地球科学进展 ›› 2020, Vol. 35 ›› Issue (12): 1256 -1269. doi: 10.11867/j.issn.1001-8166.2020.100

研究论文 上一篇    下一篇

微波雷达双边滤波云检测新方法的研究
葛觐铭( ),胡晓宇,王晨,董自香,杜佳璟   
  1. 兰州大学大气科学学院,半干旱气候变化教育部重点实验室,甘肃 兰州 730000
  • 收稿日期:2020-09-20 修回日期:2020-11-20 出版日期:2020-12-10
  • 基金资助:
    国家自然科学基金项目“基于双边滤波噪声压缩方案对CloudSat云检测方法的改进研究”(41875028);甘肃省科技计划项目“雷达小散射截面信号检测研究”(20JR5RA301)

A Novel Bilateral Filter Hydrometeor Detection Method for Microwave Radar

Jinming Ge( ),Xiaoyu Hu,Chen Wang,Zixiang Dong,Jiajing Du   

  1. Key Laboratory for Semi-Arid Climate Change of the Ministry of Education and College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000,China
  • Received:2020-09-20 Revised:2020-11-20 Online:2020-12-10 Published:2021-02-09
  • About author:Ge Jinming (1982-), male, Lanzhou City, Gansu Province, Professor. Research areas include atmospheric radiation and remote sensing. E-mail: gejm@lzu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “A study of an improved cloud mask method for CloudSat based on bilateral filter noise reduction scheme”(41875028);The Science and Technology Projects of Gansu Province “A study of target detection with small radar cross section”(20JR5RA301)

云是影响天气、气候变化的重要因子,也是目前造成气候模拟的最大不确定因素之一,云的长期准确观测,对验证和约束模式结果,减少云对气候变化模拟预测造成的不确定性有重要意义。毫米波云雷达通过接受云滴粒子回波信号,可以获取云的三维结构特征,是云探测的有力工具。以兰州大学半干旱气候与环境观测站Ka波段云雷达和CloudSat星载W波段云雷达为例,详细介绍了一种基于双边滤波的噪声压缩思想,对地—空基云雷达信号回波和背景噪声区分识别的云检测改进算法。通过将图像平滑处理的双边滤波思想引入毫米波雷达云检测算法当中,在压缩雷达背景噪声的同时,保持了弱信号边缘的清楚完整性,从而识别出更多被以往算法忽略的真实信号,并与地面和星载激光雷达同步观测对比,证实了该算法能显著降低传统算法的漏检率,提高毫米波雷达云检测准确度。同时,还以飞行器航迹检测为例,探讨了该算法在微波雷达对目标物探测应用中的改进,说明该算法对增强雷达小散射截面目标物识别方面的普适性。由此认为该方法对微波主动雷达目标物检测,特别是弱信号物体识别提供了一种有效改进。

Clouds play an import role in weather and climate change, and are one of the most principal sources of uncertainty in climate projection. Long-term accurate observations of clouds are vital to validating and constraining model simulations, and reducing the uncertainty caused by clouds in climate models. The millimeter-wavelength cloud radar is a powerful tool for cloud observation by directly detecting signal backscattered from cloud droplets, and thus can provide cloud three-dimensional features. In this paper, we presented in detail an improved cloud detection algorithm to distinguish real cloud echoes from radar background noise. The bilateral filter idea from image process was adopted into millimeter-wave cloud detection algorithm, which compressed the radar noise while preserving cloud edge, therefore being able to identify more real weak signal ignored by traditional cloud mask methods. We also used the Ka-band Zenith Radar (KAZR) in the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL), and the W-band cloud profiling radar aboard CloudSat, along with the synchronized lidar measurements to demonstrate that the improved algorithm could significantly reduce false negative rate, and increase the cloud detection accuracy. This paper also discussed the advantages of this algorithm for microwave radar in other remote sensing applications, taking track detection as an example. It shows that the algorithm could be generally used for small radar cross section target recognition. We believe this method will enhance the active microwave radar target detection ability especially for the objects with small radar cross section.

