地球科学进展 ›› 2006, Vol. 21 ›› Issue (2): 151 -156. doi: 10.11867/j.issn.1001-8166.2006.02.0151

所属专题: “沙尘天气追因、影响及治理”虚拟专刊

“土地利用/覆盖变化与综合减灾”专辑 上一篇    下一篇

内蒙古中西部地区不同土壤类型下土壤水分的研究
李 宁 1,2,顾 卫 1,杜子璇 3,史培军 1,2,任学慧 4,Kevin Levy 5   
  1. 1.北京师范大学环境演变与自然灾害教育部重点实验室,北京 100875;2.北京师范大学资源学院灾害与公共安全研究所,北京 100875;3.河南省气象局,河南 郑州 450003;4.辽宁师范大学城市与环境学院,辽宁 大连 116029;5. Department of Information and Computer Science,Math & Science Division University of Hawaii-Leeward,Pearl City,HI 96782,USA
  • 收稿日期:2005-12-30 修回日期:2006-01-20 出版日期:2006-02-15
  • 通讯作者: 顾卫(1956-),男,吉林长春人,教授,主要从事自然灾害和自然资源方面的研究. E-mail:weigu@bnu.edu.cn
  • 基金资助:

    北京市自然科学基金项目“北京市建筑立面材料对城市局部热环境的影响”(编号:8062020);国家自然科学基金项目“基于野外观测的沙尘暴源地的下垫面特征和沙尘危险度研究”(编号:40541001)资助.

Soil Water Content Observations Under Different Soil Classification in Central and East Inner Mongolia of China

Li Ning 1,2,Gu Wei 1,Du Zixuan 3,Shi Peijun 1,2,Ren Xuehui 4,Kevin Levy 5   

  1. 1.Key Laboratory of Environmental Changes and Natural Disaster, Ministry of Education, Beijing Normal University,Beijing 100875,China;2.Institute of Disaster and Public Security, College of Resources Science and Technology,Beijing Normal University,Beijing 100875,China;3.Henan Provincial Meteorological Institute,Zhengzhou  450003, China;4.College of Urban and Environment, Liaoning Normal University, Dalian 116029, China; 5.Department of Information and Computer Science,Math & Science Division University of Hawaii-Leeward,Pearl City,HI 96782,USA
  • Received:2005-12-30 Revised:2006-01-20 Online:2006-02-15 Published:2006-02-15

以2002—2003年连续两年自行观测的内蒙古中西部地区二连浩特、乌拉特中旗和乌海的土壤水分为基础,重点分析了沙尘暴发生季节反映下垫面特征的土壤水分的时间变化以及大气影响对不同土壤类型(棕钙土,灰漠土,栗钙土)水分的作用。土壤水分的变化被分为3个阶段进行分析,分别是解冻期至沙尘暴开始的春季、雨期的秋季和冰雪覆盖的冬季。土壤水分受气象条件和土壤类型的影响较大。在气象条件的影响下,土壤水分含量在土壤融化期最低,在雨季达到最大值,其中以栗钙土受的影响最明显。沙尘暴发生依赖于土壤融化时间、土壤融化期的土壤条件和上年冬季的冻土深度。

Soil water content was observed continuously and automatically in Erlianhaote, Wulatezhongqi and Wuhai, northwestern Inner Mongolia, China for two years (2002-2003) in this paper. Based on the data, the temporal variation of soil water content was analyzed, which represented the characteristics of land surface. The effect on soil water content) influenced by atmosphere in different soil texture (Brown-calcium soil, Chestnut--calcium soil and Gray-desert soil) was compared. Seasonal variations of the soil water content were characterized into three stages, from thawing to active dust storm (spring), rainy (autumn) and snow cover (winter) period. The soil water content much depended on meteorology condition. By these observations, it became clear that the soil water content was the lowest in the beginning thaw period, and was the highest in the rainy season. Differences in soil water content among the years depended on the lowest in the whole thaw period meteorological conditions The soil water content was lowest during the soil melt period, the variations of Chestnut-calcium soil was obvious under meteorology condition. The dust emission much influenced by thaw time of soil, soil wetness and the thaw period and depth of frozen soil.

中图分类号: 

[1] Gu Wei, Cai Xuepeng, Xie Feng, et al. Study on relationship between vegetation cover and distribution of days of sandstorm—Taking central and western Inner Mongolia for example[J]. Advances in Earth Science,2002, 7(2):273-277. [顾卫,蔡雪鹏,谢锋,.植被覆盖与沙尘暴日数分布关系的探讨[J].地球科学进展,2002,17(2):273-277.]

[2] Shi Peijun, Zhang Hong, Wang Ping, et al. The regional patterns for combating sandification in sandy disaster affected area in China[J]. Journal of Natural Disasters,2000,9(3):1-7. [史培军,张宏,王平,.我国防沙治沙的区域模式[J].自然灾害学报,2000,9(3):1-7.]

[3] Li Ning, Gu Wei, Xie Feng, et al. Threshold value response of soil moisture to dust storms—A case study of midwestern of Inner Mongolia[J]. Journal of Natural Disasters,2004,13(1): 44-49. [李宁,顾卫,谢锋,.土壤水分对沙尘暴的阈值反应——以内蒙古中西部地区为例[J].自然灾害学报,2004,13(1):44-49.]

[4] Bai Jingyu, Shi Xiaoying, Yu Shuqiu. Preliminary research on soil moisture in eastern part of Northwest China[J]. Meteorological Science and Technology,2003,31(4):226-230. [柏晶瑜,施小英,于淑秋.西北地区东部春季土壤湿度变化的初步研究[J].气象科技,2003,31(4):226-230.]

