地球科学进展 ›› 2014, Vol. 2014 ›› Issue (6): 712 -722.

上一篇    

累积海冰密集度及其在认识北极海冰快速变化的作用
王维波( ), 赵进平   
  1. 物理海洋教育部重点实验室, 中国海洋大学, 山东 青岛 266100
  • 出版日期:2014-06-10
  • 基金资助:
    全球变化研究国家重大科学研究计划项目“北半球冰冻圈变化及其对气候环境影响与适应对策”(编号:2010CB951403);南北极环境综合考察与评估专项“北极环境综合评估”(编号:CHINARE2012-04-03-02)资助

Accumulation Sea Ice Concentration and Its Action on Understanding Arctic Sea Ice Dramatic Change

Weibo Wang( ), Jinping Zhao   

  1. Key laboratory of physical oceanography, MOE, Ocean University of China, Qing Dao 266100
  • Online:2014-06-10 Published:2014-06-10

为定量分析北冰洋海冰密集度年际差异,提出并采用累积海冰密集度(ASIC)概念。利用SSMR/SSMI的分辨率为25 km的海冰密集度数据,分别研究了1979—2011年北极海冰在融冰期(4~9月)和结冰期(10月至翌年3月)的变化过程以及2个冰期内ASIC的区域差异。研究发现,在1979—1989年、1989—1999年和1999—2009年期间,融冰期海冰发生明显变化的范围都远远大于结冰期海冰发生明显变化的范围。1998—2010年,融冰期内发生加速融化的海区并没有都出现结冰期冰量减小的现象。在此期间融冰期ASIC减小,结冰期ASIC也减小的海域仅集中在楚克奇海、新地岛北部海域以及格陵兰岛东西海岸。融冰期ASIC减小,而结冰期ASIC无明显变化的海域包括波弗特海、东西伯利亚海、拉普捷夫海和喀拉海。这些区域与局地陆地径流侵入的海域重合。研究发现,在这些区域,融冰期ASIC减少是陆地径流增大加速海冰融化引起的。在结冰期,陆地径流加速海水结冰的作用消除融冰期海水吸收大量太阳辐射能后发生推迟结冰的现象,使得ASIC无明显变化。融冰期ASIC减小,而结冰期ASIC增大的区域只有白令海。研究结果证明累积海冰密集度能够去除海冰高频变化而只表现低频变化,能够描述海冰的年际变化特征。同时由于海冰变化与海洋中其他物理参数存在显著关系,变T的ASIC可以更加方便地描述次表层叶绿素最大值层深度的变化。

Accumulation Sea Ice Concentration (ASIC) is developed to quantitatively measure the regional difference of Arctic sea ice concentration. During the periods of 1979-1989, 1989-1999 and 1999-2009, the linear trends of ASIC in melt period (April-September) and in ice-formation period (October-March) were obtained from SSMR/SSMI sea ice concentration, respectively. Retrospective analysis reveals that there exits greater areas, where dramatic change happens for ASIC in melt period than in ice-formation period. It is revealed that during 1998-2010, in most areas where sea ice was rapidly melted, sea ice amount did not yet decrease in ice-formation period. These areas of ASIC in melt period decreased and in ice-formation also decreased in Chukchi Sea, northern Nova Zembla, and the east and west coast of Greenland. These areas of ASIC in melt period decreased and in ice-formation did not obviously change in Beaufort Sea, East Siberian Sea, Laptev Sea and eastern Kara Sea, where sea ice was influenced by continental runoff. Continental runoff can accelerate the melt of sea ice in melt period and can accelerate the freeze of sea water in ice-formation period. It is concluded that its action is enough to compensate for the delay due to regional sea water absorbing more radiation in summer, as a result of freezing sea ice on time in these areas. The area of ASIC in melt period decreased and in ice-formation increased only in Bering Sea. Conclusively, ASIC is regarded as a useful parameter presenting low frequency of sea ice change and eliminating the high frequency, and is used to illustrate annual variation characteristics of sea ice. Meanwhile, due to sea ice change consistent with other parameters in sea water, using ASIC can better understand the change of sea water’s properties. There is a negative correlation between ASIC calculated by changeable time-scale and the depth of subsurface chlorophyll maximum layer.