中图分类号: 

图1 双边滤波示意图
(a)二维高斯函数;(b)标记函数,根据实际回波分布对高斯滤波赋值不同权重;(c)由高斯函数和标记函数构建的双边滤波器; ij是距中心点的雷达距离库位置
Fig.1 Schematic diagram of bilateral filter
(a) Two-dimensional Gaussian function; (b) δ function,assigning different weights to the Gaussian filter according to the actual echo distribution; (c) Bilateral filter,constructed by the Gaussian function and the δ function; i and j are the indexes in the filter window
图2 双边滤波模拟测试图
(a)不同强度目标原始回波;(b)图a的回波分布;(c)对图a进行高斯滤波后的回波;(d)图c的回波分布;(e)对图a进行双边滤波后的回波;(f)图e的回波分布;右列图中,蓝色表示噪声分布,红色表示信号分布; m σ 分别为噪声的平均值和标准差
Fig.2 Test of bilateral filter
(a) Raw echoes of different intensity targets; (b) Echo distribution of Fig.(a); (c) Echoes after Gaussian filter to Fig.(a); (d) Echo distribution of Fig.(c); (e) Echoes after bilateral filter to Fig.(a); (f) Echo distribution of Fig.(e); In the right panels,blue indicates the noise distribution and red indicates the signal distribution; m and σ are the mean and standard deviation of the noise,respectively
图3 地基雷达云检测算法流程图
mσ分别为噪声的平均值和标准差,下标 0 n分别表示原始噪声和压缩后的噪声; N t N r 分别为理论和实际上,滤波器内回波大于 m 0 + σ 0 的距离库个数;右侧虚线框内为左侧噪声压缩的详细步骤
Fig.3 Flowchart of ground-based radar cloud detection algorithm
m and σ are the mean and standard deviation of the noise,respectively; Subscript 0 and n mean original and compressed noise; N t and N r are the theoretical and real number of echoes greater than m 0 + σ 0 in the filter box; The dashed boxes in the right side indicates the detailed steps of noise compression in the left side
图4 201411131400-23:00地基雷达云检测算法结果
(c)中红色表示双边滤波算法相比传统算法多识别的云信号,黄色表示两种方法同时检测到的云,蓝色表示双边滤波比传统算法遗漏的云信号,黑点表示激光雷达特征检验算法识别的云边界
Fig.4 The result of hydrometeor detection method for ground-based cloud radar from 14:00 to 23:00 on November 13,2014
In Fig. (c), red indicates the cloud mask detected by the bilateral filter algorithm but not by the traditional algorithm, yellow indicates the cloud mask detected by both methods simultaneously, blue indicates the cloud mask missed by the bilateral filter algorithm compared to the traditional algorithm, and black dots indicate the cloud boundaries identified by the lidar feature detection algorithm
图5 201381815:00-22:00地基雷达云检测算法结果
(c)中红色表示双边滤波算法相比传统算法多识别的云信号,黄色表示两种方法同时检测到的云,蓝色表示双边滤波比传统算法遗漏的云信号,黑点表示激光雷达特征检验算法识别的云边界
Fig.5 The result of hydrometeor detection method for ground-based cloud radar from 15:00 to 22:00 on 18 August 2013
In Fig. (c), red indicates the cloud mask detected by the bilateral filter algorithm but not by the traditional algorithm, yellow indicates the cloud mask detected by both methods simultaneously, blue indicates the cloud mask missed by the bilateral filter algorithm compared to the traditional algorithm,and black dots indicate the cloud boundaries identified by the lidar feature detection algorithm
图6 星载雷达云检测算法流程图
虚线框为双边滤波的噪声压缩方法
Fig.6 Flowchart of the spaceborne radar cloud detection algorithm
