条件下转bar基因水稻与无芒稗间的基因漂移[J]. 中国水稻科学, 2003,17(3):191-195.]

[8] Song Xiaoling,Qiang Sheng,Sun Mingzhu. Assessment on the possibility of gene flow between transgenic herbicide-resistant rice and Echinochloa crusgalli var.mitis from the pollen vitality of E.crusgalli vat.mitis [J]. Guihaia,2003,23(4):343-346.[宋小玲,强胜,孙明珠.从无芒稗花粉活力评价其与转基因抗除草剂水稻基因漂移的可能性[J].广西植物,2003,23(4):343-346.]

[9] Lu Jianzhong. GE oilseed rapeout of control in Canada[J]. International Biosafety Newsletter,2002,(3):5-6. [陆建忠.转基因油菜在加拿大失去控制[J].国外生物安全信息,2002,(3):5-6.]

[10] Song Xiaoling, Qiang Sheng. The potential herbicide-resistant gene flow of transgenic glyphosate-resistant and glufosinate-resistant oilseed rapes to orychophragmus violaceus[J]. Journal of Anhui Agricultural Sciences, 2003, 31(4):526-529.[宋小玲,强胜. 抗除草剂转基因油菜向杂草诸葛菜的潜在基因漂移[J]. 安徽农业科学,2003,31(4):526-529.]

[11] Wei Wei. Progress in plant molecular ecology in china during the last decade[J]. Acta Botanica sinica,2003, 45(suppl.):77-84.[魏伟.中国植物分子生态学10年进展[J].植物学报, 2003, 45(增刊): 77-84.]

[12] Song Xiaoling,Qiang Sheng. Sexual compatibility of three species of oilseed rape (Brassica spp.)with wild rapes(B.juncea var. gracilis Tsen et Lee) and the fitness of F1—potential for gene transfer[J]. Chinese Journal of Applied Environmental Biology,2003,9(4):357-361.[宋小玲,强胜. 三种类型油菜(Brassica spp.)和野芥菜(B.juncea var.gracilis Tsen et Lee)杂交亲和性及F1的适合度——潜在基因转移的研究[J]. 应用与环境生物学报, 2003,9(4):357-361.]

[13] Daly J C. Ecology and resistance management for Bacillus thuringiensis transgenic plants[J]. Biocontrol science and technolog,1994,4:563-571.

[14] Wraight C L, Zangerl A R, Carroll M J, et al. Absence of toxicity of Bacillus thuringiensis pollen to black swallow tails under field conditions[J]. Proceeding of the Nationa Academy of Sciences of the USA, 2000, 97(14):7 700-7 703.

[15] Zangerl A R, McKenna D, Wraight C L, et al. Effects of exposure to event 176 Bacillus thuringiensis corn pollen on monarch and black swallow tails caterpillars under field conditions[J]. Proceeding of the National Academy of Science of the USA,2001,98(21):11 908-11 912.

[16] Qian Yingqian,Wei Wei,Sang Weiguo,et al. Effect of transgenic crops on biodiversity[J]. Acta Ecologica Sinica, 2001,21(3):337-343.[钱迎倩,魏伟,桑卫国,. 转基因作物对生物多样性的影响[J]. 生态学报,2001,21(3):337-343.]

[17] Richard L H,Blair D S,Mark K S. Monarch larvae sensitivity to Bacillus thuringiensis purified proteins and pollen[J]. Proceeding of the Natlional Academy of Science of the USA,2001,98(21):11 925-11 930.

[18] Hilbeck A,Baumgartner M,Padruot M F, et al. Effects of transgenic Bacillus thuringiensis corn-fed pre on mortality and development time of immature Chrysoperla carnea (Neuroptera: Chrysopidae)[J]. Environ Entanol,1998, 27(2): 480-487.

[19] Raps A,Kehr J,Gugerli P,et al. Immunological analysis of phloem sap of Bacillus thuringiensis corn and of the nontarget herbivore Rhopalosiphum padi (Homoptera: Aphididae) for the presence of crylAb[J]. Molecular Ecology, 2001,10(2):525-533.

[20] Xia Jingyuan, Cui Jinjie. The role of transgenic Bt cotton in integrated insect pest management [J]. Cotton Science,1999,11(2):57-64. [夏敬源,崔金杰. Bt基因抗虫棉在害虫综合治理中的作用研究[J]. 棉花学报,1999,11(2):57-64.]

[21] Xue Dayuan. The report in the studies on the impact of transgenic Bt cotton on environment[J]. International Biosafety Newsletter,2002,(suppl.).[薛达元.Bt基因抗虫棉环境影响研究的综合报告[J].国外生物安全信息,2002,(增刊).]

[22] Liu Zhicheng, Ye Gongyin, Hu cui, et al. Impact of transgenic indica rice with a fused gene of crylAb/crylAc on the rice paddy arthropod community[J]. Acta Entomologica Sinica,2003,46(4):454-465.[刘志诚,叶恭银,胡萃,. crylAb/crylAc基因籼稻对稻田节肢动物群落影响[J]. 昆虫学报,2003,46(4):454-465.]

[23] Zhang YongJun, Wu Kongming, Peng Yufa, et al. Progress in ecological safety of insect-resistant transgenic plants[J]. Entomological Knowledge, 2002, 39(5):321-327. [张永军,吴孔明, 彭于发,.转抗虫基因植物生态安全性研究进展[J]. 昆虫知识,2002, 39(5): 321-327.]