中图分类号: 

图1 1979—2013年1~12月海冰覆盖面积(折线)及其线性回归线(直线) 图标中数字代表海冰覆盖面积的减少速率(×106km2/a)
Fig. 1 Monthly variation of Arctic sea ice extent from 1979 to 2013(polyline) and their respective linear regression line (straight line) The underneath in figure presents monthly declining rate of sea ice extent.
图2 2011年4~9月北极地区ASIC分布图(左图)和A-I站点海冰密集度日变化(右图)
Fig. 2 ASIC distribution in Arctic calculated from April to September in 2011(Left) and daily variation of sea ice concentration (right) at A~I in left map
图3 累积海冰密集度与海冰密集度日变化之间的比较 观测站点为图2中F站
Fig. 3 Comparison between accumulative sea ice concentration and daily sea ice concentration F station is chosen in Figure 2 left map
图4 融冰期ASIC在1979—1989年 (a),1989—1999年(b)和1999—2009年(c)内的趋势变化
Fig. 4 The linear trends of ASIC computed from 1979-1989 (a), 1989-1999 (b) and 1999-2009 (c) respectively in melt period (April - September).
图5 10月至翌年3月ASIC在1979—1989年(a),1989—1999年(b)和1999—2009年(c)内的趋势变化
Fig. 5 The linear trends of ASIC computed from 1979-1989 (a), 1989-1999 (b) and 1999-2009 (c) respectively in ice-formation period (October - March)
图6 1998—2011年融冰期ASIC相对于1979—1995年平均ASIC的异常变化
Fig. 6 ASIC anomaly in 1998-2011 computed against the averaged ASIC from 1979-1995 in melt period
图7 1998—2010年结冰期ASIC相对于1979—1995年平均ASIC的异常变化
Fig. 7 ASIC anomaly in 1998-2010 computed against the averaged ASIC from 1979-1995 in ice-formation period
图8 1998—2010年融冰期和结冰期ASIC异常的一致性特征 红色代表ASIC异常在融冰期和结冰发生一致变化,而蓝色代表ASIC异常不一致变化
Fig. 8 The synchronal property between ASIC anomalies in melt period and ice-formation period Red region presents the synchronization and blue region presents the asynchronization between ASIC anomalies in melt period and in ice-formation period
图9 8月份北冰洋 区域分布 [ 17 ] 值越大,说明海水受陆源径流水的影响越小。图中标注了波弗特海(BS)、Mackenzie河(4)、楚克奇海(CS)、东西伯利亚海(ESS)、Kolyma河(5)、拉普捷夫海(LS)、Lena河(2)、喀拉海(KS)、Yenisei河(1)、Ob河(3)、巴伦支海(RS)和Pechora河(6)
Fig. 9 A pan-Arctic view of an August climatology (2002-2009) of [ 17 ] In increase in corresponds to a diminishing influence of continental runoff. The five largest Arctic Rivers are labels and ranked in order of decreasing discharge: Yenisei (1), Lena (2), Ob (3), Mackenzie (4), Kolyma (5), and Pechora (6). River-influenced margins of the Arctic are labels: Gulf of Ob (GO), Kara Sea (KS), Laptev Sea (LS), East Siberian Sea (ESS), Chukchi Sea (CS), Beaufort Sea (BS), Amundsen Gulf (AG) and Barents Sea (RS)
图10T的ASIC(积分范围是从6月1日到观测日)与次表层叶绿素最大值层的深度之间的反相关关系
Fig. 10 The negative correlation between ASIC calculated from June 1 to observation day and the depth of Subsurface Chlorophyll Maximum
[1] Hassol S. Impacts of a warming Arctic-Arctic climate impact assessment[M]∥Hassol S J, ed. Impacts of A Warming Arctic-Arctic Climate Impact Assessment.Cambridge, UK: Cambridge University Press, 2004.