The dashed box shows the bilateral filter noise compression method
图7 200662250°~57°S星载雷达云检测算法结果
(c)红色表示双边滤波算法相比传统算法多识别的云信号,黄色表示被两种方法同时检测到的云,蓝色表示双边滤波算法遗漏的,黑点表示CALIPSO识别的云边界
Fig.7 The result of hydrometeor detection method for spaceborne radar on June 22,2006,from 50°S to 57°S
(c)Red indicates the cloud mask detected by the bilateral filtering algorithm but not by the traditional algorithm, yellow indicates the cloud mask detected by both methods simultaneously, blue indicates the cloud mask missed by the bilateral filtering compared to the traditional algorithm, and black dots indicate the cloud boundaries identified by CALIPSO
图8 200662245°~36°S星载雷达云检测算法结果
(c)红色表示双边滤波算法相比传统算法多识别的云信号,黄色表示被两种方法同时检测到的云,蓝色表示双边滤波算法遗漏的,黑点表示CALIPSO识别的云边界
Fig.8 The result of hydrometeor detection method for spaceborne radar on 22 June 2006,from 45°S to 36°S
(c)Red indicates the cloud mask detected by the bilateral filtering algorithm but not by the traditional algorithm,yellow indicates the cloud mask detected by both methods simultaneously,blue indicates the cloud mask missed by the bilateral filtering compared to the traditional algorithm,and black dots indicate the cloud boundaries identified by CALIPSO
图9 航迹检测流程图
虚线框为双边滤波的噪声压缩方法
Fig.9 Flowchart of the track detection
The dashed box shows the bilateral filter noise compression method
图10 航迹检测模拟测试图
(a)原始航迹信号,其中颜色偏红表示回波强度越强,偏蓝表示回波强度越弱;(b)对图a进行航迹检测的结果;(c)对图a进行双边滤波的噪声压缩后的信号;(d)对图c进行航迹检测结果,其中红线表示比图b中多检测到的航迹
Fig.10 Test of track detection
(a) Raw track signal, the red indicates stronger echoes and blue means weaker echoes; (b) Results of track detection for Fig.(a); (c) Signal after bilateral filter to Fig.(a); (d) Results of track detection for Fig.(c),where the red line indicates more tracks detected than in Fig.(b)
1 Ding Shouguo,Shi Guangyu,Zhao Chunsheng. Analysis of variation and effect on the climate of cloud amount in China over past 20 years using ISCCP D2 [J]. Chinese Science Bulletin, 2004, 49(11): 1 105-1 111.
丁守国,石广玉,赵春生. 利用ISCCP D2资料分析近20年全球不同云类云量的变化及其对气候可能的影响[J]. 科学通报, 2004,49(11): 1 105-1 111.
2 Zhang Hua,Xie Bing,Liu Yu,et al. Study on the influence of clouds on the earth radiation budget and precipitation changes in east asia region [J]. China Basic Science,2017,19(5): 18-22,28.
张华,谢冰,刘煜,等. 东亚地区云对地球辐射收支和降水变化的影响研究[J]. 中国基础科学, 2017,19(5): 18-22,28.
3 Toll V,Christensen M,Quaas J,et al. Weak average liquid-cloud-water response to anthropogenic aerosols [J]. Nature,2019,572: 51-55.
4 Huang Jianping,Yu Haipeng,Guan Xiaodan,et al. Accelerated dryland expansion under climate change [J]. Nature Climate Change,2016,6: 166-171.
5 Wood R. Stratocumulus clouds [J]. Monthly Weather Review,2012,140: 2 373-2 423.
6 Zhao Chunsheng,Yutaka I. Numerical study on cloud microphysics of stratocumulus-topped marine boundary [J]. Acta Meteorologica Sinica,2004,62(1): 87-95.
赵春生,石坂隆. 层积云覆盖的海洋边界层云详细微物理过程的数值模拟[J]. 气象学报, 2004,62(1): 87-95.
