地球科学进展 ›› 2005, Vol. 20 ›› Issue (7): 794 -803. doi: 10.11867/j.issn.1001-8166.2005.07.0794

全球变化研究 上一篇    下一篇

南半球对流层气候年代际变化及其与太阳活动的联系
曲维政,陈 璐,黄 菲,张 微,朱小洁,邓声贵,杜 凌   
  1. 中国海洋大学海洋环境学院,山东 青岛 266003
  • 收稿日期:2004-08-09 修回日期:2005-03-09 出版日期:2005-07-25
  • 通讯作者: 曲维政
  • 基金资助:

    国家自然科学基金项目“月平均火山活动特征指数时间序列研究与建立”(编号:40475033)和“南海季风型海气耦合系统与跨赤道行星季风相互作用研究”(编号:40305009)资助.

THE DECADAL VARIATIONS OF CLIMATE IN TROPOSPHERE OF SOUTHERN HEMISPHERE AND ITS RELATION WITH SOLAR ACTIVITIES

QU Weizheng;CHEN Lu;HUANG Fei;ZHANG Wei;ZHU Xiao-jie;DENG Shenggui;DU Ling   

  1. College of Environment Oceanography, Ocean University of China, Qingdao, 266003
  • Received:2004-08-09 Revised:2005-03-09 Online:2005-07-25 Published:2005-07-25

通过南半球对流层温度场谱分析和逐次滤波分析发现,南半球对流层大气温度场半个多世纪以来呈现明显的持续升温趋势,升温幅度由低层到高层逐步增加,其中地面层1 000 hPa年升温率为0.013℃/a,对流层中部500 hPa年升温率为0.019℃/ a,对流层上部300 hPa年升温率为0.036℃/ a;滤除南半球大气温度场的趋势变化,发现南半球大气温度场从地面层直至对流层顶广泛盛行着十分显著的与太阳磁场磁性22年周期变化相一致的变化周期。太阳磁场磁性周期变化趋势略有超前,分析认为,这是南半球对流层大气气候系统对太阳磁场周期性变化的响应。进一步分析还发现,南半球从地面层1 000 hPa到对流层顶,再到平流层中部10 hPa各层次大气温度变化22年周期分量振荡位相基本一致,周期振幅由低层到高层迅速增大,说明太阳磁场变化对对流层高层比低层影响大,对平流层影响更大。其中地面层1 000 hPa温度场的22年变化周期是在滤除趋势变化和11年周期之后才显现出来的,所以太阳磁场磁性周期变化对地面层气候的影响较小并且经常处于被掩盖状态;南半球地面层1 000 hPa温度场滤除趋势变化之后显示出十分显著的与太阳活动11年周期相一致的变化周期,分析认为,这是南半球对流层大气气候系统对太阳活动11周期性变化的响应。对流层上层300 hPa温度场滤除趋势变化和22年周期之后也显示出11年变化周期,而对流层中部500 hPa则无此周期反应,说明太阳活动11年周期对地面层1 000 hPa大气气候影响最明显,对流层中上层影响较弱。

Through the spectral analyses of the temperature fields in troposphere of the Southern Hemisphere and gradually filtrating analyses, it is revealed that in the atmosphere temperature field in troposphere of the Southern Hemisphere there has been an obvious insistent rising tendency for more than 50 years. The amplitude of the temperature rising gradually increases from low layer to high layer. The yearly rate of temperature rising at the earth surface layer 1 000 hPa is 013 ℃/a, in the middle part of the troposphere 500 hPa it is 0.019 ℃/a, at the upper part of the troposphere 300 hPa it is 0.036 ℃/a. After the trend variations of the atmosphere temperature field in the Southern Hemisphere are filtrated out, it is revealed that in the temperature field in Southern Hemisphere from the earth surface layer to the top of the troposphere, a very obvious periodic variation, which is in accord with the variation of the sun activity with a period of 22 years, prevails. The periodic variation of solar magnetic field leads in phase slightly. Based on analysis it is known that this is the response of the atmosphere climate system of the troposphere in the Southern Hemisphere to the periodic variations of the solar magnetic field. Further analysis also reveals that from the earth surface layer 1 000 hPa to the top of the troposphere, and then to the middle part of the stratosphere 10 hPa, the oscillation phases with a 22-year period component is basically the same. The periodic amplitudes rapidly increase from low layer to high layer. This indicates that the variation of the solar magnetic field has greater effect on the top layer than on the low layer of the troposphere, and on the stratosphere the effect is the greatest. Among them, the 22-year variation period of the temperature field at the earth surface layer 1 000 hPa appears only after the trend variations and the 11-year period are filtrated out. Therefore, the effect of periodic variation of the solar magnetic field on the climate at the earth surface layer is comparatively small, and is often covered up. In the temperature field of the earth surface layer 1 000 hPa in the Southern Hemisphere, after the trend variations are filtrated out, a very obvious periodic variation, which is in accord with the variation of the sun activity with a period of 22 years, appears. Based on analysis it is known that this is the response of the atmosphere climate system of the troposphere in the Southern Hemisphere to the 11-year periodic variations of the solar activity. In the temperature field of the upper layer 300 hPa of the troposphere, after the trend variations and the 22-year period are filtrated out, the 11-year variation period also appears. But for the middle part of the troposphere 500 hPa there is no such case. This tells us that the 11-year period of the solar activity has the greatest effect on the atmosphere climate at the earth surface layer 1 000 hPa, and the effect at the middle and upper layers is weaker.