[24] Liang Gemei, Tan Weijia,Guo Yuyuan. Studies on the resistance screening and cross-resistance of cotton bollworm to Bacillus thuringiensis (Bediner) [J]. Scientia Agricultural Sinica, 2000,33(4): 46-53. [梁革梅,谭维嘉,郭予元. 棉铃虫对Bt的抗性筛选及交互抗性研究[J]. 中国农业科学,2000, 33(4): 46-53.]

[25] Zhao Jianzhou, Lu Meiguang, Fan Xianlin, et al. Survival and growth of different instars larvae of helicoverpa armigera (Hubner) on transgenic Bt cotton[J]. Acta Entomologica Sinica,1998, 41(4): 354-358. [赵建周,卢美光,范贤林,. Bt基因棉花对棉铃虫不同龄期幼虫的杀虫活性和抑制生长作用[J].昆虫学报,1998,41(4):354-358.]

[26] Sheng Jinliang,Zhou Weijun,Wu Yidong,et al. Eaply resistance of helicoverpa armigera (Hubner) to Bacillus thuringiensis and its relation to the effect of transgenic cotton lines expressing Bt toxin on the insect[J]. Acta Entomologica Sinica,1998,4(1):8-14.[沈晋良,周威君, 吴益东,. 棉铃虫对Bt生物农药早期抗性及与转Bt基因抗虫性的关系[J].昆虫学报,1998, 4(1):8-14.]

[27] He Danjun,Sheng Jinliang,Zhou Weijun,et al. Using F2 genetic method of iso-female lines to detect the frequency of resistance alleles to Bacillus thuringiensis toxin from transgenic Bt cotton in cotton bollworm (lepidoptera: noctuidae)[J]. Cotton Science,2001,13(2):105-108.[何丹军,沈晋良,周威君,. 应用单雌系F2代法检测棉铃虫对转Bt基因棉抗性等位基因的频率[J]. 棉花学报, 2001,13(2):105-108.]

[28] Gould F,Anderson A,Jones A,et al. Initial frequency of alleles for resistance to Bacillus thringiensis toxins in field populations of Heliothis virescens[J]. Profceeding of the Natlional of Science USA,1997,94(1):3 519-3 523.

[29] Roush R T. Two toxin strategies for management of insecticidal transgenic crops: Can pyramiding succeed where pesticide mixtures have not?[J]. Philosphical Transactions of the Royal Society of London,1998, 35:1 777-1 786.

[30] Zhang Yongjun, Wu Kongming, Peng Yufa, et al. The ecological risks of genetically engineered plants[J]. Acta  Ecologica Sinica,2002,22(11):1 951-1 959.[张永军,吴孔明,彭于发,. 转基因植物的生态风险[J]. 生态学报,2002,22(11):1 951-1 959.]

[31] Gal S B, Pisan T, John N, et al. Agroinfection of transgenic plants leads to viable cauliflower mosaic virus by intermolecular recombination[J]. Virology,1992,187:525-533.

[32] Jarvis T C, Kirkegaard K. Poliovirus RNA recombination: mechanistic studies in the absence of selection[J]. The EMBO Journal,1992,11:3 135-3 145.

[33] Zhu Shouyi. Biosafety and Prevent the Pollution[M]. Beijing: Chemical Industry Press, 1999.[朱守一.生物安全与防止污染[M].北京:化学工业出版社,1999.]

[34] Qian Yingqian, Ma Keping. Progress in the studies on genetically modified organisms, and the impact of its release on environment [J]. Acta Ecologica Sinica,1998,18(1): 1-9.[钱迎倩,马克平. 经遗传修饰生物体的研究进展及其释放后对环境的影响[J].生态学报,1998,18(1):1-9.]

[1] 范成新, 刘敏, 王圣瑞, 方红卫, 夏星辉, 曹文志, 丁士明, 侯立军, 王沛芳, 陈敬安, 游静, 王菊英, 盛彦清, 朱伟. 20年来我国沉积物环境与污染控制研究进展与展望[J]. 地球科学进展, 2021, 36(4): 346-374.
[2] 宗庆霞, 窦磊, 侯青叶, 杨忠芳, 游远航, 唐志敏. 基于土地利用类型的土壤重金属区域生态风险评价:以珠江三角洲经济区为例[J]. 地球科学进展, 2017, 32(8): 875-884.
[3] 孙晓霞. 海洋微塑料生态风险研究进展与展望[J]. 地球科学进展, 2016, 31(6): 560-566.
[4] 许 妍, 曹 可, 李 冕, 许自舟. 海岸带生态风险评价研究进展[J]. 地球科学进展, 2016, 31(2): 137-146.
[5] 彭建, 刘焱序, 潘雅婧, 赵志强, 宋治清, 王仰麟. 基于景观格局—过程的城市自然灾害生态风险研究:回顾与展望[J]. 地球科学进展, 2014, 29(10): 1186-1196.
[6] 唐阵武,岳勇,许其功. 水体中多溴联苯醚污染及其生态风险[J]. 地球科学进展, 2009, 24(2): 204-210.
[7] 李泽琴,侯佳渝,王奖臻. 矿山环境土壤重金属污染潜在生态风险评价模型探讨[J]. 地球科学进展, 2008, 23(5): 509-516.
[8] 付在毅,许学工. 区域生态风险评价[J]. 地球科学进展, 2001, 16(2): 267-271.
[9] 张学林,王金达,张 博,洪 梅. 区域农业景观生态风险评价初步构想[J]. 地球科学进展, 2000, 15(6): 712-716.
阅读次数
全文


摘要