7 Fu Qiang,Smith M,Yang Q. The impact of cloud radiative effects on the tropical tropopause layer temperatures [J]. Atmosphere,2018,9. DOI:10.3390/atmos9100377.
doi: 10.3390/atmos9100377    
8 Huang Jianping,Minnis P,Yan H,et al. Dust aerosol effect on semi-arid climate over Northwest China detected from Atrain satellite measurements [J]. Atmospheric Chemistry and Physics,2010,10: 6 863-6 872.
9 Zelinka M D,Randall D A,Webb M J,et al. Clearing clouds of uncertainty [J]. Nature Climate Change,2017,7: 674-678.
10 Lipat B R,Tselioudis G,Grise K M,et al. CMIP5 models' shortwave cloud radiative response and climate sensitivity linked to the climatological Hadley cell extent [J]. Geophysical Research Letters,2017,44: 5 739-5 748.
11 Zhao Kun,Wang Mingjun,Xue Ming,et al. Doppler radar analysis of a tornadic miniature supercell during the landfall of typhoon Mujigae (2015) in South China [J]. Bulletin of the American Meteorological Society,2017,98: 1 821-1 831.
12 Ding Mingyue,Wang Lili,Xin Yu,et al. TS score of WRF cloud microphysical parameterization scheme to the simulation capability of precipitation in Xinjiang [J]. Arid Zone Research,2019,36(6): 1 411-1 418.
丁明月,王俐俐,辛渝,等. WRF云微物理参数化方案对新疆暴雨模拟能力的TS评分分析[J]. 干旱区研究, 2019,36(6): 1 411-1 418.
13 Jiang Dabang,Liu Yeyi. How hot will the greenhouse world be?—A brief review of equilibrium climate sensitivity [J]. Chinese Science Bulletin,2016,61: 691-694.
姜大膀,刘叶一. 温室效应会使地球温度上升多高?——关于平衡气候敏感度[J]. 科学通报, 2016,61: 691-694.
14 Zhou Chen,Zelinka M D,Klein S A. Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature change with a Green's function approach [J]. Journal of Advances in Modeling Earth Systems,2017,9: 2 174-2 189.
15 Kamae Y,Ogura T,Shiogama H,et al. Recent progress toward reducing the uncertainty in tropical low cloud feedback and climate sensitivity: A review [J]. Geoscience Letters,2016,3,17. DOI: 10.1186/s40562-016-0053-4.
doi: 10.1186/s40562-016-0053-4    
16 Zelinka M D,Myers T A,Mccoy D T,et al. Causes of higher climate sensitivity in CMIP6 models [J]. Geophysical Research Letters,2020,47. DOI: 10.1029/2019GL085782.
doi: 10.1029/2019GL085782    
17 Zhou Tianjun,Chen Xiaolong,Wu Bo. Frontier issues on climate change science for supporting Future Earth [J] Chinese Science Bulletin,2019,64(19): 1 967-1 974.
周天军,陈晓龙,吴波. 支撑“未来地球”计划的气候变化科学前沿问题[J]. 科学通报, 2019,64(19): 1 967-1 974.
18 Li Jiandong,Liu Yimin,Wu Guoxiong. Impacts of adjustment among cumulus convection and cloud physics processes on climate simulation [J]. Chinese Journal of Atmospheric Sciences,2010,34(5): 891-904.
李剑东,刘屹岷,吴国雄. 积云对流和云物理过程调整对气候模拟的影响[J]. 大气科学, 2010,34(5): 891-904.
19 Geer A J,Baordo F,Bormann N,et al. The growing impact of satellite observations sensitive to humidity,cloud and precipitation [J]. Quarterly Journal of the Royal Meteorological Society,2017. DOI:10.1002/9j.3172.
doi: 10.1002/9j.3172    
20 Huang Jianping,Ji Mingxia,Higuchi K,et al. Temporal structures of the North Atlantic Oscillation and its impact on the regional climate variability [J]. Advances in Atmospheric Sciences,2006,23: 23-32.