中图分类号: 

[1] Li Chongyin. Climate Dynamics Guide[M]. Beijing: Meteorology Press,1995.50-53.[李崇银.气候动力学引论[M].北京:气象出版社,1995.50-53.]
[2] Hong Yetang .Progress in study on relationships between solar variability and climate change[J]. Advances in Earth Science, 2000,15(4):400-406.[洪业汤.太阳变化驱动气候变化研究进展[J].地球科学进展,2000,15(4):400- 406.]
[3] Wang Shaowu. Vibration of atmospheric circulation in 90a[J]. Acta Meteorologica Sinica, 1964,34(4):486-506.[王绍武.90年大气环流的振动[J].气象学报,1964,34(4):486-506.]
[4] Xu Qun . The coupled oscillation of solar activity with the strength of subtropical high in northern hemisphere[J]. Scientia Atmospherica Sinica, 1986,10(2):204-211.[徐群.太阳活动与北半球副热带高压强度的耦合振荡[J].大气科学,1986,10(2):204- 211.]
[5] Zhao Zhenguo.The drought suffers from waterlogging trend prediction develops in flood season in our country[A] .In:Tao Shiyan.The Study of Climate Prediction[C]. Beijing:Meteorology Press,1996.84-93.[赵振国.我国汛期旱涝趋势预测进展[A].见:陶诗言编.气候预测研究[C].北京:气象出版社,1996.84-93.][6] Kodera K. Solar cycle modulation of the North Atlantic Oscillation: Implication in the spatiall structure of the NAO[J]. Geophysical Research Letters,2002, 29(8):1 029-1 038.
[7] Bond G,Kromer B,Beer J,et al. Persistent solar influencee on north Atlantic climate during the Holocene[J]. Science,2001,294:2 130-2 136.
[8] Ruzmaikin A,Feynman J. Solar influencee on a major mode of atmospheric variability[J]. Jounal of Geophysical Research,2002,107(D14)10:7-11.
[9] Agnihtri R, Dutta K, Bhushan R ,et al. Evidence for solar forcing on the Indian moimoon during the last millennium[J]. Earth and Planetary Science Letters, 2002,198:521-527.
[10] Wang Ninglian,Yao Tandong. Contributions of ice core to the past global change research[J]. Journal of Glaciology and Geocryology, 2003,25(3):276-283.[王宁练,姚檀栋.冰芯对于过去全球变化研究的贡献[J].冰川冻土,2003,25(3):276-283.]
[11] Kelly P M,Wigley T M L.Solar cycle length greenhouse forcing and global climate[J].Nature,1992,360:328-330.
[12] Liao Dechun,Liao Xinhao. Relationship between solar activity, ENSO and meteorological parameters in Shanghai[J]. Journal of Natural Disasters, 2003,12(2):19-24.[廖德春,廖新浩.上海气象参数与太阳活动和ENSO的关系[J].自然灾害学报,2003,12(2):19-24.]
[13] Zhang Donghe,Xiao Zuo. The study of ionospheric TEC during the flare on Nov.22,1998 by means of 4 GPS recervers over China[J].Acta Scientiarum Naturalium Universitatis Pekinensis, 2000,36(3):416-421.[张东和,萧佐.利用GPS万法对1998-11- 22太阳耀斑引起的电离层TEC变化的观测研究[J].北京大学学报,2000,36(3):416-421.]
[14] Wang Shui. Review and prospect of space physics[J]. Advances in Earth Science, 2001,16(5):664- 670.[王水.空间物理学的回顾和展望[J].地球科学进展,2001,16(5):664- 670.]
[15] Jiang Zhihong,Tu Qipu. Review of overseas study on mechanisms of interdec adal vari ability of air-sea system[J]. Advances in Earth Science, 2001,16(4):569-573.[江志红,屠其濮.国外有关海气系统年代际变率的机制研究[J].地球科学进展,2001,16(4):569-573.]
[16] Jian Zhimin, Huang Wei. Rapid climate change and high resolution deep-sea sedimentary records[J]. Advances in Earth Science,2003,18(5):674-680.[翦知泯,黄维.快速气侯变化与高分辨率的深海沉积记录[J].地球科学进展,2003,18(5):674-680.]