[2] Solomos S. Climate Change 2007: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, UK: Cambridge University Press, 2007.
[3] Zhao Jinping, Li Tao, Zhang Shugang, et al. The shortwave solar radiation energy absorbed by packed sea ice in the central arctic[J]. Advances in Earth Science, 2009, 24(1):33-41.
[赵进平, 李涛, 张树刚, 等. 北冰洋中央密集冰区海冰对太阳短波辐射能吸收的观测研究[J]. 地球科学进展, 2009, 24(1): 33-41.]
[4] Yang Qinghua, Zhang Zhanhai, Liu Jiping, et al. Review of sea ice albedo parameterizations[J]. Advances in Earth Science, 2010, 25(1):13-21.
[杨清华, 张占海, 刘骥平, 等. 海冰反照率参数化方案的研究回顾[J]. 地球科学进展, 2010, 25(1):13-21.]
[5] Vinnikov K Y, Robock A, Stouffer R J, et al. Global warming and northern hemisphere sea ice extent[J]. Science, 1999, 286(5 446):1934-1937.
[6] Perovich D K, Richter-Menge J A, Jones K F, et al. Sunlight, water, and ice: Extreme Arctic sea ice melt during the summer of 2007[J]. Geophysical Research Letters, 2008, 35:L11501, doi: 10.1029/2008GL034007.
[7] Comiso J C, Parkinson C L, Gersten R, et al. Accelerated decline in the Arctic sea ice cover[J]. Geophysical Research Letters, 2008, 35: L01703, doi:10.1029/2007GL031972.
[8] Perovich D K, Meier W, Tschudi M, et al. Sea ice cover, the Arctic, in state of the climate in 2012[J]. Bulletin of the American Meteorological Societ, 2013, 94: S126-S128.
[9] Zhu Dayong, Zhao Jinping, Shi Jiuxin. Study on the multi-year variation of sea ice cover of Chukcki Sea in Arctic Ocean[J]. Acta Oceanologica Sinica, 2007, 29(2):25-33.
[朱大勇, 赵进平, 史久新. 北极楚科奇海海冰面积多年变化的研究[J]. 海洋学报, 2007, 29(2):25-33.]
[10] Petoukhov V, Semenov V A. A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2010, 115: D21111, doi: 10.1029/2009JD013568.
[11] Divine D V, Dick C. Historical variability of sea ice edge position in the Nordic Seas[J]. Jouranl of Geophysical Research, 2006, 111:C01001, doi:10.1029/2004JC002851.
[12] Shindell D T, Miller R L, Schmidt G A, et al. Simulation of recent winter climate trends by greenhouse gas forcing[J]. Nature, 1999, 399:452-455.
[13] Cosmiso J C. Abrupt decline in the arctic winter sea ice cover[J]. Geophysical Research Letters, 2006, 33:L18504, doi:10.1029/2006GL027341.
[14] Claire L P, Donald J C, Per Golersen, et al. Arctic sea ice extents, areas, and trends, 1978-1999[J]. Journal of Geophysical Research, 1999, 104(C9):20837-20856.
[15] Wu B, Wang J, Walsh J E. Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion[J]. Journal of Climate, 2006, 19(2):210-225.
[16] Mu Longjiang, Zhao Jinping. Variability of the Greenland Sea ice edge[J]. Advances in Earth Science, 2013, 28(6):709-717.
[牟龙江,赵进平.格陵兰海海冰外缘线变化特征分析[J].地球科学进展,2013, 28(6):709-717.]