21 Huo Juan,Lu Daren,Duan Shu,et al. Comparison of the cloud top heights retrieved from MODIS and AHI satellite data with ground-based Ka-band radar [J]. Atmospheric Measurement Techniques,2020,13: 1-11.
22 Yao Zhigang,Yang Chao,Zhao Zengliang,et al. Study of the stratiform cloud liquid water path retrieval from the millimeter wave radar data [J]. Plateau Meteorology,2018,37(1): 223-233.
姚志刚,杨超,赵增亮,等. 毫米波雷达反演层状云液态水路径研究[J]. 高原气象, 2018,37(1): 223-233.
23 Zhao Kun,Huang Hao,Wang Mingjun,et al. Recent progress in dual-polarization radar research and applications in China [J]. Advances in Atmospheric Sciences,2019,36: 961-974.
24 Chen Hongbin,Li Zhaoming,Duan Shu,et al. The development of weather radar network [J]. Remote Sensing Technology and Application, 2012,27(4): 487-495.
陈洪滨,李兆明,段树,等. 天气雷达网络的进展[J]. 遥感技术与应用, 2012,27(4): 487-495.
25 Ackerman T P,Stokes G M. The atmospheric radiation measurement program [J]. Physics Today,2003,56: 38-44.
26 Illingworth A J,Hogan R J,O'connor E J,et al. Cloudnet - Continuous evaluation of cloud profiles in seven operational models using ground-based observations [J]. Bulletin of the American Meteorological Society,2007,88: 883-898.
27 Pasqualucci F,Bartram B W,Kropfli R A,et al. A millimeter-wavelength dual-polarization doppler radar for cloud and precipitation studies [J]. Journal of Climate and Applied Meteorology,1983,22: 758-765.
28 Wei Zhong,Lin Hai,Xi Miaoxin. The capability of millimeter wavelength radar in observing clouds [J] Acta Meteorolofica Sinica,1985,43(3): 378-383.
魏重,林海,忻妙新. 毫米波气象雷达的测云能力[J]. 气象学报,1985,43(3): 378-383.
29 Zhang Tao,Zheng Jiafeng,Liu Yanxia. A study on the vertical structure and microphysical characteristic of convective cloud and precipitation over Tibetan Plateau by using Ka-band cloud radar[J]. Journal of Infrared and Millimeter Waves, 2019,38(6): 777-789.
张涛,郑佳锋,刘艳霞. 利用Ka波段云雷达研究青藏高原对流云和降水的垂直结构及微观物理特征[J]. 红外与毫米波学报, 2019,38(6): 777-789.
30 Huo Juan,Daren Lü,Duan Shu,et al. Cloud macro-physical characteristics in Beijing based on Ka radar data during 2014-2017 [J]. Climatic and Environmental Research, 2020,25(1): 45-54.
霍娟,吕达仁,段树,等. 基于2014—2017年Ka毫米波雷达数据分析北京地区云宏观分布特征[J]. 气候与环境研究, 2020,25(1): 45-54.
31 Huang Xingyou,Lu Xun,Huang Yong,et al. A case study on the microphysical parameter retrieval and radiative effects of stratus clouds[J]. Transactions of Atmospheric Sciences, 2019,42(5): 769-777.
黄兴友,芦荀,黄勇,等. 层状云微物理参数反演及其辐射效应的个例研究[J]. 大气科学学报,2019,42(5): 769-777.
32 Im E,Durden S L,Tanelli S. CloudSat: The cloud profiling radar mission [C]// 2006 CIE International Conference on Radar,2006: 1-4.
33 Hou A Y,Kakar R K,Neeck S,et al. The global precipitation measurement mission [J]. Bulletin of the American Meteorological Society,2014,95: 701-722.
34 Illingworth A J,Barker H W,Beljaars A,et al. The EarthCARE satellite: The next step forward in global measurements of clouds,aerosols,precipitation,and radiation [J]. Bulletin of the American Meteorological Society,2015,96: 1 311-1 332.