[17] Kelly P M, Wigley T M L. Solar cycle length greenhouse forcing and global climate[J].Nature,1992,360(5568):328-330.
[18] Zhang Zhenda. Researches on ideal MHD Models of coronal mass ejections[J].Progress in Astronomy,1998,16(3):196-207.[章振大.日冕物质抛射的理想MHD模型研究[J].天文学进展,1998,16(3):196-207.]
[19] Shi Zhongxian, Wang Jingxiu.Delta—sunspots and X class flares in solar cycle 22[J].Chinese Journal of  Space Science,1994,14(1):22-29.[史忠先,汪景琇.22太阳活动周的δ黑子群与X级X射线耀斑[J].空间科学学报,1994,14(1):22-29.]
[20] Lin Yuanzhang.The sun storm and its influencing[J].The Terminology Study of Scientific and Technical,2001,3(2):38-41.[林元章.太阳风暴及其影响[J].科技术语研究,2001,3(2):38-41.]
[21] Dong Shilun.A cause of evolution of solar magnetic field—Solar gyromagnetic effect[J].Acta  Astrophysica Sinica,1997,17(1):86-89.[董士仑.太阳磁场演变的起因之一:太阳的回磁效应[J].天体物理学报,1997,17(1):86-89.]
[22] Liu Yu.A research on observation of solar magnetic Field[J].Progress in Astronomy,2001,19(1):34-44.[刘煜.太阳磁场观测研究[J].天文学进展,2001,19(1):34- 44.]
[23] Zhang Shanyu, Zhang Caixia. An periodic analysis of runoff in flooding season at Tunxi Station in drainage area of Xin’ an River[J]. Journal of Anhui Hydrodynamic Science and Technology,2000,41(4):39-39.[张善余,章彩霞. 新安江流域屯溪站主汛期径流量的周期分析[J].安徽水利科技,2000,41(4):39-39.][24] Hou Zhangshuan.Global climatic change and outside forced the factor information to measure in the past one hundred years[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2000,36(5):641-648.[侯章栓.近百年全球气候变化与外强迫因子信号检测[J].北京大学学报,2000,36(5):641-648.]
[25] Qu Weizheng, Deng Shenggui,Huang Fei,et al. The influence of magnetic index abnormal change in solar magnetic field on climate at middle latitude of North Hemisphere[J].Chinese Journal of Geophysics,2004, 47(3):70- 81.[曲维政,邓声贵,黄菲,等.太阳磁场磁性指数异常变化对北半球中纬度气候的影响[J].地球物理学报,2004,47(3):70- 81.]
[26] Trenberth K E,Webster P J. Inherent limits to unterannual predictability preprints[A]. Eighth Conference. on Air-Sea Inter-actions and Conference on the Global Ocean-Atmosphere-Land System[C].Atlanta,Georgia: American Meteorological Society,1996.74-77.
[27] Friis-Christensen E, Lassen K. Length of the solar cycle: An indicator of solar activity closely associated with climate[J]. Science,1991,254:698-700.[28] Guo Zhengfu, Liu Jiaqi.Research Advance In Effect of volcanism on climate changes[J]. Advances in Earth Science, 2002,17(4):245-345.[郭正府,刘嘉麒.火山活动与气侯变化研究进展[J].地球科学进展,2002,17(4):245-345.]
[29] Wang Shaowu. Progress in climatological studies[J]. Advances in Earth Science, 1996,11(2):169-177.[王绍武.气候学研究进展[J].地球科学进展,1996,11(2):169-177.]
[30] Gao Quanzhou , Shen Chengde. Revering carbon flux and continental erosion[J]. Advances in Earth Science,1998,13(4):369-375.[高全洲,沈承德.河流碳通量与陆地侵蚀研究[J].地球科学进展,1998,13(4):369-375.]
[31] Yuan Daoxian .Progress in the study on karst processes and carbon cycle[J]. Advances in Earth Science,1999,14(5):425-431.[袁道先.岩溶作用与碳循环研究进展[J].地球科学进展,1999,14(5):425-431.]

No related articles found!
阅读次数
全文


摘要