[5] Ning Li, Wei Gu, Kevin Levy J, et al. The utility of Hayashi’s quantification theory for assessment of land surface indices in influence dust storm—A case study in Inner Mongolia China[J]. Atmospheric Environment, 2005, 39(1):119-126.

[6] Hollinger S E, Israd S A. A soil water content climatology of Illinois[J]. Journal of Climate,1994,7:822-833.

[7] Tomoyoshi Hirota, Tatsuaki Kasubuchi. Soil moisture observations under different vegetations in a boreal humid climate[J]. Journal of Japan Socciety Hydrology Water Resources,1996,9(3):233-239.

[8] Vinnikov K Y A, Yeserkepova I B. Soil water content: Empirical data and model results[J]. Journal of Climate, 1991,4:66-79.

[9] Gao Tao, Lijuan Su, Qingxia Ma, et al. Climatic analyses on increasing dust storm frequency in the spring of 2000 and 2001 in Inner Mongolia[J]. International Journal of Climatology,2003,23:1 743-1 755.

[10] Engelstaedter S, Kohfeld K F, Tegen I, et al. Controls of dust emissions by vegetation and topographic depressions an evaluation using dust storms frequency data[J]. Geophysical Research Letters,2003,30:Art.1 289-1 294.

[11] Fan Yida, Shi Peijun, Wang Xiushan, et al. The analysis of typical dust storms in Northern China by remote sensing[J]. Advances in Earth Science,2002,17(2):289-294.[范一大,史培军,王秀山,.中国北方典型沙尘暴的遥感分析[J].地球科学进展,2002,17(2):289-294.]

[12] Liu H Y, Tian Y H, Ding D. Contributions of different land cover types in Otindag Sandy Land and Bashang area of Hebei Province to the material source of sand stormy weather in Beijing[J]. Chinese Science Bulletin,2003,48(17):1 853-1 856.

[13] Matsuba T, Ding C, Lu L. The utility if Hayashi's quantification theory type 2 for the rapid assessment of the epidemiological survey in the developing countries—In a case of the vaccine coverage survey in Yunnan province, China[J]. Journal of Epidemiology,1998,8(1):24-27.

[14] Natsagdory L, Jugder D, Chung Y S. Analysis of dust storms observed in Mongolia during 1937-1999[J]. Atmosphere Environment,2003,37(9):1 401-1 411.

[15] Nilgun K, Slobodan N. An illustration of the transport and deposition of mineral dust onto the eastern Mediterranean[J]. Atmospheric Environment,2000,34:1 293-1 303.

[16] Tegen T, Werner M, Harrison S P, et al. Kohfeld, Relative importance of climate and land use in determining present and future global soil dust emission[J]. Geophysical Research Letters,2004,31:L05105.

[17] Van Douk S J, Skidmore E L. Measurement and simulation of wind erosion, roughness degradation and residue decomposition on an agricultural field[J]. Land Surface Processes and Forms,2003,28(11):1 243-1 258.

[18] Yoshino M. Climatology of yellow sand (Asian sand, Asian dust or Kosa) in East Asia[J]. Science in China(D), 2002,45:59-70.

[19] Zhang X Y, Arimoto R, An Z S. Dust emission from Chinese desert liked to variations in atmospheric circulation[J]. Journal of Geophysical Research-Atmosphere,1997,102(D23):28 041-28 047.

[1] 摆玉龙, 路亚妮, 刘名得. 基于变分模态分解的机器学习模型择优风速预测系统[J]. 地球科学进展, 2021, 36(9): 937-949.
[2] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[3] 赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-918.
[4] 邵明安, 贾小旭, 王云强, 朱元骏. 黄土高原土壤干层研究进展与展望[J]. 地球科学进展, 2016, 31(1): 14-22.
[5] 高江波, 吴绍洪, 戴尔阜, 侯文娟. 西南喀斯特地区地表水热过程研究进展与展望[J]. 地球科学进展, 2015, 30(6): 647-653.
[6] 王萍, 郑晓静. 非平稳风沙运动研究进展[J]. 地球科学进展, 2014, 29(7): 786-794.
[7] 李大治, 晋锐, 车涛, 高莹, 耶楠, 王树果. 联合机载PLMR微波辐射计和MODIS产品反演黑河中游张掖绿洲土壤水分研究 *[J]. 地球科学进展, 2014, 29(2): 295-305.
[8] 李宁,顾孝天,刘雪琴. 沙尘暴灾害致灾因子三维联合分布与重现期探索[J]. 地球科学进展, 2013, 28(4): 490-496.
[9] 朱忠礼,林柳莺,徐同仁. 海河流域不同下垫面土壤水分动态模拟研究[J]. 地球科学进展, 2012, 27(7): 778-787.
[10] 赵栋梁. 海洋飞沫及其对海—气相互作用影响的研究进展[J]. 地球科学进展, 2012, 27(6): 624-632.
[11] 张添,黄春林,沈焕锋. 土壤水分对土壤参数的敏感性及其参数优化方法研究[J]. 地球科学进展, 2012, 27(6): 678-685.
[12] 陈书林,刘元波,温作民. 卫星遥感反演土壤水分研究综述[J]. 地球科学进展, 2012, 27(11): 1192-1203.
[13] 李耀辉,孙国武,张良,段海霞. 我国北方沙尘暴年代际变化与北大西洋海气系统年代际变率的联系[J]. 地球科学进展, 2011, 26(6): 624-630.
[14] 朱好,张宏升. 沙尘天气过程临界起沙因子的研究进展[J]. 地球科学进展, 2011, 26(1): 30-38.
[15] 张克存,屈建军,牛清河,张伟民,韩庆杰. 青藏铁路沿线砾石方格固沙机理风洞模拟研究[J]. 地球科学进展, 2010, 25(3): 284-289.
阅读次数
全文


摘要