35 Winker D,Chepfer H,Noel V,et al. Observational constraints on cloud feedbacks: The role of active satellite sensors [J]. Surveys in Geophysics,2017,38: 1 483-1 508.
36 Stephens G,Winker D,Pelon J,et al. CloudSat and CALIPSO within the A-train: Ten years of actively observing the earth system [J]. Bulletin of the American Meteorological Society,2018,99: 569-581.
37 Hagihara Y,Okamoto H,Luo Z J. Joint analysis of cloud top heights from CloudSat and CALIPSO: New insights into cloud top microphysics [J]. Journal of Geophysical Research: Atmospheres,2014,119: 4 087-4 106.
38 Baker M B,Peter T. Small-scale cloud processes and climate [J]. Nature,2008,451: 299-300.
39 Ge Jinming,Zhu Zeen,Zheng Chuang,et al. An improved hydrometeor detection method for millimeter-wavelength cloud radar [J]. Atmospheric Chemistry and Physics,2017,17: 9 035-9 047.
40 Clothiaux E E,Ackerman T P,Mace G G,et al. Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites [J]. Journal of Applied Meteorology,2000,39: 645-665.
41 Clothiaux E E,Miller M A,Albrecht B A,et al. An evaluation of a 94-ghz radar for remote sensing of cloud properties [J]. Journal of Atmospheric and Oceanic Technology,1995,12: 201-229.
42 Marchand R,Mace G G,Ackerman T,et al. Hydrometeor detection using CloudSat—An Earth-orbiting 94-ghz cloud radar [J]. Journal of Atmospheric and Oceanic Technology,2008,25: 519-533.
43 Tomasi C,Manduchi R. Bilateral filtering for gray and color images [C]// IEEE International Conference on Computer Vision. Bombay,India,1998: 839-846.
44 Zhu Zeen,Zheng Chuang,Ge Jinming,et al. Cloud macrophysical properties from KAZR at the SACOL [J]. Chinese Science Bulletin,2017,62(8): 824-835.
朱泽恩,郑创,葛觐铭,等. 利用KAZR云雷达对SACOL站云宏观特性的研究[J]. 科学通报, 2017,62(8): 824-835.
45 Huang Jianping,Zhang Wu,Zuo Jinqing,et al. An overview of the semi-arid climate and environment research observatory over the Loess Plateau [J]. Advances in Atmospheric Sciences,2008,25: 906-921.
46 Xie Hailing,Zhou Tian,Fu Qiang,et al. Automated detection of cloud and aerosol features with SACOL micro-pulse lidar in northwest China [J]. Optics Express,2017,25(24): 30 732-30 753.
47 Zong Rong,Guo Wei,Zhong Lingzhi. Comparison analysis of cloud boundary detection by means of millimeter wavelength cloud radar and lidar [J]. Laser Technology,2016,40(2): 171-177.
宗蓉,郭伟,仲凌志. 毫米波雷达和激光雷达探测云边界的对比分析[J]. 激光技术, 2016,40(2): 171-177.
48 Bu Lingbing,Qin Yanqiu,Wu Fang,et al. Analysis of cirrus properties based on micro-pulse lidar andmillimeter wave cloud radar [J]. High Power Laser and Particle Beams,2014,26(10): 305-310.
卜令兵,覃艳秋,吴放,等. 基于激光雷达和毫米波云雷达的卷云特性分析[J]. 强激光与粒子束, 2014,26(10): 305-310.
49 Yan Wei,Han Ding,Zhao Xianbin,et al. Comparative research of cloud boundary heights based on millimeter-wave radar,radio occultation and radiosonde data [J]. Chinese Journal of Geophysics,2012,55(7): 2 212-2 226.
严卫,韩丁,赵现斌,等. 基于毫米波雷达、无线电掩星和探空仪资料的云边界高度对比研究[J]. 地球物理学报, 2012,55(7): 2 212-2 226.