[17] Stroeve J C, Serreze M C,Holland M M, et al. The Arctic’s shrinking sea ice cover: A research synthesis[J]. Climatic Change, 2012, 110:1005-1027, doi: 10.1007/s10584-011-0101-1.
[18] Macdonald R W, Carmack E C, McLaughlin F A, et al. Connections among ice, runoff and atmospheric forcing in the Beaufort Gyre[J]. Geophysical Research Letters, 1999, 25(15): 2223-2226.
[19] Fichot C, Kaiser Karl, Stanford Hooker, et al. Pan-Arctic distributions of continental runoff in the Arctic Ocean[J]. Scientific Reports, 2013, 3,doi:10.1038/srep01053.
[20] Nghiem S V, Hall D K, Rigor I G, et al. Effects of Mackenzie River discharge and bathymetry on sea ice in the Beaufort Sea[J]. Geophysical Research Letters, 2014, 41, doi:10.1002/2013GL058956.
[21] Sui Cuijuan, Zhang Zhanhai, Liu Jiping, et al. Variation of Arctic runoff and its association with climate factors[J]. Acta Oceanologica Sinica, 2008, 4:39-47.
[隋翠娟, 张占海, 刘骥平,等. 北极河流径流量变化及影响因子分析[J]. 海洋学报, 2008,4:39-47.]
[22] Masayo Ogi, Yoshihiro Tachibana. Influence of the annual Arctic Oscillation on the negative correlation between Okhotsk Sea ice and Amur River discharge[J]. Geophysical Research Letters, 2006, 33(8),doi:10.1029/2006GL025838.
[23] Zhou Botao, Wang Huijun. The correlation of anomalous Bering Sea ice with the change of Hadley Cell[J]. Chinese Science Bulletin, 2007, 52(18):2194-2198.
[周波涛, 王会军. Hadley环流变化与白令海海冰异常的关系[J]. 科学通报, 2007, 52(18):2194-2198.]
[24] Perovich D K, Meier W, Tschudi M, et al. Sea ice cover, the Arctic, in state of the climate in 2012[J]. Bulletin of the American Meteorological Society, 2013, 94(8):S126.
[25] Wang Weibo, Zhao Jinping. Variation of diffuse attenuation coefficient of downwelling irradiance in Arctic Ocean[J]. Acta Oceanologica Sinica, 2014, 33(6):53-62.
[26] Gong Xiang, Shi Jie, Gao Huiwang. Subsurface chlorophyll maximum in ocean: Its characteristics and influencing factors[J]. Advances in Earth Science, 2012, 27(5):539-548.
[宫响, 史洁, 高会旺. 海洋次表层叶绿素最大值的特征因子及其影响因素[J].地球科学进展,2012,27(5) : 539-548.]
[1] 王维波, 赵进平. 累积海冰密集度及其在认识北极海冰快速变化的作用[J]. 地球科学进展, 2014, 29(6): 712-722.
[2] 祁第, 陈立奇. 北冰洋酸化指标——海水文石饱和度变异的研究进展 *[J]. 地球科学进展, 2014, 29(5): 569-576.
[3] 李玉红, 詹力扬, 陈立奇. 北冰洋CH 4研究进展[J]. 地球科学进展, 2014, 29(12): 1355-1361.
[4] 王寿刚,王汝建,陈建芳,陈志华,程振波,汪卫国,黄元辉. 白令海与西北冰洋表层沉积物中四醚膜类脂物研究及其生态和环境指示意义[J]. 地球科学进展, 2013, 28(2): 282-295.
[5] 王汝建,肖文申,成鑫荣,陈建芳,高爱国,韩贻兵,李秀珠. 北冰洋西部晚第四纪浮游有孔虫氧碳同位素记录的海冰形成速率[J]. 地球科学进展, 2009, 24(6): 643-651.
[6] 赵进平,李涛,张树刚,矫玉田. 北冰洋中央密集冰区海冰对太阳短波辐射能吸收的观测研究[J]. 地球科学进展, 2009, 24(1): 33-41.
[7] 高众勇,陈立奇,CAI Wei-jun,WANG Yong-chen. 全球变化中的北极碳汇:现状与未来[J]. 地球科学进展, 2007, 22(8): 857-865.
[8] 史久新,赵进平. 北冰洋盐跃层研究进展[J]. 地球科学进展, 2003, 18(3): 351-357.
阅读次数
全文


摘要