50 Garrett T J,Gerber H,Baumgardner D G,et al. Small,highly reflective ice crystals in low-latitude cirrus [J]. Geophysical Research Letters,2003,30(21). DOI:10.1029/2003GL018153.
doi: 10.1029/2003GL018153    
51 Chen Tianmeng,Guo Jianping,Li Zhanqing,et al. A CloudSat perspective on the cloud climatology and its association with aerosol perturbations in the vertical over Eastern China [J]. Journal of the Atmospheric Sciences,2016,73: 3 599-3 616.
52 Shi Chunhua,Li Hui,Zheng Bin,et al. An atypical cold vortex structure and its precipitation over Northeast China based on Cloudsat detection [J]. Chinese Journal of Geophysics,2013,56(8): 2 594-2 602.
施春华,李慧,郑彬,等. 基于Cloudsat探测的一次非典型东北冷涡结构及其降水[J]. 地球物理学报, 2013,56(8): 2 594-2 602.
53 Hu Xiaoyu,Ge Jinming,Li Yanrong,et al. Improved hydrometeor detection method: An application to CloudSat [J]. Earth and Space Science,2020,7. DOI: 10.1029/2019EA000900.
doi: 10.1029/2019EA000900    
54 Tang Qi,Huang Jianguo,Yang Xudong. Algorithm of track initiation and performance evaluation[J]. Journal of System Simulation,2007,19(1): 149-152.
汤琦,黄建国,杨旭东. 航迹起始算法及性能仿真[J]. 系统仿真学报, 2007,19(1): 149-152.
55 Xiong Feng,Wang Gan,Bai Yang,et al. Radar track initiation method based on the convolutional neural network [J]. Electronic Measurement Technology,2020,43(10): 78-83.
熊风,王干,白杨,等. 基于卷积神经网络的雷达航迹起始方法[J]. 电子测量技术, 2020,43(10): 78-83.
56 Zhu Yuancai,Wang Hong,Qu Zhiguo,et al. Track initiation method for slow and small target based on image processing Hough transform [J]. Modern Defence Technology,2018,46(1): 156-161.
朱源才,王红,曲智国,等. 图像处理Hough变换的慢小目标航迹起始方法[J]. 现代防御技术, 2018,46(1): 156-161.
57 Jiankui Z,Zishu H,Sellathurai M,et al. Modified Hough transform for searching radar detection [J]. IEEE Geoscience and Remote Sensing Letters,2008,5: 683-686.
58 He Peng,Liang Yan,Jin Shuling,et al. Multi-scale clustering-based Hough transform track initiation method [J]. Fire Control and Command Control,2008,33(11): 36-
38[贺鹏,梁彦,金术玲,等. 多尺度聚类Hough变换航迹起始方法[J]. 火力与指挥控制, 2008,33(11): 36-38.]
59 Xu Guanhua,Liu Qinhuo,Chen Liangfu, el at. Remote sensing for China's sustainable development: Opportunities and challenges [J]. Journal of Remote Sensing,2016,20(5): 679-688.
徐冠华,柳钦火,陈良富,等. 遥感与中国可持续发展:机遇和挑战[J]. 遥感学报, 2016,20(5): 679-688.
60 Li Deren,Zhang Liangpei,Xia Guisong. Automatic analysis and mining of remote sensing big data [J]. Acta Geodaetica et Cartographica Sinica,2014,43(12): 1 211-1 216.
李德仁,张良培,夏桂松. 遥感大数据自动分析与数据挖掘[J]. 测绘学报, 2014,43(12): 1 211-1 216.
[1] 裔传祥, 辛晓洲, 胡继超, 张海龙, 李小军, 龚围. 基于GF-4数据分析低分辨率卫星云检测尺度误差对下行辐射计算的影响[J]. 地球科学进展, 2018, 33(4): 425-434.
阅读次数
全文


摘要